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ABSTRACT 

 

This work presents the development of a multi-mode electroanalytical detection system 

based on Arduino microcontroller board. First, a multichannel impedance readout system 

is designed for alternating current electrokinetics (ACEK) based capacitive sensing. ACEK 

phenomena on 100μm interdigitated electrodes are observed via fluorescent particles as 

well as bioparticles, which illustrate the mechanisms of ACEK target enrichment for the 

capacitive sensing method. I2C multiplexer is applied to allow multiple impedance 

converters to work together providing continuous AC signals for ACEK capacitive sensing. 

Second, an electronic nose composed of three modules including a gas sensor array, a 

circuit for signal acquisition integrated with Arduino microcontroller board, and a PC for 

signal analysis is designed. A backpropagation neural network with one hidden layer and 

one output layer is trained to classify gas samples from binary and ternary mixtures of 

acetone, ethanol, and isopropyl alcohol. Three features are extracted from transient signals 

in a short time (as compared to steady-state signals), and the classification is done within 

1 minute after gas reached the surface of the sensors. Third, a low-cost portable 

potentiometric sensing system for the detection of heavy metals in water is developed and 

assessed by testing with hand-fabricated all-solid-state Pb2+ and Cd2+ ion-selective 

electrodes (ISEs). To avoid the use of a multimeter, an extended-gate metal-oxide-

semiconductor field-effect transistor (MOSFET) is applied to the readout circuit and 

integrated with an Arduino microcontroller board. ALD1106 matched MOSFET pair is 

chosen for differential sensing to overcome the possible drift problem of ISEs. With a 

threshold voltage of 0.7 V while operating at the subthreshold region, the MOSFET could 

be biased via a potentiometer to avoid the use of a voltage source. Last, the three different 

analytical detections are integrated into one multi-mode system in the design.   
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CHAPTER 1  

INTRODUCTION  

 

1.1 Research background 

The development of low-cost, versatile, and portable data acquisition and processing 

systems for electroanalytical detection is of great importance. For the past decade, a large 

number of microcontroller based potentiostat for electrochemical detections are designed 

by researchers [1] [2] [3] [4]. However, most of these systems are designed for biosensors 

or chemical sensors in a particular application. Moreover, for the application of portable 

potentiometric electronic tongue, where small voltage differences are to be measured, a 

benchtop multimeter with high input impedance is usually required, which makes the 

whole system not portable [5].    

Alternating current electrokinetics (ACEK) capacitive sensing technology has 

shown high potential in the detection of bacteria [6], heavy metals [7] as well as small 

molecules [8]. This sensing method uses interdigitated microelectrodes (IDEs) as a basic 

sensor structure, combining affinity biosensing technology with ACEK target enrichment 

technology. It measures the capacitance changes of the IDE sensor under AC voltage with 

a selected amplitude and frequency, and uses the capacitance change rate (dC/dt) in a time 

period of 15~30s as the test result. A palm-size analyzer for ACEK capacitive sensing is 

designed by Liu [9] in 2017. This device is a single channel sensing system and is not able 

to test with multiple channels. As a continuation of Liu’s work, Queslati designed a 

multiplexed ACEK sensing system in 2019 [10]. Instead of using an I2C multiplexer to 

allow multiple impedance converters to work synchronously, her work uses a CMOS 

analog multiplexer (ADG1604) to switch between the sensors to realize time-division 

multiplexing. With one impedance converter, which contains only one signal generator, 

the measurement for different channels in this system is either done sequentially one by 

one or via time division. The former method is time-consuming especially when more 
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channels are involved, and the latter one will weaken ACEK effects on each channel while 

introducing more noise.     

While capacitive sensing works well with affinity-based biodetection, many 

biochemical sensors are based on amperometric methods, such as potentiometric sensors, 

which are good candidates to integrate into a multiplexed sensing system. Potentiometric 

ion-selective sensors are of great importance in applications of in situ monitoring of aquatic 

systems. Ion-selective sensors have exhibited excellent analytical performances for pH 

tests as well as the detection of trace heavy metals (e.g., Pb2+, Cd2+) in water [11]. 

Conventional ion-selective electrodes (ISEs) are composed of an ion-selective membrane, 

an inner filling solution, and a reference electrode connecting to the potentiometer [12]. 

Since the invention of coated wire electrodes in the 1970s, all-solid-state ISEs have 

received much attention from researchers due to the easy miniaturization when compared 

with conventional liquid contact ISEs. Similar to an electronic nose, an array of 

potentiometric sensors combined with a pattern recognition algorithm could form an 

electronic tongue. 

In addition to biodetection, gas phase detection of chemicals also helps to identify 

potential hazards. Detection of poisonous or explosive gases emit from industry 

productions and indoor environments is important for environmental protection as well as 

human health. Volatile organic compounds (VOCs) include a variety of chemicals that can 

be found in both indoor and outdoor air. Building materials, home & personal care 

products, combustion processes (e.g., paint, pressed wood products, cleaners, smoking, 

cooking) are the most common indoor VOCs sources. Major outdoor sources include traffic 

emissions, wood burning, oil & gas extraction, and industrial emissions. According to EPA, 

some of the VOCs may have short- and long-term adverse health effects such as irritation 

and headaches, damage to organs, or cause cancer [13]. Currently, there is a wide range of 

commercially available gas sensors for various applications. Based on the type of the 

sensing element, gas sensors are typically classified into the following types: metal oxide 

semiconductor (MOS) type [14], catalytic (or calorimetric) type [15], electrochemical type 

[16], infrared type [17], capacitive type [18], and surface acoustic wave (SAW) type [19]. 
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Among these types of sensors, MOS-based sensors are the most studied group of gas 

sensors with increasing popularity for gas sensing, especially for VOC detection. However, 

the selectivity of MOS gas sensors is poor due to the well-known cross-sensitivity in MOS 

gas sensors. As a result, no MOS gas sensor is selective to a single gas, and a single MOS 

gas sensor is not adequate for specific recognition when challenged with a gas mixture 

[20]. The selectivity problem of MOS gas sensors could be alleviated by using an array of 

sensors with different sensitivities along with a pattern recognition algorithm. Each sensor 

in the array has a preferred “target” gas that would yield a higher response than other gas 

species. A sensor array with pattern recognition algorithm is widely adopted in gas 

identification systems and is commonly known as an electronic nose [21] [22]. 

A portable electroanalytical detection system based on a microcontroller can avoid 

the use of bulky and expensive lab equipment like potentiostat, multimeter, and DC voltage 

source. The motivation for integrating the ACEK capacitive sensing module, electronic 

nose, and electronic tongue into the multimode system is to reduce cost while 

implementing different detections simultaneously.    

 

1.2 Types of electroanalytical sensors 

Owing to the development of affordable, user-friendly, and portable analytical tools, 

electroanalytical sensing technology is growing rapidly nowadays. This section reviews 

the three types of electroanalytical sensors that are adopted by the Arduino microcontroller 

based detection system. 

 

1.2.1 Impedance readout- biofluid based electrode sensors 

Interdigitated electrode (IDE) consists of an array of interwoven electrodes on a substrate 

that are generally used to measure impedance. It has gained considerable interest in recent 

years as electrical transducers for biosensing [8] [23] [24]. The absence of reference 

electrodes and ease of miniaturization are two main advantages of IDE sensors. Figure A- 

1 shows the IDE sensors. All tables and figures are located in the appendix. Figure A- 1 (a) 

is a simple design of IDE, (b) is a hand-made 400 µm width/gap IDE with FR4 substrate, 
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and (c) is a commercial SAW resonator which contains 2 µm width/gap IDE on a ceramic 

substrate.  

In a previous work [7], a gold-plated IDE of 100μm width/gap IDE is used as a 

sensor for sensitive and rapid detection of Pb2+ ions. Figure A- 2 shows the schematic of 

our sensor with DNA strands involved on the gold surface of IDE, and impedance 

measurements by a single-channel commercial impedance analyzer. 

 

1.2.2 Potentiometric sensors 

Potentiometric sensing measures the potential difference between two electrodes 

(generally ion-selective electrodes (ISEs) and reference electrodes in liquid phase) when 

no current is present. The electrical potential of the ISEs could be used to determine the 

analytical quantity of some components. The reference electrode is to provide a defined 

reference potential in the measurement. [25] [26] Conventional ISEs contain inner filling 

solutions which serve as liquid contacts to separate the sensing membrane from the inner 

reference element. This makes it sensitive to changes in temperature and pressure as well 

as the evaporation of the inner filling solutions. Moreover, the miniaturization of liquid 

contact ISEs is limited by the use of inner liquid, making it hard to meet the requirements 

for low-cost portable devices with easy maintenance and simple operation. [27] Different 

from conventional ISEs, all-solid-state ISEs use solid contact as the ion-to-electron 

transducer. As shown in Figure A- 3 [27], an all-solid-state electrode contains a thin layer 

of membrane (ion-selective or reference membrane), a coated wire (connecting lead), and 

a solid contact between membrane and wire (ion-to-electron transducer). 

Conducting polymers are effective ion-to-electron transducers while serving as 

solid contact for an all-solid-state ISE. The potential difference across the ion-selective 

membrane and the solid contact, conducting polymer, is determined by analyte ion 

distribution. Whereas the interfacial potential between conducting polymer and the 

substrate (coated wire) is by the redox reactions in the following equations: 

𝐶𝑃+𝐷−(𝑠𝑜𝑙𝑖𝑑 𝑐𝑜𝑛𝑡𝑎𝑐𝑡) + 𝐴+(𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒) + 𝑒−

⇄ 𝐶𝑃˚𝐷−𝐴+(𝑠𝑜𝑙𝑖𝑑𝑒 𝑐𝑜𝑛𝑡𝑎𝑐𝑡) 
1.1 
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𝐶𝑃+𝐶−(𝑠𝑜𝑙𝑖𝑑 𝑐𝑜𝑛𝑡𝑎𝑐𝑡) + 𝑒−

⇄ 𝐶𝑃˚(𝑠𝑜𝑙𝑖𝑑𝑒 𝑐𝑜𝑛𝑡𝑎𝑐𝑡) + 𝐶−(𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒) 
1.2 

in which CP refers to conducting polymer, 𝐴+ represent the analyte ion (target ion 

of a detection), 𝐷− and 𝐶−  are the doping and hydrophobic counter ion added to the 

conducting polymer. Conducting polymer serves as a redox buffer transferring ions to 

electrons while being oxidized or reduced.  

Figure A- 4 shows a hand-made all-solid-state ISE sensor with Pb2+ ion-selective 

membrane. Similar to the hand-made IDE sensors in Figure A- 1 (b), the base structure of 

the ISE sensor in this work is also fabricated by PCB etching. Nickel and gold layers are 

plated to the electrode sequentially. Poly (3,4-ethylenedioxythiophene) (PEDOT), which 

serves as solid contact layer, is coated on the gold electrode surface by electrochemical 

deposition. Then a thin layer of Pb2+ selective membrane is coated by spin coating. Finally, 

the edges of the sensing membrane as well as the rest of the electrode is sealed by epoxy.  

 

1.2.3 Metal oxide semiconductor sensors 

MOS gas sensors are the most investigated group of gas sensors. Because the response and 

recovery times decrease with temperature, it usually needs to work at high temperatures. 

MOSs can be divided into two groups according to the operating temperature: (1) surface 

conductance materials (e.g. ZnO, SnO2) operating at 400˚C-600˚C and (2) bulk 

conductance materials (e.g. TiO2, CeO2) operating at >700˚C [14]. The required preheating 

time of MOS sensor is usually more than 24 hours.  

When metal oxide semiconductor particles (e.g. tin dioxide) are heated in clean air, 

donor electrons in the metal oxide are attached to oxygen adsorbed on the particle surface. 

The lack of free electrons reduces electric current flow. In the presence of target VOCs, the 

MOS sensor reacts with the VOCs. The electrons once attached to the oxygen molecules 

are released into the metal oxide, increasing the current flow and decreasing the sensor 

resistance. The sensor resistance decreases correspondingly, thus realizing the detection of 

VOCs in the air [28].   
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Figure A- 5 shows the basic measuring circuit of MOS sensors from two major 

manufacturers: (a) HANWEI® MQ series and (b) Figaro® TGS series gas sensors. The 

packaged sensors operate at room temperature. However, a 5 V DC heater voltage is needed 

for the inside sensing element to maintain a working temperature at 400°C. When the 

reaction of specific gases with the sensing elements leads to a change in the sensor 

resistance RS, changes in voltage could be obtained via the circuit shown in Figure A- 5. 

By choosing an appropriate value for the load resistor RL, voltage levels at VOUT could 

indicate the presence and the level of target gases.  

 

1.3 Scope and Research Goal 

The development of portable analytical devices for on-site electroanalytical detection is 

relatively straightforward. However, one of the unsettling issues for some electroanalytical 

sensors is the selectivity of the sensor. While the sensor is sensitive to the target, it also 

responds to non-target interferences. To overcome the selectivity problem, an array of 

sensors with different sensitivities is usually used. Hence, multichannel measurement is 

preferred. 

Affinity biosensors usually take a long time to yield results. By introducing 

alternating current electrokinetic (ACEK) effects for target enrichment, the testing time 

required for one single capacitive sensing sensor could be shortened to 15 seconds. 

However, the waiting period is still too long when multiple samples are to test. To further 

accelerate the testing process, multiplexed impedance readout system for multi-channel 

ACEK capacitive sensing as well as a multi-channel sensor array are designed in this work. 

Moreover, a multi-mode detection system that integrates ACEK capacitive sensing 

technique with potential based sensing is designed in this work.    
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1.4 Contribution 

This work designed three different electroanalytical detection systems based on Arduino 

microcontroller boards: the impedance readout system for ACEK capacitive sensing, the 

electronic nose system, and the extended-gate FET potentiometric sensor readout system. 

ACEK phenomena on 100μm interdigitated electrodes are observed via fluorescent 

particles as well as bioparticles, which illustrate the mechanisms of ACEK target 

enrichment for the capacitive sensing method. Then multiplexed testing is realized in the 

design of the impedance readout system for ACEK capacitive sensing. 

An electronic nose system aims to detect volatile organic compounds (VOC) in 

indoor ventilation system is designed. Correlation coefficient and principal component 

analysis are used while selecting gas sensors for the sensing array. A classifier and a 

regression model based on backpropagation neural network are used for qualitative and 

quantitative detection of VOC mixtures. The test accuracy of the classification on acetone, 

ethanol, isopropyl alcohol gas as well as its binary and ternary gas mixtures is 82.6%. 

To expand the function of the Arduino microcontroller board based 

electroanalytical detection system, an extended-gate FET readout system for 

potentiometric sensing is designed, in which small voltage differences generated by all-

solid-state ion-selective electrodes are amplified by the FET before being measured by 

analog input pins of the microcontroller. 
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CHAPTER 2  

SENSING MECHANISM AND SENSOR ARRAY 

 

2.1 ACEK biosensing theory 

The use of electrokinetics in microfluidic systems is common. It usually serves two 

purposes. The one is for fluid pumping, which transports a range of different species from 

biomolecules to cells; The other is for particle manipulation, which usually means 

concentrating or separating particles for analysis. Direct current electrokinetics (DCEK) 

need a high voltage level to generate electrokinetic flow, which may cause electrochemical 

reactions and generate bubbles when gas is produced. On the other hand, the induced 

charges from alternative current electrokinetics (ACEK) change polarity with the external 

electric field, preventing reactions even at a relatively high voltage level. Thus, ACEK has 

higher transport efficiency when compared with DCEK.  

 

2.1.1 Interfacial capacitive sensing 

Capacitive sensing is a technology that detects or measures something conductive based 

on the capacitive coupling theory [29]. Interfacial capacitance is a function of electric 

double layer capacitance [30]. When IDE is immersed in electrolytic solutions, an electric 

double layer will form between the aqueous solution and the interface of the electrodes. 

Determined by the electronic structure of the IDE introduced in section 1.2.1, the electrode 

cell can be represented by the equivalent circuit in Figure A- 6: 

Solution resistance of the sensor is represented by Rsol and the interfacial 

capacitance is modeled by a constant phase element CPEint and a resistive path Rleak. The 

changes in the electronic element values reflect the changes happen on the sensor surface 

during sensor preparation or detection. Use our DNA sensor in [31] (Figure A- 7) as an 

example, the surface area of the IDE sensor, which is one of the key factors in capacitance 

calculation, varies in different stages of probe immobilization and target binding. Represent 
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by A0, Ab0 and Ab, the surface area in relation to interfacial capacitance increases in the 

DNA probe immobilization and target miRNA binding process. 

 

2.1.2 ACEK mechanisms 

Interfacial capacitive sensing depends on the changes in capacitance due to the probe & 

target binding above the surface of the microelectrodes. This process can be accelerated 

and enhanced by ACEK phenomenon. ACEK mainly includes dielectrophoresis (DEP), 

AC electro-osmosis (ACEO), and AC electrothermal effect (ACET) [32]. 

• Dielectrophoresis 

DEP explained the phenomenon of how a force is exerted on a dielectric particle 

when the particle is subjected to a non-uniform electric field [33]. The electric field 

polarizes the particle and exerts a force on it to move it. The velocity can be described by 

the following equation: 

 

〈𝑢𝐷𝐸𝑃〉 =
ɑ2휀𝑚

6𝜂
𝑅𝑒[

휀�̃� − 휀�̃�

휀�̃� + 2휀�̃�
]∇|𝐸|2 

 

2.1 

where ɑ is the diameter of the particle; 휀�̃� and 휀�̃� are complex permittivity of the 

particle and the suspending medium;  𝜂  is viscosity of the medium. We can see from 

equation 2.1 that DEP velocity of a particle can be positive or negative determined by the 

sign of 휀�̃� − 휀�̃�, which depends on the frequency.  

• AC electro-osmosis 

ACEO is a phenomenon of induced-charge electro-osmosis flow around electrodes 

when AC voltage is applied [34]. Firstly, the electrodes are become capacitively charged 

by AC voltage signal. Then counter-ions accumulated at the surfaces of the charged 

electrodes. When the counter-ions migrate with/against electric field, which is tangential 

to the electrode surface, it generates fluid motion due to fluid viscosity [32]. The basic 

scaling of ACEO flow is given by [34] 
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〈u〉 ∝
𝑉2

𝜂(1+𝛿)𝐿[
𝜔

𝜔𝑐
+

𝜔𝑐
𝜔

]
2                                                    2.2 

𝜔𝑐 ∝
𝐷(1+𝛿)

𝜆𝐿
                                                           2.3 

where V is the applied AC voltage; 휀 is the permittivity of the liquid;𝜂 is viscosity 

of the fluid; 𝛿 is the ratio of the capacitances (diffuse layer to compact layer); L is the 

center-to-center electrode spacing; 𝜆 is the Debye screening length; D is a characteristic 

ionic diffusivity. According to the equations, when 𝜔 = 𝜔𝑐, ACEO flow reaches its peak 

velocity. That means ACEO flow weakens when the frequency of the AC voltage is too 

high or too low compared with the peak frequency. 

• AC electrothermal effect 

Biological applications usually involve fluids with high conductivities, for 

example, phosphate-buffered saline (PBS). While ACEO is limited to fluids with low 

conductivities, for example, DI water, ACET can actuate fluid motion in more conductive 

liquids.  

ACET refers to fluid motion due to the interactions of AC electric fields and 

temperature gradients in the fluid. Joule heating of the electrolyte causes temperature 

gradients that yield fluid motion. The velocity of the fluid motion can be estimated by  

𝑢𝐴𝐶𝐸𝑇 ≅ 3 × 10−3
휀𝑉2

𝜂
|
𝜕𝑇

𝜕𝑦
| |

1

𝜎

𝜕𝜎

𝜕𝑇
| 2.4 

where T is the temperature; 𝜎 is conductivity of the fluid; |
𝜕𝑇

𝜕𝑦
| is the external thermal 

gradient.  

 

2.1.3 ACEK observations 

Different ACEK modes on IDE are observed through a microscope. FluoSpheres ○R  

carboxylate modified microspheres (1.0 μm), as well as live yeast cells (3~4 μm), are used 

in the observation.  

Figure A- 8 (a)(b)(c) are three images extracted from a video in time sequence. 

Yeast cells numbered 1,2 and 3 shown in (a) are dragged to the edges of the microelectrode 
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in (b). After that, the cell numbered 4 in (b) is dragged to the edge in (c). This could be 

explained by positive DEP since DEP force is along the field lines and the electric field is 

strongest at the edges. 

Arrows of different colors pointed out four moving particles in Figure A- 9. To 

illustrate the directions, each arrow starts at a fixed particle and ends at the moving particle. 

It is clear that all the moving particles are moving in directions from metal electrode toward 

the FR4 substrate gap. This experiment simulates how particles move with ACET flow 

(which follows the direction of thermal gradient) on IDE biosensors.    

While it is easy to show ACEO movements by video, it is hard to show by images. 

As ACEO movements are vortices, not all particles are move in the same direction at one 

moment. Figure A- 10 shows the trace of fluorescent microparticles moving with ACEO 

flow. Vortices are observed as the particles are moving fast at 100 kHz.  

Another way to show ACEO by images is to track the positions of single particles. 

When the frequency is lower, which is 10 kHz, ACEO movements are slower 

correspondingly. 8 images in the Figure A- 11 are obtained from the same video but at 

different times, in which (a) t=16s, (b) t=22s, (c) t=31s, (d) t=37s show ACEO movement 

of one particle, (e) t=12s, (f) t=20s, (g) t=30s, (h) t=38s show the other particle. 

Quite different from Figure A- 8 in which all yeast cells are located to the edges of 

electrode at100 kHz, a combination of DEP and ACEO is observed at 1 kHz in Figure A- 

12. As a result, most of the stabilized cells are either lined in the center of an electrode or 

get fixed at the edges, while active cells are rotating with the ACEO vortices near the edges. 

In another video of the yeast cell observation (shown in Figure A- 13), an active 

yeast cell is found to fall right in the middle of an electrode after several rotations. This is 

similar to the ACEO observed in reference [32]. Moreover, several cells are found moving 

along the centerline of the electrode (shown by a dotted line arrow), in which two of them 

are moving toward each other. These movements are due to the charges on the cells and 

the electric field, and are preferred in ACEK capacitive sensing. 
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2.2 Sensor array 

The maximum number of electroanalytical sensors in the system to form an array is mainly 

determined by the detection performance of the sensor as well as the required efficiency of 

one detection. Besides, additional cost and power consumption to add more channels also 

need to be considered. 

 

2.2.1 ACEK biosensor array 

Considering the capacity of I2C multiplexer and the power consumption requirements for 

the system, the number of ACEK sensing channels is set to be 16. Then, the structure of 

the ACEK sensor array is designed according to the size and arrangement of the 

commercial press-to-seal silicon isolator (Millipore Sigma, GBL665208) as well as 

2.54mm standard edge connector. Figure A- 14 is the top and bottom view of the 16-

channel ACEK sensor. 

 

2.2.2 MOS gas sensor array 

As introduced in section 1.2.3, the sensing membrane of MOS gas sensors needs to be 

heated to a high temperature before use. That makes power consumption of each sensor to 

be relatively high. The number of sensors in an electronic nose system, especially in a 

portable system, is limited. Just as the price of gas sensors of different models varies, the 

power consumptions are also different. But overall, the MQ series gas sensors have a much 

higher power consumption when compared with the TGS series.  

As shown in Figure A- 15, MOS gas sensors are designed to line in a row on a 

prototyping board as the total number of sensors is relatively small. 
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CHAPTER 3  

MICROCONTROLLER BASED READOUT SYSTEM DESIGN 

 

3.1 AD5933 based ACEK capacitive sensing system 

According to the sensing theory introduced in Chapter 2, ACEK capacitive sensing 

measures the change of capacitance in a required period while AC voltage signal is present 

continuously not only for impedance measurement, but also for target enrichment. Unlike 

regular multichannel impedance measurement devices, which only need one impedance 

converter to do time-division multiplexing, the multichannel ACEK capacitive sensing 

system needs one impedance converter for each channel. AD5933 high precision 

impedance converter is adopted in ACEK capacitive sensing system. 

 

3.1.1 AD5933 impedance converter  

Complex impedance can be calculated by applying a sinusoidal current with constant 

amplitude at a known frequency between two electrodes and measuring the magnitude & 

phase of the output voltage [35].  

As shown in Figure A- 16, ZX is the complex bioimpedance circuit, RS is a standard 

resistor. ZX can be calculated by equation 3.1: 

1

2

Z ZZ
X S S S

S S S

U UU
Z R R R

U U U







=  =  =  


 

3.1 

 

The above impedance calculation method is carried out by an I-V converter. Figure 

A- 17 is the block overview of AD5933. As no current is flowing into the I-V amp 

(connected via VIN pin), the current flowing in the RFB and Z(ω) is the same (IRFB=IZ), 

RFB serves as the standard resistor RS in equation 3.1. In other words, the gain of the I-V 

amp is controlled by RFB and Z(ω).  
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In Figure A- 17, unknown impedance is connected directly between VOUT and 

VIN pins. In bio-impedance measurement, when the unknown impedance to be tested is 

small, the signal current flowing through the impedance increased at a fixed excitation 

voltage. The increased sink and source current on the output of the I-V amp may cause it 

to operate outside of the linear region and result in significant errors in measurements. Thus, 

it is necessary to add an additional external amplifier circuit to the signal path of AD5933 

when measuring small impedances. [13] 

Figure A- 18 shows the circuit for ACEK capacitive sensing. The 47 ηF capacitor 

serves as a high pass filter to remove the DC bias voltage from the VOUT. The AC voltage 

signal is then biased by VDD/2 by the pair of 50 kΩ resistors, R4 and R7. The voltage 

follower (U1A) serves as a noninverting buffer. With its low output impedance and 

extremely high input impedance, eliminates loading effects while still maintaining the 

same voltage (amplitude and frequency) at the output. [36] Instead of directly connecting 

the RFB and Zunknown to the I-V amp, an additional amplifier (U1B) is used before it. A pair 

of 20 kΩ resistors are used to set the gain of the I-V amp to -1. The real gain of the circuit 

is thus controlled by CAL and Zunknown placed at the added external amplifier. The use of 

20 kΩ resistances in the small impedance measurement circuit protects the receive side I-

V amp at a fixed excitation voltage.  

As the impedance of biofluid-based electrode sensors in the frequency range of 50 

kHz~100 kHz is about 1.2 kΩ, the value of the calibration resistor (CAL in the circuit) 

should be set similar to this value. A 1.2 kΩ resistor is chosen as CAL resistor in the 

capacitance sensing circuit.  

 

3.1.2 Low voltage measurement design  

AD5933 has 4 levels of output excitation voltages ranging from 200 mV p-p to 2 V p-p. 

However, for some bio-impedance measurement applications, 200 mV is still too high. To 

attenuate the excitation voltage at the transmit side of AD5933 (VOUT side), an 

operational amplifier with low output resistance, AD8608, is chosen to build an attenuation 

stage.  
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Figure A- 19 is the schematic of the low voltage circuit. The attenuation amplifier 

buffers the unknown impedance from the effects of Rout and introduces a smaller output 

impedance in series with Zunkown [13]. The ratio of R1/R2 determines the attenuation rate. 

For example, with the values of R1=25 kΩ and R2=100 kΩ, the 200 mV p-p excitation 

voltage will be attenuated by ¼. A much lower voltage (50 mV p-p) will be applied across 

the capacitive sensing sensor. To increase accuracy of the measurement, the RFB resistor 

should be carefully selected to utilize the full ADC resolution.  

 

3.1.3 Peripherals  

SSD1306 128×32 I2C OLED is selected as the display of the system. A 4-pin push button 

(controlled by PIN10) is used to control the start of a test. 3×4 matrix keypad (connected 

to PIN3~9) is adopted allowing customizing the frequency and voltage parameters of a test. 

 

3.1.4 Multichannel 

Control of AD5933 is carried out via I2C-compliant serial interface protocol [37] and one 

AD5933 has a default 7-bit serial bus slave address, 0x0D. The ACEK multichannel system 

needs more than 10 AD5933 to work synchronously. Arduino microcontroller has a single 

I2C bus if not expanded by software solutions. One software solution is to use an alternative 

library. However, software I2C extension need to tie up additional pins of Arduino other 

than SDA and SCL, and many of the sensor and display libraries for I2C devices have a 

dependency upon the Wire library, we can’t Wire on the same sketch when using the 

alternative library for I2C expansion [38]. For these reasons, a hardware solution by I2C 

multiplexer, TCA9548A, is adopted in this work.  

Two TCA9548APWR working with 16 channels of AD5933 impedance converter 

in total is shown in Figure A- 20. One TCA9548APWR address is the default value 

‘000’(serial bus address: 0x70) when A0 (pin1) A1 (pin 2) and A2 (pin 21) are grounded. 

The other I2C multiplex address is set to ‘100’(serial bus address: 0x71) by connecting A0 

(pin 1) to high (VDD). 
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Due to the global chip shortages, the impedance converter chip AD5933 is out of 

stock nationwide so we were not able to get enough chips to do a full test. In the test, three 

AD5933 impedance convertors in total (two of which are selected via the first I2C 

multiplex and the rest one by the second multiplex) are set to work together. By printing 

out each impedance reading of each channel to the serial port and by enabling timestamp 

in the Serial Monitor tool, we can calculate the time required for one impedance 

measurement. As a result, the time period for one measurement (including switching the 

I2C channel, updating the AD5933 control register, reading the AD5933 data register, and 

serial printing the reading) is 31ms on average. Theoretically, the system could finish all 

readings of the 16 channels one by one within one second. Thus, by adding a delay between 

each reading, we can control the time period between each measurement.     

 

3.1.5 Power module 

The Arduino microcontroller-based system can be powered by 5V USB connection. 

However, the maximum power delivery as well as the maximum output current of USB 

2.0 is limited. The 5V USB is not able to power the multichannel bio-impedance test system 

when all the 16 channels are involved, thus output power is necessary. On the other hand, 

9V battery instead of USB port is used when it is used as a portable device. Thus, the 

voltage regulator is designed for both systems. 

The processor of Adafruit Feather M0 is 3.3V logic and the board contains a 3.3V 

regulator with 500 mA peak current output. As the operation voltage of Arduino Mega 

2560 microcontroller as well as regular Arduino display OLED is 5 V, a 5 V voltage 

regulator is necessary when the system is powered by a battery. 

The impedance measurement chip AD5933 can work in 5V or 3.3V power supply. 

However, the 3.3V supply voltage has a much lower power consumption. The typical IDD 

for AD5933 (work in Normal Mode) of 3.3V VDD is 10mA. The current increased to 17mA 

when using 5V supply voltage. Low drop voltage regulator LD1117AS33TR is used in this 

design which can provide up to 800 mA of output current.  
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3.1.6 PCB design of the system 

Figure A- 22 and Figure A- 23 are the 2D and 3D layouts of the designed PCB of the 

multichannel ACEK capacitance sensing system. According to the schematic (Figure A- 

16 and Figure A- 17), while AD5933 is measuring impedance, the additional gain and 

phase between the AD5933 VOUT pin and the excitation voltage delivered by the external 

amplifiers could be calibrated as system noise. Thus, to shorten the signal wire length 

between the amplifiers and the IDE sensors, all the amplifiers are placed near the edge 

connector. 

 

3.1.7 Coding  

AD5933 returns a complex output code for the real (R) and imaginary (I) components of 

Discrete Fourier Transform (DFT) by two registers. Notice that the R and I values read 

from the registers are not the real and imaginary values of corresponding resistance and 

capacitive reactance of a series RC circuit. Instead, the magnitude of the impedance can be 

calculated by   

 

𝑍𝑢𝑛𝑘𝑛𝑜𝑤𝑛 =
1

𝐺𝑎𝑖𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 × √𝑅2 + 𝐼2
 3.2 

 

where the Gain Factor is calculated via the method shown in Figure A- 16 and is calibrated 

by 

𝐺𝑎𝑖𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 =
(

1
𝑍cal

)

√𝑅2 + 𝐼2
 3.3 

The impedance measurement coding of the ACEK sensing system is based on 

Arduino IDE, an open-source library for AD5933 from the GitHub website is adopted [39].  

The library is enough to get impedance readings, but there are two missing features 

stated by the author: 1. Configure the AD5933 excitation range; 2. Calibrate the phase of 

the system (in the calibration process) so that the phase of impedance readings can be 

analyzed.  
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The default output voltage level is 2 V p-p, which is too high for small impedances 

from ACEK biosensors. Moreover, the high voltage could break the biomolecules. By 

modifying the library as well as adding codes to the main function, the output excitation 

voltage range can be configured and selected by the user through a keypad.  

The phase readings of an impedance are meaningless without system phase 

calibration. Thus, the impedance readings are incorrect when capacitors are involved, 

which is not feasible for ACEK interfacial capacitive sensing. Phase calibration, calculated 

by 𝑃ℎ𝑎𝑠𝑒(rads) = tan−1(𝐼/𝑅) while using a calibration resistor (pure resistance), is done 

in this work. The phase of unknown impedance is calculated simply by ∅𝑢𝑛𝑘𝑛𝑜𝑤𝑛 =

∅𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − ∅𝑠𝑦𝑠𝑡𝑒𝑚 , which is the measured value minus the calibrated system phase 

value. The reactive component value, which represents the capacitor value in this work, is 

extracted by the following equation: 

𝐶𝑎𝑝 =
1

−2π𝑓(Z × sin(∅))
 3.4 

Besides the above two deficiencies of the open-source code, another key function 

that needs to be realized in coding is to control the time period of each measurement. For 

regular applications, the time duration of one measurement doesn’t matter as long as the 

readings are correct. However, as ACEK target enrichment is contributed to the output AC 

voltage signals on IDE sensors, the time period is important. Corresponding codes are 

added to the frequency sweep function so that the time period between each impedance 

measurement point can be configured.     

After configuring the time of measurements (e.g., 15 seconds in total for a 

measurement of 15 points), the capacitance change rate (dC/dt) is calculated via Least 

Squares Regression. 

The flowchart of the coding is shown in Figure A- 24(a). When the “main” function 

is called as we power up the Arduino-based system, the void setup () and void loop () 

functions are automatically called. After the variables are declared or initialized, the setup() 

function will be called and executed for once. When the setup() function exits, the loop() 

function will be called and executed again and again unless the Arduino board is powered 
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off or has been restarted. The user customizes and system calibration is done in the setup() 

function so that it will only execute once. The testing process, on the other hand, is placed 

in the loop() function to allow multiple measurements. A push-button is used to allow users 

to pause the next measurement and to change sensors between two measurements.   

  

3.1.8 Sequenced measurement  

While the basic coding shown in Figure A- 24(a) does allow users to customize the 

frequency and voltage level of an ACEK capacitive sensing, the parameters as fixed in one 

test. In some situations when the user would like to switch the voltage level (or frequency) 

to manipulate the probe/target molecules, a different design for sequenced measurement is 

needed.  

For example, in one experiment, the researcher needs to switch from a higher 

voltage level (phase 1) to a lower voltage lever (phase 2). The higher voltage level is for 

the association purpose so that all particles including target and interference molecules will 

be absorbed to the electrodes. On the other hand, when the voltage level is lowered down 

in the second phase, dissociation happens. The target molecules which are binding with the 

probes will keep on the electrodes whereas the interference molecules will be released. 

Capacitance changes in the first phase reflect how many particles are associated and 

changes in the second phase indicate how many of them are interference molecules.      

It is easy to re-configure voltage (or frequency) levels after one sweep. The 

sequenced measurement is realized by running two sweeps with different register 

configurations. However, the calibrations must also be done by two different sweeps with 

additional storage space for gain & phase return values from the second sweep. Figure A- 

25 illustrates the quick switch of voltage level from range 1 to range 3 in a period less than 

10 ms. Figure A- 24(b) shows the workflow of one sequenced measurement example. 

 

3.2 Potential based detection system 

Analog inputs of the Arduino microcontroller board can be used to collect voltage signals 

of sensors. As introduced in section 1.2, potentiometric sensors and MOS gas sensors all 
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yield voltage signals when working with the measuring circuit. This section focuses on the 

design of an electronic nose system based on Arduino microcontroller board. As voltage 

difference generated by potentiometric sensor is much smaller than those by the MOS gas 

sensing circuit, an additional FET circuit is designed in this section.   

 

3.2.1 Circuits 

A low-cost portable signal acquisition system for gas sensor array is built based on a 

commercial microcontroller and integrated circuit (IC) chips. Figure A- 26 is a schematic 

of the voltage signal acquisition system. The data acquisition process is controlled by an 

Arduino® Feather M0 bluefruit microcontroller. The whole system is powered by 9 V DC 

voltage, easily becoming battery powered when necessary. The 9 V voltage is then shifted 

to 5 V and 3.3 V through a voltage regulator to power the sensor array and the 

microcontroller.   

 

3.2.2 Laboratory setup 

A gas detection experimental system based on the MOS sensor array is designed. To 

simulate the air environment in the indoor ventilation system, a laboratory glove box is 

used. Figure A- 27 (b) shows the CLEATECH® 2300 series containment glove box used 

in this work. The glove box includes an intake & exhaust filter and an adjustable speed 480 

CFM impeller blower unit, which allows the simulation of different air velocities. A paper 

pipe (diameter: 12cm, length: 90 cm) is used to guide the airflow. As shown in Figure A- 

27 (a), the sensor array is located on the right side of the paper pipe in the glove box, 

whereas the test gas is added to the other side by syringe. The right access door of the glove 

box keeps closed all the time, whereas the left door keeps open during the test to guarantee 

the same air pressure in the inner and outer box.  

Voltage signals of the MOS gas sensor array are obtained reflecting the sensor 

resistance change caused by chemical reactions. The sampling rate is set to 10 Hz.  
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3.2.3 Selection of gas sensors 

Several factors are considered when choosing sensors for the array, high sensitivity; fast 

response; high stability and reusability; low power consumption; low cost; minimum 

number of sensors. Table A- 1 shows the operating conditions and sensitivity 

characteristics of the HANWEI® MQ series and Figaro® TGS series gas sensors used in 

this work. These are the widely used low-cost MOS sensors (less than $20) from the two 

major manufacturers selling e-nose products. Specific gases reacting with the sensing 

elements will lead to a change in the sensor resistance, and voltage signals related to these 

MOS gas sensors are used to indicate the presence of target gases.  

Voltage signals of the gas sensors are obtained by the ARM® Cortex M0 

microcontroller. The sampling rate is set to 10 Hz (i.e 10 sample points per second). Instead 

of directly measuring the sensor resistances themselves, the data acquisition board measures 

the voltage across a load resistor that is connected in series with the sensor. An increase in 

the measured voltage would be observed when the sensor resistance decreases during the gas 

reaction. Figure A- 28(a) shows voltage signals of the 6 different sensors when 4 ml 8.3% 

acetone in the air is added to the left inlet of the tube shown in Figure A- 27. Random noise 

present in the original signal is removed by wavelet denoising. As previously mentioned, 

the MOS gas sensor has a cross-sensitivity characteristic, leading to a rather non-ideal 

selectivity. As reported in ref. [40], when a sensor is exposed to a VOC mixture, the gas 

with higher reactivity will dominate the reaction with the adsorbed oxygen at the surface 

of the metal oxide. Take the response of the Figaro® TGS2602 sensor as an example. As 

shown in Figure A- 28(b), when testing single gas of acetone (2 ml, 8.3%) or ethanol (10 

ml,1.74%), the peak voltages for the two single gas tests are around 1.2 V and 1.9 V. When 

the same amounts of the two gases are mixed and tested, the peak value of the mixed gas 

response is not equal to the sum of the two single gas test outputs. The peak voltage of the 

VOC mixture is less than 2.5V, much lower than the combined single gas results. The 

baselines of the three signals in Figure A- 28(b) are removed to highlight the differences 

in peak values. This indicates that using one single MOS gas sensor or a simple calculation 
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cannot recognize VOC mixtures in air, thus an array of different sensors with a pattern 

recognition algorithm is needed. 

Considering the total power consumption of the sensor array, the number of sensors 

should be minimized. Therefore, correlation coefficients and principal component analysis 

(PCA) are used next to identify and exclude the sensors with duplicate responses. Table A- 

2 shows the correlation coefficients between each pair of sensors. The signals used here 

and in the following PCA section are the same as shown in Figure 2(a). The largest 

correlation coefficient is 0.9855, which happens between MQ 136 and TGS 2610 sensor, 

followed by the correlation coefficient between TGS 2600 and TGS 2602. The larger a 

correlation coefficient is, the more similar the signals of the sensor pair are.  A close to 1 

correlation coefficient means that one of the sensors is redundant.  

PCA is a mathematical procedure that transforms a number of correlated variables 

into a number of principal components (PC) that are uncorrelated or orthogonal to each 

other. The PC loadings are the correlation coefficients between the variables (signals of the 

different gas sensors) and factors (principal components). [41] 

The first 6 rows of Table A- 3 are the principal component loadings, and the last 

row is the percentage of the total variance explained by each principal component. It can 

be seen from the last row that the first principal component (PC1) explained about 96% of 

the whole information, and the second principal component (PC2) explained about 3.8% 

of it. The rest four principle components contained less than 0.2% of the information. Thus, 

we should select sensors based on the first two PCs.  

To select a subset of variables (sensors), we should find out which original variables 

(sensor signals) have the highest correlations with the first two principal components. The 

maximum three loadings for PC1 and PC2 fall on TGS 2602 (PC1-0.9332), MQ 136 (PC1-

0.2510, PC2-0.7081), TGS 2610 (PC1-0.1997, PC2-0.5234), and TGS 2611 (PC2-0.3113). 

This implies MQ 135 and TGS 2600 are less important for PC1 and PC2, and can possibly 

be removed without loss of information. 

Figure A- 29 shows the sensors’ responses to the same amount of acetone, ethanol, 

and IPA. Unlike the other 5 sensors whose responses to ethanol and IPA are larger than 
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their response to acetone, TGS 2602 has a larger response to acetone when the same amount 

of gas is tested. This means that TGS 2602 is the key sensor to distinguish acetone from 

ethanol or IPA when used with any other sensors in this array. In contrast, the responses of 

MQ 135 to all three gases are very small while the noise is much larger than other sensors. 

Notice that the signal processing in this section is done on PC by MATLAB○R  R2018b. 

Combining the above information, MQ 135 and TGS 2600 are removed from the array. 

 

3.2.4 Sample acquisition 

Liquid acetone (CH3)2CO, isopropyl alcohol CH3CHOHCH3 (IPA), and ethanol 

CH3CH2OH used in this work are certified ACS grade purchased from Fisher Scientific 

(USA). The temperature of the laboratory keeps at 23±1°C during experiments. The 

humidity of the environment keeps at 50±5 RH% during the experiments. The original 

concentrations of acetone, IPA, and ethanol gases in a 1 L gas chamber under experimental 

conditions are 8.3%, 1.71%, 1.74% in air respectively. Gas samples for tests are extracted 

from the headspace using a syringe operated by hand. When more than one VOC is used, 

the syringe is shaken for 10 seconds to get a gas mixture. Airflow in the glovebox remains 

unchanged during the test, by keeping the settings of both the indoor ventilation system 

and the fan speed of the glovebox the same all the time. As shown in Figure A- 28(a) and 

Figure A- 29, the response and recovery time of the MOS gas sensors we chose for our test 

are within 1 minute. This enables a relatively high measurement frequency when 

continuous monitoring is required. 

 

3.2.5 Extended-Gate FET readout circuit for Potentiometric sensing 

Potentiometric sensing of Pb2+ ions by the all-solid-state ISE sensor obeys the Nernst 

equation, which predicts a linear dependence of voltage response on the logarithm of the 

activity (concentration) of the ions [25]. Theoretically, as two electrons are involved, the 

maximum slope of the voltage signal is 59.16𝑚𝑉/2 = 29.58mV per decade, which is 

relatively small for analog input pins to read directly. As introduced in 1.2.2, potentiometric 

sensing measures the oxidation-reduction potential difference between two electrodes 
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when no current is present, equipment of high input impedance is required. To extract the 

small potential of the ISE sensor, an extended-gate FET readout circuit with matched 

MOSFET pair is designed for potentiometric sensing. 

Matched Pair MOSFET array, ALD1106, is chosen for differential sensing. As 

shown in Figure A- 30, two channels of ISE sensors are connected to the gate terminals of 

the MOSFET pair. Drain voltages are then measured by analog input pins of the Arduino 

board. The output voltage from the potentiometer, shown by the port ‘ref_bias’ in Figure 

A- 30, is used to bias the sensors to make it work at a designed region of the MOSFET, 

thus, avoiding the use of a DC voltage source. Figure A- 31 shows the experimental setup 

of the extended-gate FET readout system for potentiometric sensors. 

According to the output characteristics from the datasheet, when VGS<2V, 

ALD1106 MOSFET meets the saturation requirement at VDS≥2V [42]. The MOSFET 

works in the saturation region so that the drain current (ID) is controlled by the gate voltage. 

The transfer curve of ALD1106 (Figure A- 32) is tested by Keithley○R  2450 and 2401 

source meter. It shows that when VGS is lower than 700mV, ID is still under the control of 

VGS even when VDS lowered to 1V. The bias resistor at the drain terminal is optimized to 

be 180kΩ so that when the gate terminal is biased and working at 400 mV ~ 600 mV, the 

voltage at the drain terminal changes accordingly in a range between 5V~1.5V. 

Similar to the electronic nose system designed in this research, signal processing of 

the FET readout system shown in this thesis is done via PC. MATLAB & Arduino serial 

communication is used to visualize the collected voltage in real-time (Figure 3.18). To be 

a real portable system, on-chip signal processing, as well as LED display, are need. 

The fabricated Pb2+ ISE sensor has an original potential of about 40 mV (in 10 mM 

NaNO3 buffer solution) when using an Ag/AgCl electrode as a reference electrode. To 

make the MOSFET work near the subthreshold region, a bias of 400 mV is added to the 

reference electrode via a potentiometer. Figure A- 34 shows the measurement results of 

two hand-made ISE sensors through the designed MOSFET readout system. The Pb2+ and 

Cd2+ ion sensors have selectivity issues that need improvements. However, the test does 

show us the feasibility of the designed Arduino microcontroller based FET readout system.  
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3.3 Integration of multi-mode sensing  

The two modes of potential based detection introduced in this section all use analog input 

of the microcontroller board to measure voltage output. As the presence of both the two 

kinds of target analyte (VOCs in gas phase and heavy metal ions in liquid sample) all show 

a sudden increase of voltage, and the Arduino microcontroller board has a few analog input 

pins, it is easy to integrate them into one system. Moreover, as the multichannel ACEK 

capacitive sensing based impedance readout is through I2C communication, it can be 

integrated with the potential based detection as well. Figure A- 35 shows the design of the 

integrated multi-mode sensing system.  
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CHAPTER 4  

MEASUREMENTS AND DETECTION RESULTS 

 

4.1 ACEK measurements 

 

4.1.1 System calibration test 

The calibration process of the system is done with a 1.2kΩ resistor as calibration impedance 

(ZCAL=1.2kΩ) and another known 1.2kΩ resistor as test impedance (ZUNKNOWN=1.2kΩ). As 

shown in Figure A- 36, the calibration test should show a result of 1.2kΩ or close to 1.2kΩ 

in normal conditions. It is worth to mention that when a pure resistive load is measured, 

the deviation of the readings is relatively small at any frequencies from 1kHz to 100kHz. 

However, the maximum capacitive load the buffer amplifier (AD8608, UA1 in Figure A- 

18) can drive without oscillation is 1000pF. Thus capacitive load greater than 1000pF will 

cause oscillation, which will result in incorrect impedance readings with large deviation. 

This issue could be avoided by adding a resistive component to the load to maintain 

stability. For example, when the system is calibrated with a 1.2kΩ resistor at 100kHz, 

resonance happened when trying to measure the impedance of a 2700pF capacitor at this 

frequency. As shown in Figure A- 37, abnormal impedance readings were observed on the 

2700 pF capacitor. By adding a 910Ω resistor in series with the 2700pF capacitor, the 

oscillation disappeared, and the deviation of the impedance readings back to normal 

(standard deviation σ<1Ω). In a real test, as the impedance of an IDE biosensor is also not 

pure capacitive, e.g.1000Ω resistance with 3000pF capacitance when using the RC series 

model, the system should work normally without oscillation.  

 

4.1.2 Impedance measurement 

Figure A- 38 is a photo of the ACEK impedance readout system. The performance of the 

system is then represented by the measurements on a series of impedances composed of 

different resistors and capacitors (Figure A- 39).  
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4.2 VOC gas measurements 

In a steady-state measurement, signals are obtained after the stimulus is introduced and 

allowed to reach equilibrium and after all sensors of the electronic nose have reached 

steady-state responses. On the other hand, when the stimulus is present only for a short 

duration, which is usually 20-30 seconds, the signals obtained are transient signals, and 

such events can only be captured by transient measurement [43]. Therefore, in this 

research, transient measurement is chosen to realize near real-time monitoring of VOCs in 

the air. 

 

4.2.1 Feature extraction and selection 

Signals of a gas sensor array depend on the gas chemical information as well as the 

geometries of the measurement system. The design of the measurement system, such as 

the geometries of the measurement chamber and the arrangement of the sensors in the 

chamber, along with the chemical makeup of the gas flow, would affect the signals 

obtained. It is clear that not all the information obtained is useful for gas identification. 

Instead, only a portion of the signal carries relevant chemical information [44]. The main 

idea of feature extraction is to extract relevant information from the response curve with 

less redundancy. 

A typical transient response of a gas sensor, a response curve of the TGS2602 

sensor in phase space, is shown in Figure A- 40 (a). The obtained transient sensor response 

is labeled as “S.”. The most popular feature obtained from this kind of signal is the signal 

maximum S0, which is the magnitude difference between its peak and baseline. Besides the 

signal maximum, the time from the beginning of the signal to its peak Tp is also widely 

used [43].  

While the features in the time domain are simple and fast to compute, more 

information can be potentially extracted from the signals using more sophisticated features. 

The first derivative of the sensor response has been used in the literature [45]. As the sensor 

response S may reflect the concentration level of the adsorbed oxygen, the first derivate 

signal of S may reflect the concentration change rate of the adsorbed oxygen [45]. Sensor 
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signal behavior in phase space could be represented by an orthonormal basis formed by S 

and dS/dt signals [44]. 

Figure A- 40 (b) and (c) show the transient signals of the MOS sensors to the three 

VOC gases. The three parameters extracted are: max(dS/dt), the maximum of the derivative 

signal; min(dS/dt), the minimum of the derivative signal; a/b, the location of max(dS/dt). 

The values of the above parameters are determined by the amount of VOC that reached the 

sensor surface, as shown in Figure A- 40 (b), a larger amount of gas will result in a higher 

max(dS/dt) value. While the shapes of the response curve between ethanol and acetone are 

similar on TGS 2602, we can notice the difference in shape on MQ 136. In Figure A- 40 

(c), MQ 136 sensor has flatter response curves to different amounts of acetone gas when 

compared with its responses to ethanol gas.  

 

4.2.2 Classification algorithms and results 

Both ethyl alcohol and isopropyl alcohol are alcoholic compounds with similar physical 

and chemical properties. Ethyl alcohol is a primary alcohol with -OH attached to the first 

carbon. Isopropyl alcohol is a secondary alcohol with -OH attached to the second carbon. 

Ethanol is found in alcoholic drinks while isopropyl is toxic when ingested. Although it is 

easy to distinguish acetone from the two alcoholic compounds directly by the features we 

have extracted, the differences between ethanol, IPA, and its mixtures are hard to notice. 

A backpropagation neural network with one hidden layer and one output layer is used to 

classify the VOC samples. The use of a single hidden layer guarantees a short training time. 

The input data of the network has 20 dimensions, which is composed of 5 features for each 

of the 4 sensors in the array. Figure A- 41 shows the topological structure of the neural 

network. The 20 inputs represent the 20-dimensional feature. W and b in the hidden layer 

and the output layer represent the weights and thresholds of the 10 sigmoid hidden neurons 

and the 7 softmax output neurons. The seven true or false outputs (with only one to be true 

at once) give the predicted class of the VOC gas. 

The VOC samples can be divided into 7 classes: single gas of acetone (class 1), 

ethanol (class 2), IPA (class 3); binary mixture of acetone & ethanol (class 4), acetone & 
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IPA (class 5), ethanol & IPA (class 6); and ternary mixture of acetone, ethanol, and IPA 

(class 7). The single and binary gas has 15 samples for each class, and the ternary gas has 

60 samples. The total 150 samples are randomly divided into three parts: 70% (104 samples) 

for training, 15% (23 samples) for validation, and 15% (23 samples) for testing. The 

classification accuracies of training, validation, and testing are 85.6%, 87.0% and 82.6%, 

respectively.        

Figure A- 42 shows the overall confusion matrix of the classifier. The numbers (1 

to 7) in both horizontal/vertical axis of the confusion matrix represents seven different 

target/output classes. The numbers in the diagonal (marked in green color) are the number 

of correctly predicted samples of each class. Other blocks are wrong predictions. The 

percentage numbers at the right side and bottom of the table indicate the percentage of 

correct (green) or wrong (red) predictions of that row or column.  The overall accuracy is 

85.3%. 

MATLAB & Arduino serial communication is used to visualize as well as monitor 

the signals in real-time. The BPNN based training model is pre-saved as a user-defined 

classification function. When a reaction is detected, the features are extracted, and the 

parameters are sent to the classification function. Since the transient signal features are 

extracted in a short time (compared with steady-state signal), the result of the classification 

is printed within 1 minute after the gas reached the sensor surface. 

 

4.2.3 Regression algorithms and results 

Regression algorithms aim to model the relationships between the input features and the 

target output in order to predict an output value for new input data [46]. The target output 

is called the response variable and the input feature is called the predictor variable. When 

more than one feature is used in a regression model, the model is called a multivariate 

regression. Least squares regression is a way to find the best fit curve for a set of data points. 

It works by minimizing the sum of the squares of the residuals (a residual is the difference 

between an observed response and the predicted response provided by the model). 

Depending on whether or not the function giving the residuals is linear, least squares 
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problems fall into two categories: linear least squares and nonlinear least squares. 

According to Chen et.al [47], nonlinear activation functions in the BPNN are better than 

linear functions in VOC concentration estimation. Here, multivariate and multioutput 

regression based on neural network is applied to estimate the amount of each of the three 

different gases in the binary or ternary gas mixture. The regression network also has 20 

inputs, which is the same as the classifier in the above section. 14 sigmoid hidden neurons 

are used in the hidden layer. The output layer has 3 linear neurons. Instead of having 7 true 

or false output targets, the regression network has 3 numeric targets. The three continuous 

output parameters are the estimated concentrations of the three VOCs in the tested VOC 

mixtures.  

In this work, 120 samples in total (60 binary mixtures and 60 ternary mixtures) are 

randomly divided into three groups, with 84 samples for network training, 18 samples for 

validation, and 18 samples for testing. Levenberg-Marquardt (LM) algorithm is applied in 

the network training to solve the non-linear least squares problem. Training automatically 

stops when the mean square error (MSE) of the validation samples starts to increase.  

To illustrate the performance of the BPNN detection, Figure A- 43 (a) and (b) 

compares the overall regression result by multivariate linear regression and the BPNN 

based regression. In Figure A- 43, each symbol (‘○’, ‘×’ or ‘❊’) represents a regression 

point of ethanol, IPA, or acetone. It can be seen that the BPNN method offers a lower 

average error than the linear regression method. MSE of the three VOC gas by BPNN 

regression is 0.054 ml for acetone (in the range of 0-2 ml), 1.06 ml for ethanol (in the range 

of 0-10 ml), and 1.33 ml for IPA (in the range of 0-10 ml). 
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CHAPTER 5  

CONCLUSIONS 

 

This work presents the design of low-cost portable electroanalytical detection systems 

based on Arduino microcontroller board. The achievements include: 

• Observation of ACEK phenomenon on IDE sensors. Even though the ACEK theory 

is well-established, the phenomena vary on different electrodes with different AC 

signals (frequency and amplitude), media solutions (e.g. permittivity, viscosity), as well 

as particles (e.g. size, shape, dielectric properties). IDE sensor of 100μm gap/width is 

one of the most simple but frequently used designs in ACEK capacitive sensing. AC 

signals of frequencies ranging from 1kHz to 100kHz with PBS or SSC as buffer solution 

are normal for ACEK biosensing technique. The use of 1μm fluorescent particles as 

well as 3~4μm live yeast cells in these experiments clearly show us how particles in 

liquid react to AC signals, which illustrates the ACEK capacitive sensing mechanisms. 

• Multichannel ACEK capacitive sensing system with a 16-channel microsensor 

array is designed. The AC signals used for AECK process are easily customized by the 

user when the system is powered up. Moreover, an additional circuit is designed for 

some biosensing applications where lower excitation voltage is required. 

• Electronic nose system based on MOS gas sensors for qualitative and quantitative 

analysis of VOC gas in indoor ventilation system is built in this work. The 

classifications on acetone, ethanol, isopropyl alcohol gas as well as its binary and 

ternary gas mixtures yielded acceptable results. 

• All-solid-state ISEs for heavy metal ions detection is fabricated. Extended-gate 

FET circuit combined with Arduino microcontroller board is designed for 

potentiometric sensing. Tests with the hand fabricated all-solid-state ISE sensors are 

executed and the feasibility of this design is verified. 
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(a)                                            (b)                                     (c) 

Figure A- 1．(a) a simple IDE design, (b) 200 μm width/gap hand-made IDE, (c) 2 μm width/gap 

SAW resonator 

 

 

Figure A- 2. Schematic of biofluid-based DNAzyme sensor: (a) Impedance readout of the IDE 

sensor, (b)  DNAzyme on IDE introduced by biofluid, (c) Substrate and DNAzyme sequences. (from 

published prior work [7]) 
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Figure A- 3. Schematic of coated-wire all-solid-state ISE and reference electrode in reference [27]. 
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Figure A- 4. Hand-made all-solid-state Pb2+ ISE sensor 
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                                                         (a)                                                   (b) 

Figure A- 5. Basic measuring circuit of (a) MQ series (b) TGS series gas sensors (from datasheet) 

 

 

Figure A- 6. Equivalent circuit for IDE biosensor 

 

 

Figure A- 7. Schematic of interfacial capacitance changes at different stages, (a) before probe 

immobilization, (b) after probe immobilization and blocking, (c) after target binding with probe.(from 

published prior work [31]) 
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Figure A- 8. Image series show DEP force on yeast cells at 100 kHz in DI water 
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(a) t = 0 s                            (b) t = 8 s (c) t = 16 s  

Figure A- 9. Image series show 1.0 μm fluorescent particle ACET movement at 10 kHz 0.5×SSC 

 

 

 

Figure A- 10. ACEO vortices shown by fluorescent particles at 100 kHz 0.1×PBS 
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（a） （b）

（c） （d）

（e） （f）

（g） （h）

 

Figure A- 11. Image series showing particle movements with ACEO vortices at 10 kHz 0.1xPBS 
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Figure A- 12. Image series showing combination of DEP and ACEO at 1 kHz in DI water 

 

 

rotating fall  

Figure A- 13.Image series showing how yeast cells move on electrode 

 

 

      

                                           (a)                                                                              (b) 

Figure A- 14. (a) Top (b) bottom view of the IDE sensor array 

 

 



 

46 

 

 

 

 

Figure A- 15. MOS gas sensor array  
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Figure A- 16. Bioimpedance measuring method. (A) Model of measurement, (B)Architecture of 

gain-phase detector (from published prior work [35]) 
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Figure A- 17.Block overview of AD5933 (from datasheet [37]) 

 

 

 

Figure A- 18. Capacitive sensing circuit 
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Figure A- 19. Schematic of the low voltage capacitive sensing circuit  

 

 

 

Figure A- 20. Schematic of the I2C multiplex module 
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Figure A- 21 Schematic design of the power module 
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Figure A- 22. Layout of the multichannel impedance measurement system 

 

 

 

Figure A- 23. 3D layout of the multichannel impedance measurement system 
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Initialize OLED display:

 Welcome ACEK sensor system 

Button pushed?

No

OLED display testing...  

Impedance measurement:
(1) Perform a sweep
(2) Get R/I complex data from register
(3) Calculate resistor and capacitor values

Yes

Calculate and return capacitance 
change rate (NUM)

OLED d isp lay cap ac it an ce 

change rate NUM  

Set up AD5933 registers:
(1) Select internal clock
(2) Set start frequency of the sweep
(3) Set frequency increment
(4) Set PGA gain
(5) Set excitation voltage range

AD5933 calibration: (1.2 kΩ resistor)
(1) Perform a sweep
(2) Get R/I complex data from register
(2) Calculate and return gain & phase values

OLED display Please set frequency  

Keypad 

 # detected?
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Keypad 
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OLED display testing...  
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(3) Calculate capacitance, 
Cap[NUM_INCR1+1]

(4) Perform the 2nd sweep (use register 
setting 2)
(2) Get R/I complex data from register
(3) Calculate capacitance, 
Cap[NUM_INCR2+1]

Calculate and return capacitance 
change rate (NUM1 & NUM2)

OLED d isp lay cap ac it an ce 
change rate NUM1, NUM2  

AD5933 register setting 2 (for the 2nd sweep):
(1) Select internal clock
(2) Set start frequency of the sweep
(3) Set frequency increment, FREQ_INCR=0
(4) Set number of increment, NUM_INCR2=10
(5) Set PGA gain
(6) Set excitation voltage, RANGE_2

AD5933 calibration for 1st sweep:
(1) Perform a sweep
(2) Get R/I complex data from register
(2) Calculate and return gain2[NUM_INCR2+1], 
phase2[NUM_INCR2+1]

Yes

OLED display calibrated, 
push button to start test  

AD5933 register setting 1 (for the 1st sweep):
(1) Select internal clock
(2) Set start frequency of the sweep
(3) Set frequency increment, FREQ_INCR=0
(4) Set number of increment, NUM_INCR1=5
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AD5933 calibration for 1st sweep:
(1) Perform a sweep
(2) Get R/I complex data from register
(2) Calculate and return gain1[NUM_INCR1+1], 
phase1[NUM_INCR1+1]

 

               (a)                                                                       (b) 

Figure A- 24. Flowchart of the ACEK biosensing system 
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(a) 

 

 

(b) 

Figure A- 25. Oscilloscope screenshot of the sequenced measurement (a) frame 215 (b) frame 216 
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Figure A- 26. Schematic of the microcontroller-based signal acquisition system 

 

 

 

 

 (a)                                                     (b) 

Figure A- 27 Scheme of the gas detection experimental system 
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   (a)                                                                                         (b) 

Figure A- 28 (a)Responses of the 6 MOS sensors toward acetone; (b)Single and mixed gas 

response curve of TGS2602. The sampling rate is 10 Hz, i.e. the x-axis is from 0 to 50 s.   

 

 

 
 

Figure A- 29 Response curve of the 6 MOS sensors to different VOCs: 2 ml of 8.3% acetone (in 

air); 10 ml of 1.71% IPA (in air); 10 ml of 1.74% ethanol (in air). The sampling rate is 10 Hz, i.e. the x-axis 

is from 0 to 50 s.   
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Figure A- 30. Schematic of the Extended-gate FET circuit 
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Figure A- 31. Experimental setup of the potentiometric sensing system 
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Figure A- 32. ALD1106 transfer curve 

 

 

 

Figure A- 33. Screenshot of the MATLAB & Arduino Serial Communication 
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Figure A- 34. Potentiometric sensing result 

 

 

Figure A- 35. Schematic of the multi-mode sensing system 
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Figure A- 36. Calibration test with 1200Ω resistor 

 

 

 

Figure A- 37. Impedance reading of 2700pF capacitor at 100kHz 
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Figure A- 38. Photo of the ACEK impedance readout system 

 

 

Figure A- 39. Impedance readings when calibrated with the 1200Ω resistor. Error bar shows the 

standard deviation. 
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(a)       

 

(b)                                                

 

(c) 

Figure A- 40 (a) Response curve and parameters in phase space; Response curve to different 

amounts of ethanol and acetone in phase space, (b) TGS2602, (c) MQ136 (Solid line represents ethanol, 

dotted line represents acetone) 
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Figure A- 41. Diagram of the neural network 

 

 

 

Figure A- 42. Confusion matrix of classification results 
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(a) 

 

(b) 

Figure A- 43. Target versus predicted amount of gas in VOC mixture (a) Multivariate linear 

regression (b) BPNN 
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Table A- 1. Gas sensors in the array. 

Sensor Work condition Sensitivity characteristic 

MQ 135 VC, VH: 5±0.1 V; PH≤800 mW 
Rs: 30 kΩ~200 kΩ (100ppm NH3)      

α≤0.65 (200/50 NH3) 

MQ 136 VC, VH: 5±0.1 V; PH≤800 mW   
Rs: 30 kΩ~200 kΩ (10ppm H2S)      

α≤0.65 (20/5 H2S) 

TGS2600 VC, VH: 5±0.2 V; PH: 210 mW 
Rs: 10 kΩ~90 kΩ (in air)      

β=0.3~0.6 (10ppm H2/air) 

TGS2602 VC, VH: 5±0.2 V; PH: 280 mW 
Rs: 10 kΩ~100 kΩ (in air)      

β=0.15~0.5 (10ppm EtOH/air) 

TGS2610 VC, VH: 5±0.2 V; PH: 280 mW 

Rs: 1 kΩ~10 kΩ (in 1800ppm iso-

butane)    

β=0.45~0.62 (3000ppm/1000ppm iso-

butane) 

TGS2611 
VC, VH: 5±0.2 V; PH=280±25 

mW 

Rs: 0.68 kΩ~6.8 kΩ (in 5000ppm 

methane) 

β=0.60±0.06 (9000ppm/3000ppm methane) 

VC: circuit voltage; VH: heater voltage; PH: heater power consumption; 

Rs: sensor resistance; α: concentration slope rate; β: change ratio of Rs. 

 

 

Table A- 2. Correlation coefficient between sensors. 

Sensor MQ 135 MQ 136 TGS 2600 TGS 2602 TGS 2610 TGS2611 

MQ 135 1 - - - - - 

MQ 136 0.9499 1 - - - - 

TGS 2600 0.8363 0.9067 1 - - - 

TGS 2602 0.7794 0.8321 0.9702 1 - - 

TGS 2610 0.9174 0.9855 0.9325 0.8447 1 - 

TGS 2611 0.9408 0.9692 0.7998 0.6987 0.9409 1 
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Table A- 3. Principal component analysis of the sensor array. 

PC PC1 PC2 PC3 PC4 PC5 PC6 

MQ 135 0.0193 0.0563 -0.1183 0.0855 -0.1215 0.9800 

MQ 136 0.2510 0.7081 -0.4392 -0.2516 0.4228 -0.0243 

TGS 2600 0.1441 0.0892 0.5017 -0.5653 0.6273 00810 

TGS 2602 0.9332 -0.3415 -0.0739 -0.0302 -0.0776 -0.0147 

TGS 2610 0.1997 0.5234 0.6608 -0.2286 -0.4441 0.0107 

TGS 2611 0.0722 0.3113 -0.3152 0.7461 -0.4580 -0.1792 

EXP 96.0152 3.8214 0.1293 0.0185 0.0116 0.0040 

EXP: explained 
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