349 research outputs found

    Virtual Communication Stack: Towards Building Integrated Simulator of Mobile Ad Hoc Network-based Infrastructure for Disaster Response Scenarios

    Full text link
    Responses to disastrous events are a challenging problem, because of possible damages on communication infrastructures. For instance, after a natural disaster, infrastructures might be entirely destroyed. Different network paradigms were proposed in the literature in order to deploy adhoc network, and allow dealing with the lack of communications. However, all these solutions focus only on the performance of the network itself, without taking into account the specificities and heterogeneity of the components which use it. This comes from the difficulty to integrate models with different levels of abstraction. Consequently, verification and validation of adhoc protocols cannot guarantee that the different systems will work as expected in operational conditions. However, the DEVS theory provides some mechanisms to allow integration of models with different natures. This paper proposes an integrated simulation architecture based on DEVS which improves the accuracy of ad hoc infrastructure simulators in the case of disaster response scenarios.Comment: Preprint. Unpublishe

    A Contextualized Web-Based Learning Environments for DEVS Models

    Get PDF
    With the advance in applying technology in education, the traditional lecture-driven teaching style is gradually replaced by a more active teaching style where the students play a more active rule in the learning process. In this paper we introduce a new initiative to provide a suite of online tools for learning DEVS model. The uniqueness of this tutorial project is the integration of information technology and multimedia into education through the development of an interactive tutorial and the characteristic of contextualized learning. The tutorial teaches students about the basic aspects of discrete event system and simulation. The interactive tutorial fully utilizes the power of the information and multimedia technology, web application and the programming language Java, to enhance students’ learning to achieve rich interactivity. The tutorial greatly supports human-computer collaboration to enhance learning and to satisfy user goals by effectively allowing the user to interact

    Multi-level agent-based modeling - A literature survey

    Full text link
    During last decade, multi-level agent-based modeling has received significant and dramatically increasing interest. In this article we present a comprehensive and structured review of literature on the subject. We present the main theoretical contributions and application domains of this concept, with an emphasis on social, flow, biological and biomedical models.Comment: v2. Ref 102 added. v3-4 Many refs and text added v5-6 bibliographic statistics updated. v7 Change of the name of the paper to reflect what it became, many refs and text added, bibliographic statistics update

    A Generalized Discrete Event System (G-DEVS) Flattened Simulation Structure: Application to High-Level Architecture (HLA) Compliant Simulation of Workflow

    Get PDF
    International audienceThe objective of the paper is to specify a new flattened Generalized Discrete Event System simulation engine structure and the Workflow modeling and simulation environment embedding it. We express first the new flattened simulation structure and give the corresponding transformation functions. We analyze performance tests conducted on this new simulation structure to measure its efficiency. Then, having selected the essential concepts in the elaboration of the Workflow, we present a language of description to define the Workflow processes. Finally, we define a distributed Workflow Reference Model that interfaces components of the Workflow with respect to the High-Level Architecture standard. Today enterprises can take advantage of this platform in the context of networking where interoperability, flexibility, and efficiency are challenging concepts

    The Effect of Modeling Simultaneous Events on Simulation Results

    Get PDF
    This thesis explores the method that governs the prioritizing process for simultaneous events in relation to simulation results for discrete-event simulations. Specifically, it contrasts typical discrete-event simulation (DES) execution algorithms with how events are selected and ordered by the discrete-event system specification (DEVS) formalism. The motivation for this research stems from a desire to understand how the selection of events affects simulation output (i.e., response). As a particular use case, we briefly investigate the processing of simultaneous events by the Advanced Framework for Simulation, Integration and Modeling (AFSIM), a military discrete-event combat modeling and simulation package. To facilitate the building of classic DEVS-based models, the python software package PythonPDEVS is used. Initial results indicate that the explicit modeling of how simultaneous events are selected as promoted by the DEVS formalism plays a significant role on simulation results

    Discrete Event Modeling and Simulation for IoT Efficient Design Combining WComp and DEVSimPy Framework

    Get PDF
    International audienceOne of today's challenges in the framework of ubiquitous computing concerns the design of ambient systems including sensors, smart-phones, interconnected objects, computers, etc. The major difficulty is to propose a compositional adaptation which aims to integrate new features that were not foreseen in the design, remove or exchange entities that are no longer available in a given context. In order to provide help to overcome this difficulty, a new approach based on the definition of strategies validated using discrete-event simulation is proposed. Such strategies make it possible to take into account conflicts and compositional adaptation of components in ambient systems. These are defined and validate using a discrete-event formalism to be integrated into a prototyping and dynamic execution environment for ambient intelligence applications. The proposed solution allows the designers of ambient systems to define the optimum matching of all components to each other. One pedagogical example is presented (switch-lamp system) as a proof of the proposed approach

    Testability of a swarm robot using a system of systems approach and discrete event simulation

    Get PDF
    A simulation framework using discrete event system specification (DEVS) and data encoded with Extensible Markup Language (XML) is presented to support agent-in-the-loop (AIL) simulations for large, complex, and distributed systems. A System of Systems (SoS) approach organizes the complex systems hierarchically. AIL simulations provide a necessary step in maintaining model continuity methods to achieve a greater degree of accuracy in systems analysis. The proposed SoS approach enables the simulation and analysis of these independent and cooperative systems by concentrating on the data transferred among systems to achieve interoperability instead of requiring the software modeling of global state spaces. The information exchanged is wrapped in XML to facilitate system integration and interoperability. A Groundscout is deployed as a real agent working cooperatively with virtual agents to form a robotic swarm in an example threat detection scenario. This scenario demonstrates the AIL framework\u27s ability to successfully test a swarm robot for individual performance and swarm behavior. Results of the testing process show an increase of robot team size increases the rate of successfully investigating a threat while critical violations of the algorithm remained low despite packet loss
    • …
    corecore