
HAL Id: hal-00456101
https://hal.archives-ouvertes.fr/hal-00456101

Submitted on 1 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Generalized Discrete Event System (G-DEVS)
Flattened Simulation Structure: Application to

High-Level Architecture (HLA) Compliant Simulation of
Workflow

Grégory Zacharewicz, M. E.-A. Hamri, C. Frydman, N. Giambiasi

To cite this version:
Grégory Zacharewicz, M. E.-A. Hamri, C. Frydman, N. Giambiasi. A Generalized Discrete Event
System (G-DEVS) Flattened Simulation Structure: Application to High-Level Architecture (HLA)
Compliant Simulation of Workflow. SIMULATION, SAGE Publications, 2010, 86 (3), pp.181-197.
�10.1177/0037549709359357�. �hal-00456101�

https://hal.archives-ouvertes.fr/hal-00456101
https://hal.archives-ouvertes.fr

 1

Abstract— The objective of the paper is to specify a new flat-

tened G-DEVS simulation engine structure and the Workflow

M&S environment embedding it. We express first the new flat-

tened simulation structure and give the corresponding transfor-

mation functions. We analyse performance tests conducted on

this new simulation structure to measure its efficiency. Then,

having selected the essential concepts in the elaboration of Work-

flow, we present a language of description to define Workflow

processes. Finally, we define a distributed Workflow Reference

Model that interfaces components of the Workflow with respect

to the HLA standard.

Today enterprises can take advantage of using this platform in

the context of networking where interoperability, flexibility, and

efficiency are challenging concepts

Index Terms—DEVS, G-DEVS, Flattened Simulation Struc-

ture, Distributed Simulation, HLA, Workflow, Enterprise In-

teroperability.

I. INTRODUCTION

EVS [1] is a well-known formalism to describe the be-

haviour of complex systems. Its formal framework sepa-

rates modelling from a simulation process. DEVS is a power-

ful M&S formalism, with a clear semantics and modular ap-

proach. It is based on event and state concepts (the simulation

is event-driven, which makes it faster). However, we based

our works on the DEVS extension: Generalized-DEVS (G-

DEVS) [2]. In this formalism, event and state trajectories are

polynomials (multi values) instead of piecewise linear con-

stants trajectories like DEVS, and thus represent complex

continuous phenomena more precisely. On the simulation side,

G-DEVS keeps the DEVS semantics specification. Neverthe-

less the hierarchical simulation structure in DEVS/G-DEVS

results from the user-specified modelling structure (e.g. multi

hierarchical imbrications’ reuse of previous models); we pos-

tulate that this feature is not required at simulation run time.

Author G.Z. is with the laboratory IMS-LAPS/GRAI, Université Bordeaux

– CNRS, 351, cours de la Libération, 33405 Talence cedex. (Corresponding

author: tel: +335-4000-6532; e-mail: gregory.zacharewicz@ims-bordeaux.fr.)

Authors M.H., C.F., and N.G. are with the Laboratory of Science and In-

formation Systems UMR CNRS 6168, Université Paul Cézanne, Avenue

Escadrille Normandie Niémen, 13397 Marseille cedex 20, FRANCE; e-mails:

{amine.hamri, claudia.frydman, norbert.giambiasi}@lsis.org.

From that postulate, we propose a new simulation structure

that is simplified (flattened) to increase execution speed.

An applicative goal of such M&S structure can be found in

representing industrial processes (Workflow). Indeed, this

field is recent (early 1990s [3]) and not fully standardized. The

Workflow Management Coalition (WfMC) works at standard-

izing this field; it provides a consistent high level framework

to develop the business process. The Workflow specification

involves different tasks, items, applications, and actors which

are essential to its execution. This specification is quite intui-

tive (it can be automatically generated from a graphical speci-

fication) and the user does not need to develop programming

code. The lack of Workflow M&S is, in addition to most ven-

dor tools not conforming to WfMC standard, the missing for-

mal simulation semantics associated with Workflow engines.

Clearly, the Workflow M&S is a semi-formal language to

model user requirements and then, most of the Workflow

simulations engines are ad hoc. Consequently, the Workflow

does not guarantee a formal and clear semantics. This fact may

lead to incompatibility and errors that are difficult to detect

(like coding errors, codes that do not conform to the Workflow

specification, etc.). A solution can exist in more formal model-

ling. However Workflow users are not familiarized with for-

mal specifications (e.g. DEVS). Thus we have proposed in [4]

to automatically transform high level graphical Workflow

specifications to G-DEVS models feeding a new embedded

efficient G-DEVS simulator. In addition, current complex

industrial processes need to interoperate [5], being combined,

and to cooperate with heterogeneous distributed components.

HLA is a distributed simulation and execution standard origi-

nally defined for interoperability of US military simulation

tools and now employed in the civilian domain; it can address

actual enterprise requirements. From the preceding enounced

challenges and to address their requirements, we introduce in

this paper a HLA-compliant Workflow Modelling Environ-

ment.

The paper is organized as follows. Section 2 gives an over-

view of G-DEVS, HLA, and Workflow. Section 3 details the

specification of the new flattened G-DEVS simulation struc-

ture proposed, gives the transformation functions, and reports

on performance results of this new simulator. Section 4 pre-

sents the integration of the G-DEVS flattened simulator in an

HLA context. Section 5 introduces the application field of our

environment and gives keys to transform a Workflow graph-

A Generalized Discrete Event System

(G-DEVS) Flattened Simulation Structure:

Application to High-Level Architecture (HLA)

Compliant Simulation of Workflow

G. Zacharewicz, M.A. Hamri, C. Frydman, N. Giambiasi

D

mailto:gregory.zacharewicz@ims-bordeaux.fr
mailto:amine.hamri@lsis.org
mailto:claudia.frydman@lsis.org
mailto:claudia.frydman@lsis.org

 2

ical specification into a G-DEVS executable model. In addi-

tion we describe the new HLA compliant Workflow Model-

ling platform. Finally, we conclude by introducing our future

works and conclusion.

II. RECALL

A. G-DEVS

G-DEVS emerged with the drawback that most classical

discrete event abstraction models (e.g. DEVS) face: they ap-

proximate observed input–output signals as piecewise constant

trajectories. G-DEVS defines abstractions of signals with

piecewise polynomial trajectories [2]. Thus, G-DEVS defines

the coefficient-event as a list of values representing the poly-

nomial coefficients that approximate the input–output trajecto-

ry. Therefore, a DEVS model, from the founding point of

view, is a zero order G-DEVS model (the input–output trajec-

tories are piecewise constants).

G-DEVS keeps the concept of the coupled model intro-

duced in DEVS [1]. Each basic model of a coupled model

interacts with the others to produce a global behaviour. The

basic models are either atomic or coupled models that are

already stored in the library. The model coupling is done with

a hierarchical approach (owing to the closure under coupling

of G-DEVS, models can be defined in a hierarchical way).

On the simulation side, G-DEVS models employ abstract

simulator, proposed in [1], which defines the simulation se-

mantics of the formalism. The architecture of the simulator is

derived from the hierarchical model structure. Processors

involved in a hierarchical simulation are Simulators which

insure the simulation of atomic models, Coordinators, which

insure the routing of messages between coupled models, and

the Root Coordinator, which ensures global simulation man-

agement. The simulation runs by sending Imessage to all Co-

ordinators and Simulators, and continues by exchanging spe-

cific messages (*message for internal event, Xmessage for

external event and Ymessage for output event) between the

different processors. The specificity of G-DEVS model simu-

lation is that the definition of an event is a list of coefficient

values as opposed to a unique value in DEVS.

B. DEVS flattened simulation structure

To facilitate the introduction of the G-DEVS flattening, we

recall DEVS flattening techniques.

Kim et al. [6] presented a methodology of distributed simu-

lation for models specified in the DEVS formalism. The

methodology transforms a hierarchical DEVS model into a

non-hierarchical one. This transformation reduces the overload

of information handled during a conventional and classical

hierarchical simulation of DEVS models and facilitates the

synchronization of distributed simulation, thus increasing the

stability of the simulation engine. To demonstrate the efficien-

cy of the proposed methodology, the authors developed a

simulation environment in Visual C++ and conducted a per-

formance evaluation on the simulator applied to a large-scale

logistics system. The results of performance measurements

show that the new proposed methodology works efficiently

and offers better performances than the previous approaches in

terms of execution time.

Glinsky [7] developed DEVStone; this software was dedi-

cated to the automation of the evaluation of surrounding areas

of simulations based on DEVS. DEVStone analyses the per-

formance of successive versions of the same simulation engine

(e.g. further to an update or further to a problem being solved),

and supplies common metrics to compare the environments of

different M&S. The studies realized with DEVStone have

notably allowed it to be concluded that generally the technique

of “flattened” simulation (previously developed by the au-

thors) surpasses the hierarchical shape, reducing the overhead

of information handled by up to 50%, and thus supplies im-

proved answer times and a higher percentage of successes in

the execution. Therefore, the use of the non-hierarchical ap-

proach allows the simulation of bigger models with better

execution results. These results are a consequence of the re-

duced number of messages exchanged in the flat mechanism

of simulation.

C. High Level Architecture (HLA)

High Level Architecture (HLA) is a software architecture

specification that defines how to create a global simulation

composed of distributed simulations. In HLA, every partici-

pating simulation is called federate. A federate interacts with

other federates within an HLA federation, which is in fact a

group of distributed federates. The HLA set of definitions

brought about the creation of Standard 1.3 in 1996, which then

evolved into HLA 1516 in 2000 [8].

The interface specification of HLA describes how to com-

municate within the federation through the implementation of

the HLA specification: the Run Time Infrastructure (RTI).

Federates interact using the services proposed by the RTI.

They can notably “Publish” to inform about an intention to

send information to the federation and “Subscribe” to reflect

some information created and updated by other federates. The

information exchanged in HLA is represented in the form of

classical object-oriented programming classes. The two kinds

of objects exchanged in HLA are Object Classes and Interac-

tion Classes. The first kind is persistent during the simulation,

the other is only transmitted between two federates. The data

interchange objects format is XML specified but does not

constrain the implementation. More details on RTI services

and distributed data in HLA can be found in the HLA stand-

ardization book [8].

In addition, in order to respect the temporal causality rela-

tions in the simulation, HLA proposes to use classical con-

servative or optimistic synchronization mechanisms [9].

D. Workflow

Workflow is the modelling and the computer assisted man-

agement of all the tasks to be carried out and the various ac-

tors invoked in the realization of a business process [3]. The

purpose of WfMC is to develop standards in the field of

Workflow in association with the main actors of the domain

[10], [11]. It defines a Workflow Reference Model presenting

the components of a Workflow. It contains the process defini-

 3

tion tool, the administrator tool, the Workflow client applica-

tion, the invoked applications, and the link between other

Workflow environments. We focus on the process definition

phase to make it computerized.

A Workflow consists of procedures (also called tasks) and

logical expressions (controllers) that describe the paths for

items. A Workflow can be described by a graphical represen-

tation (specification) in which tasks are represented by rectan-

gles and controllers are represented by nodes and arrows that

drive the flows over tasks [10].

Many environments dedicated to the specification and the

simulation of Workflows exist. Most of them are based only

on ad hoc execution engines, so they do not profit from the

concepts offered by the simulation theory [1]. In fact, this

theory separates the modelling phase from simulation, allow-

ing the reuse of validated specifications in different domains.

The small part of environments settled on formal specifica-

tion is Petri nets based (e.g. Yasper [12], Yawl [13], and so

on). For instance, Yasper is composed of an editor client to

represent the process definition graphically and a Petri nets

powered runtime engine. They argued the choice of using

Petri nets by the formal semantics nature, (despite the graph-

ical representation), the state-based concept instead of event-

based, and the numerous existing analysis techniques.

We believe that a simulation tool based on the DEVS/G-

DEVS formalism can facilitate the modelling thanks to modu-

larity and pragmatism; it then supplies simulation results with

a better probability because of the explicit time management,

and finally the model description and validation process is

open source, so models can be exported, compared, and re-

used. Nevertheless, we agree that, from a computational point

of view, no computational power is added by DEVS compared

to other modelling formalisms [14]. In detail, Zeigler [1] dis-

cussed the advantages that can be provided by DEVS (or by

extension, obviously, by G-DEVS) modelling. DEVS model-

ling can be more convenient for our purpose (i.e. workflow

modelling) than Petri nets modelling: firstly it gives a more

general framework for M&S of systems by handling explicitly

the notion of time, in particular the autonomous timed evolu-

tion of the model (while an extension of the original definition

is required for Petri nets), secondly it proposes modular hier-

archical modelling facilities by reusing previously developed

models, and events exchanged between models can contain

several pieces of information, and finally it offers a formal

definition of the simulator (simulator implementation and

results can be mastered more easily and better compared).

III. NEW DEVS / G-DEVS SIMULATION STRUCTURE

The previous works all agree in terms of the performance of

the “flattened” DEVS structure with regard to the hierarchical

structure (i.e. § B). As a consequence, in our G-DEVS simula-

tor we chose to use a simulation structure inspired by the hier-

archical structure of abstract simulation defined in Zeigler [1],

but containing only two hierarchical levels. This structure is

called “compact”, (e.g. Fig. 1.b).

From the works introduced in Kim [6] and Glinsky [7] and

with the aim of decreasing the exchange of messages between

the intermediate coordinators and the simulators, we suggest

reducing the treelike structure of intermediate coordinators

between the root coordinator and simulators. To achieve this

goal, we chose to keep only one coordinator component to

which atomic simulator components will be connected in

direct succession. The reduction of the simulation structure is

illustrated by the suppression of components that are crossed

out in Fig. 1 a). This new structure, after reduction, is present-

ed in Fig. 1 b).

Two main solutions can be distinguished to flatten models

for simulation.

The first solution consists in preserving the coupled models

with all their hierarchy as a storage format. Only at simulation

setting time does the environment explore the treelike struc-

ture of the considered model to get back the atomic models on

the leaves. This solution presents the advantage to be compe-

tently applied to a classical implementation of DEVS (or G-

DEVS) coupled model. The drawback is it requires an algo-

rithm of deep treelike data structure exploration, which can be

slow in the case of a complex coupled model. Previous works

by Kim [6] and Glinsky [7] have exploited this solution.

The second solution consists in making a flattening trans-

formation on saving each model step or when launching it for

simulation. In that case, the considered models contain at most

two hierarchical levels because the included models resulting

from the library have been preliminarily flattened during sav-

ing. This solution implements less complex exploration algo-

rithms; in return all included models must have been flattened

previously.

We select the second solution because the exploration algo-

rithm is less complex and so its execution on models and cou-

pling structures is faster. At the end, our solution consists in

archiving both a hierarchical model (for editing and compos-

ing models) and a non-hierarchical model (for simulation).

Fig. 1. Flattening G-DEVS simulation structure

A. LSIS_DME model class diagram

The class diagram specified for the G-DEVS M&S envi-

ronment developed by LSIS (called LSIS_DME [15]), pre-

sented in Fig. 3, is based on the original DEVS model classes

structure proposed by Zeigler [1]. However, the tool integrates

a specific data structure for graphical model editing and for

Root

Coordinator

Coordinator

B

Coordinator

D

Coordinator

C

Coordinator

A

Simulator

B1

Simulator

D1

Simulator

C1

Simulator

D2

Coordinator

ABCD

Simulator

B1

Simulator

C1
Simulator

D2

Simulator

D1

a) b)

 4

model flattening. These functions, sets, and relations will be

used in Fig. 3 and 4 detailed in the next point.

1) LSIS_DME atomic model classes structure

The class model description of the LSIS_DME G-DEVS

atomic model (cf. Fig. 3) possesses the classical functions

defined in the DEVS formalism [1]. It possesses a specific

attribute: phase (a state variable for graphic representation).

Also, the attribute OtherStateVariablesSet is employed to

define other state variables that describe the model global

state. It also possesses an attribute eventOrder defining the

degree of the polynomial event and states in G-DEVS models.

Finally, it contains an attribute graphicalData to store the

information relative to the graphical representation of the

model (size of box, position, etc.). This last attribute only has

a meaning for reusing graphical models and optionally to run a

step by step animated state simulation.

2) LSIS_DME coupled model classes structure

Fig. 3 also presents the LSIS_DME_Coupled_Model class to

implement a G-DEVS coupled model. This class contains a

list of influent ports: influentPortListWithHierarchy, de-

fining the influent input ports of the models, each of these

ports making reference to a list of influenced ports: Influ-

encedPortList. With regard to the original representation of

Zeigler [1], this class contains in addition the specific attrib-

utes includedModelWithoutHierarchyList and nonHierar-

chicalInfluentPortList describing the non-hierarchical

coupled model generated by the flattening algorithm from the

coupled model created by the tool user. These data are stored

in a list of objects.

B. Model transformation function

We focus now on attributes of the coupled model data struc-

ture of LSIS_DME (cf. Fig. 3) related to the flattening func-

tion. The attribute includedModelWithHierarchyList con-

tains (itself) a set of includedModel (atomic or coupled mod-

els). The attribute includedModelWithoutHierarchyList

contains a list of non-hierarchical includedModel (atomic).

When creating a model, this last list is initially empty.

The pseudo code in Fig. 2 specifies the flatteningModels

function of LSIS_DME. This function generates the set of

atomic models to store in includedModelWithoutHierar-

chyList from the hierarchical models of includedModel-

WithHierarchyList. This function is called when saving a

model in the library or during an initialization preceding the

execution of a simulation. The flatteningModels function

goes through the includedModelWithHierarchyList set; for

every includedModel, a test is performed. If this sub-model is

atomic, it is copied in includedModelWithoutHierarchyList.

If this sub-model is coupled, all the models contained in this

sub-model are found recursively (using a tree-like structure

exploration) and copied in the includedModelWithoutHier-

archyList of the considered model.

includedModelWithoutHierarchy flatteningModels (consideredCou-

pledModel)

for (all includedModel in consideredCoupledMod-

el.includedModelWithHierarchyList)

if (includedModel.hierarchicalLevel == 0) // no hierarchy

includedModelWithoutHierarchyList add (includedModel)

 else // the included model is hierarchical

for (all includedModelWithoutHierarchy’ in includedMod-

el.includedModelWithoutHierarchyList)

includedModelWithoutHierarchyList add (includ-

edModelWithoutHierarchy’)

Fig. 2. LSIS_DME model’s flattening function

To summarize, models contained in the non-hierarchical

models list are not modified; they (or their sub-models) are

just copied in the non-hierarchical models list. Indeed the

includedModelWithHierarchyList is still used for modelling

purposes, and remains modular and hierarchical.

Fig. 3. LSIS_DME G-DEVS coupled model class diagram

+externelTransitionFunction()

+internalTransitionFunction()

+confluentTransitionFunction()

+outputFunction()
+timeLifeFunction()

-name : string

-phases : object
-graphicalData : object

-inputPort : InfluentPort

-outputPort : InfluentPort

-OtherStateVariablesSet : object

-eventOrder : object

LSIS_DME_Atomic_Model

-name : string

-timeLife : int
-graphicalData : object

phases

1..*

1

-name : string

-hierarchicalLevel : int

-inputPort : InfluencedPort

-outputPort : InfluentPort
-includedModelWithHierarchyList : includedModel

-influentPortListWithHierarchy : InfluentPortList

-includedModelWithoutHierarchyList : includedModel

-nonHierarchicalInfluentPortList : InfluentPortList

-graphicalData : object

LSIS_DME_Coupled_Model

-name : string

-type : string

-parentName : string
-InfluencedPortList : InfluencedPortList

InfluentPort

0..*

1

-name : string
-type : string

-parentName : string

InfluencedPort

0..*

1

0..*

1

0..*

1

-List : List

InfluencedPortList

1
1

1..*
1..*

-List : List

InfluentPortList

0..1

1

1..*
1..*

-List : List

includedModel

1

1

0..*

0..*

 5

C. Model coupling transformation function

Flattening a model also requires the transformation of in-

cluded models coupling. Indeed, the coupling relations of a

flattened model have to refer only to atomic models of the

non-hierarchical model and to the unique coupled model level.

The pseudo code in Fig. 4 considers the CouplingTrans-

formation function of the environment. This function gener-

ates a set of coupling relations between atomic models and the

considered model from the hierarchical coupling relations.

The coupling relations are defined as a set of influent ports,

where each element is linked to one or more influenced ports.

The coupling flattening algorithm is divided into two parts: the

influent ports of the coupling relation are handled in the first

part, and the influenced ports are handled in the second part.

The first part of the algorithm identifies the influent ports of

the non-hierarchical model that will be inserted into nonHier-

archicalInfluentPortList of the model. Every influ-

entPort of InfluentPortListWithHirearchyList is thus

analysed. If it has the considered model or an atomic model as

parent, this coupling relation is directly copied in an interme-

diate list IntermediaryInfluentPortList, which contains all

the coupling relations with influent ports referring only to

atomic or considered models. If the influentPort has an

included model as parent, the contents of this included model

must be analysed to determine the influent sub-models of the

considered influentPort and create a newInfluentPort for

every included port influencing it. The part concerning ports

influenced by the influentPort is copied out in every newIn-

fluentPort. Every newInfluentPort is added to Intermedi-

aryInfluentPortList.

The second part of the algorithm handles the list Interme-

diaryInfluentPortList. Every influenced port (influ-

encedPort’) from the list influencedPortList of every in-

fluentPort’ must be analysed. If the influencedPort’ struc-

ture has as parent the considered model or an atomic model, a

simple copy is made in the influenced ports list by newInflu-

entPort’. In the other case, influencedPortList of newIn-

fluentPort’ is completed by every influenced port by in-

fluencedPort’ recursively found inside the sub-models of the

parent of influencedPort’. Then, these structures are added

to the definitive nonHierarchicalInfluentPortList.

Finally, the internal coupling relations between included

atomic models are copied in the final nonHierarchicalInflu-

entPortList list.

nonHierarchicalInfluentPortList CouplingTransformation (consideredCoupledModel)

for (all influentPort in consideredCoupledModel.InfluentPortListWithHierarchy) // upstream part of influence relation

 model = Retrieve parent with (influentPort.parentName)

 if (model != consideredCoupledModel && model != AtomicModel) // parent of port is not the coupled model

 includedModel = model // it is an included model

 for (all influentPortInIncludedModel in includedModel.influentPortList)

 for (all influencedPortInIncludedModel in influentPortInIncludedModel.influencedPortList)

 if (influencedPortInIncludedModel == influentPort)

 Create newInfluentPort

 newInfluentPort.name = influentPortInIncludedModel.name

 newInfluentPort.parentName = influentPortInIncludedModel.parentName

 newInfluentPort. influencedPortList = InfluentPort. influencedPortList

 add newInfluentPort in IntermediaryInfluentPortList

 else add influentPort in IntermediaryInfluentPortList // list for computation purpose only

for (all influentPort’ in IntermediaryInfluentPortList) // downstream part of influence relation

for (all influencedPort’ in influentPort’. influencedPortList)

influencedModel = Retrieve parent with (influencedPort’.parentName)

if (influencedModel is non hierarchical || influencedModel is consideredCoupledModel) // no change in coupling (no

hierarchy)

newInfluentPort’ = influentPort’ // simple copy

else // influencedModel is hierarchical

newInfluentPort’.name = influentPort’.name

newInfluentPort’.parentName = influentPort’.parentName

for (all influentPorIntIncludedModel in influencedModel. influentPortListWithoutHierarchy)

if (influentPorIntIncludedModel.name == influencedPort’.name)

for (all influencedPort in influentPorIntIncludedModel.influencedPortList)

newInfluentPort’.influencedPortList add influencedPort

add newInfluentPort’ in nonHierarchicalInfluentPortList

for (all includedModel in consideredCoupledModel.includedModelWithHierarchyList)

for (all InfluentPort’’ in includedModel.InfluentPortListWithHierarchy)

for (all InfluencedPort’’ in InfluentPort.influencedPortList)

if (InfluentPort’’ parent is AtomicModel && InfluencedPort’’ parent is AtomicModel)

if (InfluentPort’’ is already in nonHierarchicalInfluentPortList)

add InfluencedPort’’ in InfluentPort’’.influencedPortList

else add InfluentPort’’ in nonHierarchicalInfluentPortList

Fig. 4. LSIS_DME model’s coupling flattening function

 6

D. Performances of “flattened” LSIS DME simulators

In [4] and [15], we introduced an environment that we

called LSIS_DME (listed on G. Wainer’s website “DEVS

Tools” [16]) for creating G-DEVS graphical models and simu-

lating them. We developed two simulation engines to power it:

a non-hierarchical simulator and a hierarchical simulator. We

realized performance comparison tests between those two

engines to elect the most efficient one for powering the final

version of our M&S environment. In this part, we propose the

comparison result of our study.

The configuration of our test simulation platform was a

Pentium III 2.4 GHz with 512 Mb de RAM under Windows

XP. Both simulators (hierarchical and non-hierarchical) were

implemented in Java. The measurements were realized with

JRat tool [17], allowing us to measure performances in Java

programs by including specific classes that perform quantita-

tive measurements on the execution of code. We precise that

all the considerations enounced in this section and the next

one are valid for using LSIS_DME software.

1) Russian Dolls Imbrications

We executed the comparison study on G-DEVS coupled

models whose characteristics expressed a representative range

of graphically conceivable models. They were realistic and

able to have been proposed by a modeller (not automatically

generated with no connection to realistic models). We focused

in this paper on the study of two G-DEVS coupled models of

logical gate circuits.

Various tests were realized for the same models with different

levels of hierarchy using “Russian Dolls” Imbrications (RDI)

for each atomic model. These imbrications consist in recur-

sively inserting an atomic model into a coupled model with

the same input and output ports on the outer model automati-

cally linked with inner model ports.

The first coupled model A characterizes a simple model

composed of logical gates (2 AND Gates, 1 OR gate and 1

NAND gate) weakly coupled with the input/output and be-

tween them, the logical model is depicted in Fig. 5. In DEVS

representation, we illustrate for e.g. a four hierarchical RDI

(for each atomic model) of model A in Fig. 6.

The coupled model B contains the same atomic models (2

AND Gates, 1 OR gate and 1 NAND gate) but it possesses a

more important number of couplings between the coupled sub-

models, the logical model is depicted Fig. 7. For e.g., we illus-

trate, in DEVS coupled representation, a four hierarchical RDI

of model B in Fig. 8. We confound the degree of encapsula-

tion with the number of dolls).

In detail, for each of these types of models we defined a

more or less hierarchical RDI of the model and coupling. Note

that the A and B flattened models (zero level RDI) contain the

same four G-DEVS atomic models of logical components

inter-coupled differently on a unique hierarchical level. The

tests were run with one to twelve hierarchical RDI levels for

each model. For each of these structures we executed a signif-

icant number of replications to compare them as objectively as

possible. The simulations were set with 100 to 1000 input

events planned.

Fig. 5. Logic gates model A

Fig. 6. Four hierarchical levels RDI G-DEVS coupled model A

Fig. 7. Logic gates model B

Fig. 8. Four hierarchical levels RDI G-DEVS coupled model B

AND Logical
Gate

« e2 »

« s »

« e1 »

OR Logical
Gate

« e2 »

« s »

« e1 »

NAND
Logical Gate

« e2 »

« s »

« e1 »

AND Logical
Gate

« e2 »

« s »

« e1 »

Level 1

Level 2

Level 3

Model A (4 hierarchical levels)

Level 1

Level 2

Level 3

Level 1

Level 2

Level 3

Level 1

Level 2

Level 3

AND Logical
Gate

« e2 »

« s »

« e1 »

OR Logical
Gate

« e2 »

« s »

« e1 »

NAND
Logical Gate

« e2 »

« s »

« e1 »

AND Logical

« e2 »

« s »

« e1 »

Level 1

Level 2

Level 3

Model B (4 hierarchical Levels)

Level 1

Level 2

Level 3

Level 1

Level 2

Level 3

Level 1

Level 2

Level 3

 7

2) Fractal Imbrications

In addition, to validate our approach, we have proposed a

second way of coupling models, maybe more practical accord-

ing to modeller’s customs. In this approach, we have coupled

recurrently models A or B in Fractals (like) Imbrications (FI)

to built Coupled Models CMA and CMB. Therefore, the mod-

els (A or B) have been coupled by 2, then 4, and so on recur-

sively to 256 (the Fig. 9 depicts 64 models). Each coupling is

adding a hierarchical level, so in the example depicted Fig. 9,

the hierarchical level is 7 (2 levels for initial coupling by 2 and

one more each 4, 8, 16, 32 and 64 models). Further to the

picture, we have automatically built up to nine hierarchical FI

levels for the tests with 256 Atomic models. We notice that

coupling relations are not depicted in the Fig. 9 to remain

generic to the representation of CM* (A or B) models and not

to complicate the figure.

Fig. 9. Seven hierarchical levels FI DEVS CM* Model

3) Simulation Results

Fig. 10a. and b. reports tests performed on LSIS_DME

hosting JRat [17]. The execution time has been registered,

according to the number of hierarchical RDI levels (from 1

level to 12 levels) for A, B models (4 atomic models) and

from1 level to 9 FI levels for CMA and CMB (256 atomic

models). The simulation has been launch for 100, 500, 1000

events planned. Several replications of same configuration

have been performed for each case to determine an arithmetic

mean.

It shows a growth of the execution overhead between a non-

hierarchical structure (zero RDI or FI level) and when increas-

ing (up to twelve levels) the RDI or FI hierarchical structure of

the considered model. In Fig. 10a, the flattening reduces con-

siderably the execution time in the flattened structure, in par-

ticular for numerous events planned. For e.g., for the model B

with 1000 events planned, the simulation reduce 13 seconds of

execution when reducing from twelve levels to one level.

These results are consistent with previous studies recalled in §

III.B.

E. Limitation of “flattened” LSIS DME simulators

Nevertheless, the graph representation of simulation run

shows, in Fig. 10b, that for complex models (CMA and CMB

with FI hierarchical levels) the tendency to decrease overhead

when reducing the models imbrications is slowed down. The

gain of the flattening is inflected with important number of

event to treat (between 500 and 1000 and up). In that case, we

should discuss about the necessity to flatten the structure,

because we must compare the simulation duration cutback

with the flattening duration, done offline before simulation.

We believe that the lack of gain is due to large lists of events

and lists of models handled. The time required for handling,

searching and classifying information appears to limit (but not

to reverse) the performance in the case of large number of

models and events to treat. Literature can give solution to this

kind of problem. Indeed, the commonly admitted lack in the

flattened simulation structure is due to the management of lists

of events and models that contain many elements.

In more detail, the problem of large event-schedulers and

model lists comes from the insertion, finding, removing and

sorting of a new element. It can be improved thanks to cus-

tomizable heuristics depending on lifetime of model states. An

example of such heuristic can be given by the heuristic that

consisted in defining one scheduler for the close future (with

adjustable deadline) and a second event scheduler for the far-

away future proposed by Giambiasi [18] and Miara [19]. In

that case, the number of schedulers and their management is

depending on simulated models parameters and on delays

described in the models but not on the model structure de-

scribed by the modeler. In addition, it is clear that the number

of messages exchanged in this kind of approach is not in-

creased and the number of events is limited in each scheduler.

We should keep in mind that most relevant results for us

remain in use of human made models with relatively low

complexity of behavior and structure. As well, we consider

human controlled number of handled events in opposition to

auto-generated models and events. The capacity to use and

reuse of G-DEVS models from shared user libraries to make

them interoperable is also a core consideration.

Finally, our goal is to balance simulation performance re-

quirements with the necessity of interoperability of M&S

platform with other software components. We present in the

next section, the use of the HLA standard to facilitate the

interoperability of the simulation platform with distributed

components.

 8

Fig. 10. Comparing performances of flattened and hierarchical structures

I. G-DEVS/HLA COMPONENTS MAPPING

We proposed in [4] to extend LSIS_DME in order to split a

G-DEVS model structure into distributed federate component

models (e.g. Fig. 10). The global G-DEVS model structure is

recomposed into an HLA federation (i.e. a distributed coupled

model). The environment maps a G-DEVS Local Coordinator

and Simulators into HLA federates and maps the Root Coor-

dinator into RTI. Thus, the “global distributed” model (i.e. the

federation) is constituted of intercommunicating federates.The

G-DEVS model federates intercommunicate by publishing and

subscribing to HLA interactions that map the coupling rela-

tions of the global distributed coupled model. This information

is routed between federates by the RTI with respect to time

management and the Federation Object Model description [8].

In fact, in [20] and [21], we developed an algorithm for G-

DEVS federation execution with a conservative synchroniza-

tion mechanism using a positive Lookahead value gained from

the HLA LITS value.

Fig. 11. G-DEVS distributed simulation structure

II. TRANSFORMING A WORKFLOW SPECIFICATION INTO A

G-DEVS MODEL

Workflows are most commonly graphically modelled. The

drawback of this representation is the fact that it is not based

on strong formal concepts. Thus, it does not allow properties

of semantic verification and validation of the model. Further-

more, these models are often simulated by ad-hoc engines that

could not be compared in terms of correctness and efficiency

in relation to others. From this postulate, in [22], we proposed

to define a unified language for the specification of Workflow

to be applied as a common output of Workflow editors. This

language supports algorithms to transform a Workflow model

into a classical formal specification for simulation inde-

pendently of the Workflow editor.

A. Workflow representation

The WfMC proposed an XML representation of Workflow

established as a standard in the Workflow community [11].

Instances of XML Workflow process model structures’ cor-

rectness can be certified by referring to the WfMC Workflow

Document Type Definition (DTD). This XML representation

is not fully convenient for the XML specification of produc-

tion Workflow. Thus, we proposed in [22] a simple language

to represent the components involved in that kind of Work-

flow.

An XML Workflow process model is composed of task

components, which handle items with resources, and control-

ler components that route items between tasks. Items pass over

a sequence of these components. These components are linked

by directed arcs in order to define a graphical component

based model specification. Examples of complex processes

descriptions addressed by the definition of the Workflow

blocks library have been presented in [22]. Fig. 11 presents a

print screen of the environment with Workflow sample mod-

els.

0

5

10

15

20

25

12 Levels 6 Levels 2 Levels 1 Level

Ex
e

cu
ti

o
n

 T
im

e
 /

 s
e

co
n

d
s

(a) RDI G-DEVS Model A&B Flatenning

Hierarchical Coupled
Model A / 100 evt

Hierarchical Coupled
Model A / 500 evt

Hierarchical Coupled
Model A / 1000 evt

Hierarchical Coupled
Model B / 100 evt

Hierarchical Coupled
Model B / 500 evt

Hierarchical Coupled
Model B / 1000 evt

0

50

100

150

200

250

300

350

9 Levels 7 Levels 2 Levels 1 Level

Ex
ec

ut
io

n
Ti

m
e

/
se

co
nd

s

(b) FI G-DEVS Model CM* Flatenning

Hierarchical Coupled
Model CMA / 100 evt

Hierarchical Coupled
Model CMA / 500 evt

Hierarchical Coupled
Model CMA / 1000 evt

Hierarchical Coupled
Model CMB / 100 evt

Hierarchical Coupled
Model CMB / 500 evt

Hierarchical Coupled
Model CMB / 1000 evt

Interconnection Network

Central RTI

Component

Simulator

B1

Simulator

C1

Simulator

D2

Simulator

D1

Computer 1

Computer 2 Computer 3

Local

Coordinator

AB

Local

Coordinator

ACD

Local RTI

Component

Local RTI

Component

GDEVS

Federate

1

GDEVS

Federate

2

 9

Fig. 12. LSIS Workflow Model Editor (WME)

The Workflow blocks description presented in Zacharewicz

[22] challenges the descriptions by Russell in [13] and Van

Der Aalst in [23] and [24]. This description defines classical

task blocks and routing sequence blocks; for example Fig 12

(the most relevant blocks have been detailed in [22]). In addi-

tion to the coexisting Workflow cited, this description pro-

posed blocks to explicitly manage the stock levels of goods at

run time and blocks containing algorithms for resources allo-

cation in tasks.

These concepts have been implemented into the Workflow

modelling tool LSIS_WME (developed at LSIS). This tool

allows us to graphically describe a Workflow (the interface

shown in Fig. 11 presents the interface of this software) and to

store the model in an XML format. This software has been

presented in detail in [22], and we invite the reader to refer to

this document for more details.

Finally, emerging works on human or machine behaviour

modelling by DEVS model blocks, as defined by Seck [25],

have been tested in the environment. Therefore, the simulation

can provide statistical studies on the Workflow reaction re-

garding human behaviour tuning; this last step is still under

our scope of study.

B. G-DEVS representation

In [22], we proposed a method to transform the (semi-

formal) Workflow graphical models into (formal) G-DEVS

coupled models by connecting G-DEVS atomic models repre-

senting the Workflow basic components. The choice of G-

DEVS as a formal modelling and simulation language is based

on the following reasons. First of all, a G-DEVS model takes

advantage of formal properties and can be simulated with the

efficiently improved structure described in § III. With the aim

of modelling and simulating Workflow, our requirements were

based on the capacity to capture all characteristics of goods

processing. Goods are changing state during their courses in

the Workflow, and we were looking at capturing and follow-

ing up this information. In more detail, they need to be de-

scribed by many attributes including their product references,

routes, duration, progress, and so on. This complex state is

evolving during progress. Also, we have implemented stock

level and resource allocations strategies tuneable algorithms

because these solutions were not explicitly specified or even

worst not taken into consideration in previous approaches. For

all these purposes, G-DEVS has been chosen as particularly

convenient because it is based on the concept of a multiple

attributes event. In our environment the products are described

by multiple attributes of a G-DEVS event. In addition the G-

DEVS coupled models allow us to easily compose a workflow

by coupling: tasks, resources, routing sequences, and stocks

components; the behaviour of each component is described in

G-DEVS atomic model. In addition we have developed G-

DEVS blocks for queue management [15] and resource alloca-

tion that reveal by simulation the problem of bad allocation or

wrong dimensioning of stocks.

Fig. 13. G-DEVS AND-JOIN workflow block model

In Fig. 12 we detail the G-DEVS behavioural model of the

AND-JOIN controller pattern block that is instantiated from a

Workflow model (e.g. the number of input ports is instantiated

from the Workflow model). This model receives items assimi-

lated to G-DEVS events (representing data associated to phys-

ical and non-physical products on its multiple input ports).

The items received are stocked in a list (a complex state varia-

ble Tab_Item is employed) until the controller component

receives an item on each of its input ports (the counting state

variable nba is incremented); then an item is generated on the

single output port. The attribute values of this new item are a

composition configurable by the workflow modeller of the

input item data.

The LSIS_WME tool and its simulation results have been

efficiently employed to assist human-decision making to mod-

ify wafer process flows in STMicroelectronics. It makes it

possible to prevent errors due to a wrong modification of the

process flow. It also allows quantitative comparisons of sever-

al modifications of a process to be made to sort the most effi-

cient ones.

On top of LSIS_WME and LSIS_DME, the HLA compli-

ance also opens our environment to other heterogeneous com-

ponent integrations, which may even be non-DEVS or non-G-

Tab_Item, nba, nbs

AND-JOIN

S0

δ=∞
S1

δ=ε

«TA1»

«TAi» ? Item [Tab_Item add (Item)]

«TAi»

[Item = f(Tab_Item) nba = 0] «TV»! Item @(nba == nbs)

«TAn»

«TV»

nba ++

 10

DEVS, to join a global distributed information system plat-

form. Consequently this platform matches actual requirements

for interoperability in enterprises [26].

Then we defined a general methodology [5] in converging

Model Driven Architecture [27], Model Driven Interoperabil-

ity [28], and HLA FEDEP [29] to formalize the transformation

of Enterprise conceptual requirements into Workflow process

models and then into a G-DEVS coupled model. This method

has been applied, notably, to facilitate the transformation of

Workflow models of electronic components manufacturing

processes operated by the company STMicroelectronics.

III. HLA COMPLIANT G-DEVS WORKFLOW ENVIRONMENT

A. Components interoperability

We demonstrated in [20] and [21] that G-DEVS models can

be run from several computers thanks to the capability of

LSIS_DME to create HLA federates. This capability matches

with the distribution requirements of the actual industrial pro-

cesses. Thus, we have implemented the flattened G-DEVS

simulation structure presented in this paper and its HLA com-

pliance detailed in [22] as the run time engine of a new dis-

tributed Workflow environment. Then, the key is to generalize

the HLA compliance to the whole Workflow environment by

adding other federates to the federation in order to define a

Distributed Workflow Reference Model in terms of WfMC.

The resulting platform is described in Fig. 14. We note that the

flattened hierarchy of G-DEVS models joining the federation

are coherently synchronized in the context of HLA distributed

execution, all other federates connected to the RTI also need

to implement a synchronization algorithm.

Therefore, we included the Workflow modelling tool

LSIS_WME presented in Fig. 11 (developed at LSIS) into a

federate (i.e. Fig. 13 Interface 5). The models defined in XML

generated by this federate are integrated into HLA objects and

shared with LSIS_DME (Fig. 13 interface 1).

In detail, LSIS_WME publishes to HLA objects that repre-

sent the components of the Workflow model and to which

LSIS_DME subscribes. These objects are stored in the Work-

flow federation FOM. The updates of information are routed

by the RTI. If the Workflow model is modified by the user of

LSIS_WME, LSIS_DME is informed of these changes. It can

take them into account in its G-DEVS model and reruns the

simulation with the new coupled model structure and new

atomic models edited settings (DEVS expert users can also

access directly to advanced DEVS editing facilities on

LSIS_DME models fig 13. Interface 1). On the other hand,

during the simulation, LSIS_DME updates, in an HLA object,

the log of events results of simulation. LSIS_WME subscribes

to these results to give the simulation animation and results

updates to the users. For this reason, this software can be seen

as the modelling, control, and administration tool of the Work-

flow environment.

Fig. 14. Workflow G-DEVS/HLA M&S platform

Interoperability is a core concern of the networked enter- prise [26]; this platform addresses this requirement by propos-

Interface 1

Interface 4
Interface 5

Workflow Client Applications

Interface 3

Interface 2

Invoked Applications

Other Workflow

Enactment services

Workflow
Engine(s)

Distributed

Root Coordinator

RTI

Interconnection Network

LSIS_DME

Process

Definition

Tool

Bridge

Federate

LSIS_WME Control &

Administration Tool

Interface 3

 11

ing an open standard interface (thank to the HLA compliance)

to plug other software components. In more detail, the HLA

capability to integrate programs without recoding facilitates

the needs of today’s flexible enterprise that needs to interoper-

ate its Information Systems and to communicate in a distribut-

ed networked environment.

Indeed, software and humans acting in the loop are required

in the existing Workflow process of wafer manufacturing. At

the end, we address the Workflow definitions [10], where

client and invoked applications can be called during the run

time in order to process computations not tackled by the mod-

els and their simulators. Details are given below.

On one hand, we have proposed to integrate humans in the

loop to make qualitative choices during simulation. For that

purpose, we implemented Web interfaces called during the

simulation by the Workflow engine in order to specify, for

instance, some routing of items in the process. Data exchanged

during the call are HLA objects (i.e. Fig. 13 interface 2).

On the other hand, some complex mathematical computa-

tions of data handling (e.g. access to a specific databases,

specific software use, etc.) are not taken into account in transi-

tion/output functions of the G-DEVS model described with

LSIS_DME. In that case the simulation is interrupted and data

are transferred to specific software by publishing to an object

(i.e. Fig. 13 interface 3). This software computes and sends

back data to the process definition tool by publishing to HLA

objects/interaction.

Concretely, we have implemented and tested the platform

described in Fig. 13, in the context of microelectronics manu-

facturing. It actually contains a LSIS_WME model editor and

control viewer of the execution, one LSIS_DME M&S tool to

simulate the process, several MS Excel databases, Java based

user interfaces for microelectronic quality control, and Java

software called to automatically store the time duration and

stock levels. The distributed simulation results obtained on the

platform has been confronted to expert knowledge for valida-

tion.

Finally, we also open to interfacing, in term of data interop-

erability, the environment with other Workflow environments

using the concept of bridges federates [30] (i.e. Fig. 13 inter-

face 4). The structure of the information exchange is HLA

specified and information can be easily shared with respect to

the confidentiality definition of publishing and subscribing

rights for data. In this last interfacing, each time we create a

new connection with another workflow system, we should

determine the data which should be shared and the ones that

must stay confidential between Workflows. Concretely the

two workflows will be two HLA federates in a new federation

and the users will need to define the HLA objects to be ex-

changed between federates.

A. Environment Future Works

The complete development of the proposed environment

still requires the addition of other clients and invoked applica-

tions to the Workflow environment by integrating them in

HLA federates. We plan to integrate other heterogeneous tools

developed in the specific context of STMicroelectronics by

adding code to them to make them HLA compliant. In addi-

tion, we have initiated works on interoperability of infor-

mation systems of enterprises. In these works, we are propos-

ing ontological mapping of the business knowledge. HLA is

helping to manage the exchange of information between het-

erogeneous and distributed enterprise systems interconnected

as a System of Systems. These works are detailed in [5].

Furthermore, domain experts often define Workflow task

durations in terms of time windows rather than mean values.

Thus, it would be possible to model Workflow with Min-Max

DEVS to get more realistic models [31].

IV. CONCLUSION

This paper presented a flattened G-DEVS model simulation

structure. It detailed the flattening transformation algorithm

involved in LSIS_DME. We have performed comprehensive

tests on the LSIS_DME flattened simulator. The results reveal

that the flattening of the simulation structure shortened the

simulation duration. However, the efficiency of the flattening

remains depending on the number of events handled and the

complexity of the model. As perspectives, we will propose to

divide the event list into several lists, to distinguish events in

near occurrence time and far future. Such heuristics, that has

shown their efficiency in scheduling problem solving, should

reduce considerably the size of the event lists and improve

sorting each time an occurred event should be handled in this

list. Also, to prove the efficiency of the flatten simulator with

regard to the hierarchical one, we could compute the algorith-

mic complexity of each simulator. Knowing that to conduct

simulation on computer, we should formally estimate the heap

memory and the execution time of each technique (flattened,

hierarchical). This will be possible by giving a detailed study

on the computational complexity of the used algorithms and

data structure of the simulation (sort events, number of coor-

dinators, number of event lists that depends on the number of

coordinator, etc.).

We proposed to employ the new flattened structure for sim-

ulating complex Workflows models in G-DEVS formalism.

Consequently, GDEVS Workflows models can be verified

faster by simulation. Furthermore, we introduced a new HLA

compliant Workflow environment using the flattened G-

DEVS structure that speeds the local execution and so orches-

trates faster the distributed components. We verified, on this

occasion, that the use of the HLA specification facilitates

connecting the G-DEVS components defined in the paper with

other heterogeneous HLA compliant components in the Work-

flow environment.

Finally, the application field of researches on Workflow

and, more generally, process modelling has been a fast grow-

ing research domain during recent years, and it is still a prom-

ising domain in particular for service orchestration in the en-

terprise. The European International Virtual Laboratory for

Enterprise Interoperability [32] has recently defined the in-

teroperability as a science for enterprise modelling; it confirms

the actual high interest of enterprises for distributed and in-

teroperable information systems solutions (systems of sys-

 12

tems, enterprise 2.0). We believe the crossing of research

domains: Workflow M&S and HLA will facilitate supporting

the next generation of information systems for interoperating

networked enterprises.

REFERENCES

[1] Zeigler, B.P., H. Praehofer, and T. G. Kim. 2000. Theory of Modeling

and Simulation. 2nd edition, Academic Press, New York, USA.

[2] Giambiasi, N., B. Escude, and S. Ghosh. 2000. “G-DEVS A General-

ized Discrete event specification for accurate modeling of dynamic sys-

tems”, Transactions of the SCS International, 17, 3: 120–134.

[3] Courtois, T. 1996. “Workflow: la gestion globale des processus”,

Logiciels & Systèmes, 11 (Sept.): 46–50.

[4] Zacharewicz, G., Hamri, A., Trojet, W., Frydman, C., and Giambiasi,

N. 2006. “G-DEVS/HLA Environment for Distributed Simulations of

Workflows”, invited talk in International Conference on Modeling and

Simulation - Methodology, Tools, Software Applications (M&S-

MTSA'06), Calgary, Alberta, Canada.

[5] Zacharewicz, G., D. Chen, and B. Vallespir. 2009. “Short-lived ontolo-

gy approach for agent/HLA federated enterprise interoperability Inter-

national”, In IEEE proceedings of international Conference I-ESA Chi-

na 2009 Interoperability for Enterprise Software and Applications,

p.329-335, Beijing, 22–23 April.

[6] Kim, K., W. Kang, B. Sagong, and H. Seo. 2000. “Efficient distributed

simulation of hierarchical DEVS models: transforming model structure

into a non-hierarchical one”, in 33rd Annual Simulation Symposium,

Washington, D.C., p. 227.

[7] Glinsky, E. and G.A. Wainer. 2005. “DEVStone: a benchmarking

technique for studying performance of devs modeling and simulation

environments”, 9th IEEE International Symposium on Distributed Sim-

ulation and Real Time Applications (Montreal, Canada).

[8] IEEE Institute of Electrical and Electronic Engineers. 2001. “High

Level Architecture (HLA) – Federate Interface Specification” IEEE

Standard for Modeling and Simulation (M&S). std 1516.2-2000,

March.

[9] Fujimoto, R.M. 1998, “Time management in the high level architec-

ture”, Trans. of SCS, Simulation, 71, 6 (Dec): 388–400.

[10] WfMC Workflow Management Coalition. 1999. Terminology & Glos-

sary. WfMC-TC-1011, 3.0, Feb.

[11] WfMC Workflow Management Coalition. 2005. Workflow Process

Definition Interface - XML Process Definition Language. WFMC-TC-

1025, Oct.

[12] Van Hee, K., R. Post and L. Somers. 2005. “Yet another smart process

editor”, ESM 2005, Porto, 24–26 Oct.

[13] Russell, N., A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der

Aalst. 2004. “Workflow data patterns”, QUT technical report, FIT-TR-

2004-01, Queensland University of Technology, Brisbane.

[14] Weisel, E.W., M.D. Petty, and R.R. Mielke. 2005. “A comparison of

DEVS and semantic composability theory”, Proceedings of the Spring

2005 Simulation Interoperability Workshop, San Diego CA, 3–8 April,

pp. 956–964.

[15] Hamri, M, Zacharewicz, G. 2007 “LSIS_DME: An Environment for

Mod-eling and Simulation of DEVS Specifications” 14th Conference

on Simulation and Planning in High Autonomous systems, Buenos

Aires, pp.55-60.

[16] Wainer, G. Listing of M&S tools based on the DEVS formalism web-

site. http://www.sce.carleton.ca/faculty/wainer/standard/tools.htm, cre-

ated November 2005, accessed Apr 2009.

[17] Drost, J. 2001. ShiftOne JRat (Runtime Analysis Toolkit), Logiciel

GNU, http://jrat.sourceforge.net/

[18] Giambiasi, N., Miara, A. and Muriach, D., SILOG: A Practical Tool for

Large Digital Net-work Simulation. in 16th Annual ACM IEEE Confer-

ence on Design Automation, (San Diego, USA, 1979), IEEE Press, 263-

271.

[19] Miara, A. and Giambiasi, N., Dynamic and deductive fault simulation.

in Proceedings of the 15th Conference on Design Automation Confer-

ence, (Las Vegas, Nevada, USA, 1978), IEEE Press, 439 - 443.

[20] Zacharewicz, G., N. Giambiasi and C. Frydman. 2005. “Improving the

DEVS/HLA Environment”, in DEVS Integrative M&S Symposium,

DEVS'05, Part of the SCS Spring-Sim'05, San Diego, USA, 3–7 Apr.

[21] Zacharewicz G., N. Giambiasi, and C. Frydman. 2006b. “Lookahead

computation in G-DEVS/HLA environment”, Simulation News Europe

Journal (SNE) special issue 1 “Parallel and Distributed Simulation

Methods and Environments”, 16, 2 (Sept.): 15–24.

[22] Zacharewicz, G., C. Frydman and N. Giambiasi, 2008 “G-DEVS/HLA

Environment for Distributed Simulations of Workflows”, Transactions

of the SCS, Simulation, Vol. 84, No. 5, pp.197-213.

[23] Van der Aalst, W.M.P., A.H.M. ter Hofstede, B. Kiepuszewski, and

A.P. Barros. 2000. “Advanced workflow patterns”, in O. Etzion and P.

Scheuermann, editors, 7th International Conference on Cooperative In-

formation Systems (CoopIS 2000), Lecture Notes in Computer Science,

vol. 1901, Springer-Verlag, Berlin, pp. 18–29.

[24] Van der Aalst, W.M.P., and K.M. van Hee. 2002. Workflow Manage-

ment: Models, Methods, and Systems. MIT press, Cambridge, MA.

[25] Seck, M., N. Giambiasi, C. Frydman, L. Baâti, 2007. “DEVS For

Human Behavior Modelling in CGFs”, Journal of Defense Modeling

and Simulation (JDMS), 4, 3 (July) 1-33.

[26] Chen, D., and G. Doumeingts. 2003. “European initiatives to develop

interoperability of enterprise applications – basic concepts, framework

and roadmap”, Journal of Annual Reviews in Control, 7, 2: 151–160.

[27] OMG (Object Management Group). 2003. “MDA Guide Version

1.0.1”, Document number: omg/20030601.

[28] Bourey, J.P., R. Grangel Seguer, G. Doumeingts, and A.J. Berre. 2007.

“Report on model driven interoperability”, deliverable DTG2.3,

INTEROP NoE (Apr.), p. 91

[29] IEEE Institute of Electrical and Electronic Engineers. 2000, -. “IEEE

Standard for Mode-ling and Simulation (M&S) High Level Architec-

ture (HLA) - Federate Interface Specification”. IEEE Standard for

Modeling and Simulation (M&S). std 1516.2

[30] Bréholée, B., and P. Siron. 2003. “Design and implementation of a

HLA inter-federation bridge”, in Proceedings of the EUROSIW, Stock-

holm, Sweden, 16–19 June.

[31] Hamri M., N. Giambiasi and C. Frydman. 2006 “Min-Max DEVS

Modeling and Simulation”. Simulation Practice and Theory, 14: 909–

929

[32] V-LAB, http://interop-vlab.eu/the-scientific-activities, created Decem-

ber 2007, accessed Apr 2009.

Gregory Zacharewicz is Associate Professor in Bordeaux

1 University (IUT MP). His research interests include DEVS,

G-DEVS, Distributed Simulation, HLA, and Workflow. He

recently focussed on Enterprise Modelling and Interoperabil-

ity.
www.ims-bordeaux.fr/IMS/pages/pageAccueilPerso.php?email=gregory.zacharewicz

Maâmar El-Amine HAMRI is Associate Professor in Paul

Cézanne University of Marseille. He conducts his research at

LSIS laboratory. He is interested in DEVS, its extensions and

software developments for discrete event modeling and simu-

lation.

http://www.lsis.org/~maamar_el-amine_hamri.html

Claudia Frydman is full Professor in Paul Cézanne Uni-

versity of Marseille. She has been active for many years in

knowledge management and currently her re-search is focus-

ing especially on researches on knowledge based simulation.

http://www.lsis.org/~claudia_frydman.html

Norbert Giambiasi is full Professor in Paul Cézanne Uni-

versity of Marseille and Director of LSIS (Laboratory of In-

formation Sciences and Systems). He has been active for

many years in simulation and currently his research is focus-

ing especially on DEVS and relative developments.

http://www.lsis.org/~norbert_giambiasi.html

http://www.sce.carleton.ca/faculty/wainer/standard/tools.htm
http://jrat.sourceforge.net/
http://interop-vlab.eu/the-scientific-activities
http://www.ims-bordeaux.fr/IMS/pages/pageAccueilPerso.php?email=gregory.zacharewicz
http://www.lsis.org/~maamar_el-amine_hamri.html
http://www.lsis.org/~claudia_frydman.html
http://www.lsis.org/~norbert_giambiasi.html

