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Abstract— The objective of the paper is to specify a new flat-

tened G-DEVS simulation engine structure and the Workflow 

M&S environment embedding it. We express first the new flat-

tened simulation structure and give the corresponding transfor-

mation functions. We analyse performance tests conducted on 

this new simulation structure to measure its efficiency. Then, 

having selected the essential concepts in the elaboration of Work-

flow, we present a language of description to define Workflow 

processes. Finally, we define a distributed Workflow Reference 

Model that interfaces components of the Workflow with respect 

to the HLA standard. 

Today enterprises can take advantage of using this platform in 

the context of networking where interoperability, flexibility, and 

efficiency are challenging concepts 

 
Index Terms—DEVS, G-DEVS, Flattened Simulation Struc-

ture, Distributed Simulation, HLA, Workflow, Enterprise In-

teroperability. 

 

I. INTRODUCTION 

EVS [1] is a well-known formalism to describe the be-

haviour of complex systems. Its formal framework sepa-

rates modelling from a simulation process. DEVS is a power-

ful M&S formalism, with a clear semantics and modular ap-

proach. It is based on event and state concepts (the simulation 

is event-driven, which makes it faster). However, we based 

our works on the DEVS extension: Generalized-DEVS (G-

DEVS) [2]. In this formalism, event and state trajectories are 

polynomials (multi values) instead of piecewise linear con-

stants trajectories like DEVS, and thus represent complex 

continuous phenomena more precisely. On the simulation side, 

G-DEVS keeps the DEVS semantics specification. Neverthe-

less the hierarchical simulation structure in DEVS/G-DEVS 

results from the user-specified modelling structure (e.g. multi 

hierarchical imbrications’ reuse of previous models); we pos-

tulate that this feature is not required at simulation run time. 
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From that postulate, we propose a new simulation structure 

that is simplified (flattened) to increase execution speed. 

An applicative goal of such M&S structure can be found in 

representing industrial processes (Workflow). Indeed, this 

field is recent (early 1990s [3]) and not fully standardized. The 

Workflow Management Coalition (WfMC) works at standard-

izing this field; it provides a consistent high level framework 

to develop the business process. The Workflow specification 

involves different tasks, items, applications, and actors which 

are essential to its execution. This specification is quite intui-

tive (it can be automatically generated from a graphical speci-

fication) and the user does not need to develop programming 

code. The lack of Workflow M&S is, in addition to most ven-

dor tools not conforming to WfMC standard, the missing for-

mal simulation semantics associated with Workflow engines. 

Clearly, the Workflow M&S is a semi-formal language to 

model user requirements and then, most of the Workflow 

simulations engines are ad hoc. Consequently, the Workflow 

does not guarantee a formal and clear semantics. This fact may 

lead to incompatibility and errors that are difficult to detect 

(like coding errors, codes that do not conform to the Workflow 

specification, etc.). A solution can exist in more formal model-

ling. However Workflow users are not familiarized with for-

mal specifications (e.g. DEVS). Thus we have proposed in [4] 

to automatically transform high level graphical Workflow 

specifications to G-DEVS models feeding a new embedded 

efficient G-DEVS simulator. In addition, current complex 

industrial processes need to interoperate [5], being combined, 

and to cooperate with heterogeneous distributed components. 

HLA is a distributed simulation and execution standard origi-

nally defined for interoperability of US military simulation 

tools and now employed in the civilian domain; it can address 

actual enterprise requirements. From the preceding enounced 

challenges and to address their requirements, we introduce in 

this paper a HLA-compliant Workflow Modelling Environ-

ment. 

The paper is organized as follows. Section 2 gives an over-

view of G-DEVS, HLA, and Workflow. Section 3 details the 

specification of the new flattened G-DEVS simulation struc-

ture proposed, gives the transformation functions, and reports 

on performance results of this new simulator. Section 4 pre-

sents the integration of the G-DEVS flattened simulator in an 

HLA context. Section 5 introduces the application field of our 

environment and gives keys to transform a Workflow graph-
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ical specification into a G-DEVS executable model. In addi-

tion we describe the new HLA compliant Workflow Model-

ling platform. Finally, we conclude by introducing our future 

works and conclusion. 

II. RECALL 

A. G-DEVS 

G-DEVS emerged with the drawback that most classical 

discrete event abstraction models (e.g. DEVS) face: they ap-

proximate observed input–output signals as piecewise constant 

trajectories. G-DEVS defines abstractions of signals with 

piecewise polynomial trajectories [2]. Thus, G-DEVS defines 

the coefficient-event as a list of values representing the poly-

nomial coefficients that approximate the input–output trajecto-

ry. Therefore, a DEVS model, from the founding point of 

view, is a zero order G-DEVS model (the input–output trajec-

tories are piecewise constants). 

G-DEVS keeps the concept of the coupled model intro-

duced in DEVS [1]. Each basic model of a coupled model 

interacts with the others to produce a global behaviour. The 

basic models are either atomic or coupled models that are 

already stored in the library. The model coupling is done with 

a hierarchical approach (owing to the closure under coupling 

of G-DEVS, models can be defined in a hierarchical way). 

On the simulation side, G-DEVS models employ abstract 

simulator, proposed in [1], which defines the simulation se-

mantics of the formalism. The architecture of the simulator is 

derived from the hierarchical model structure. Processors 

involved in a hierarchical simulation are Simulators which 

insure the simulation of atomic models, Coordinators, which 

insure the routing of messages between coupled models, and 

the Root Coordinator, which ensures global simulation man-

agement. The simulation runs by sending Imessage to all Co-

ordinators and Simulators, and continues by exchanging spe-

cific messages (*message for internal event, Xmessage for 

external event and Ymessage for output event) between the 

different processors. The specificity of G-DEVS model simu-

lation is that the definition of an event is a list of coefficient 

values as opposed to a unique value in DEVS. 

B. DEVS flattened simulation structure 

To facilitate the introduction of the G-DEVS flattening, we 

recall DEVS flattening techniques. 

Kim et al. [6] presented a methodology of distributed simu-

lation for models specified in the DEVS formalism. The 

methodology transforms a hierarchical DEVS model into a 

non-hierarchical one. This transformation reduces the overload 

of information handled during a conventional and classical 

hierarchical simulation of DEVS models and facilitates the 

synchronization of distributed simulation, thus increasing the 

stability of the simulation engine. To demonstrate the efficien-

cy of the proposed methodology, the authors developed a 

simulation environment in Visual C++ and conducted a per-

formance evaluation on the simulator applied to a large-scale 

logistics system. The results of performance measurements 

show that the new proposed methodology works efficiently 

and offers better performances than the previous approaches in 

terms of execution time. 

Glinsky [7] developed DEVStone; this software was dedi-

cated to the automation of the evaluation of surrounding areas 

of simulations based on DEVS. DEVStone analyses the per-

formance of successive versions of the same simulation engine 

(e.g. further to an update or further to a problem being solved), 

and supplies common metrics to compare the environments of 

different M&S. The studies realized with DEVStone have 

notably allowed it to be concluded that generally the technique 

of “flattened” simulation (previously developed by the au-

thors) surpasses the hierarchical shape, reducing the overhead 

of information handled by up to 50%, and thus supplies im-

proved answer times and a higher percentage of successes in 

the execution. Therefore, the use of the non-hierarchical ap-

proach allows the simulation of bigger models with better 

execution results. These results are a consequence of the re-

duced number of messages exchanged in the flat mechanism 

of simulation. 

C. High Level Architecture (HLA) 

High Level Architecture (HLA) is a software architecture 

specification that defines how to create a global simulation 

composed of distributed simulations. In HLA, every partici-

pating simulation is called federate. A federate interacts with 

other federates within an HLA federation, which is in fact a 

group of distributed federates. The HLA set of definitions 

brought about the creation of Standard 1.3 in 1996, which then 

evolved into HLA 1516 in 2000 [8]. 

The interface specification of HLA describes how to com-

municate within the federation through the implementation of 

the HLA specification: the Run Time Infrastructure (RTI). 

Federates interact using the services proposed by the RTI. 

They can notably “Publish” to inform about an intention to 

send information to the federation and “Subscribe” to reflect 

some information created and updated by other federates. The 

information exchanged in HLA is represented in the form of 

classical object-oriented programming classes. The two kinds 

of objects exchanged in HLA are Object Classes and Interac-

tion Classes. The first kind is persistent during the simulation, 

the other is only transmitted between two federates. The data 

interchange objects format is XML specified but does not 

constrain the implementation. More details on RTI services 

and distributed data in HLA can be found in the HLA stand-

ardization book [8]. 

In addition, in order to respect the temporal causality rela-

tions in the simulation, HLA proposes to use classical con-

servative or optimistic synchronization mechanisms [9]. 

D. Workflow 

Workflow is the modelling and the computer assisted man-

agement of all the tasks to be carried out and the various ac-

tors invoked in the realization of a business process [3]. The 

purpose of WfMC is to develop standards in the field of 

Workflow in association with the main actors of the domain 

[10], [11]. It defines a Workflow Reference Model presenting 

the components of a Workflow. It contains the process defini-
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tion tool, the administrator tool, the Workflow client applica-

tion, the invoked applications, and the link between other 

Workflow environments. We focus on the process definition 

phase to make it computerized. 

A Workflow consists of procedures (also called tasks) and 

logical expressions (controllers) that describe the paths for 

items. A Workflow can be described by a graphical represen-

tation (specification) in which tasks are represented by rectan-

gles and controllers are represented by nodes and arrows that 

drive the flows over tasks [10]. 

Many environments dedicated to the specification and the 

simulation of Workflows exist. Most of them are based only 

on ad hoc execution engines, so they do not profit from the 

concepts offered by the simulation theory [1]. In fact, this 

theory separates the modelling phase from simulation, allow-

ing the reuse of validated specifications in different domains. 

The small part of environments settled on formal specifica-

tion is Petri nets based (e.g. Yasper [12], Yawl [13], and so 

on). For instance, Yasper is composed of an editor client to 

represent the process definition graphically and a Petri nets 

powered runtime engine. They argued the choice of using 

Petri nets by the formal semantics nature, (despite the graph-

ical representation), the state-based concept instead of event-

based, and the numerous existing analysis techniques. 

We believe that a simulation tool based on the DEVS/G-

DEVS formalism can facilitate the modelling thanks to modu-

larity and pragmatism; it then supplies simulation results with 

a better probability because of the explicit time management, 

and finally the model description and validation process is 

open source, so models can be exported, compared, and re-

used. Nevertheless, we agree that, from a computational point 

of view, no computational power is added by DEVS compared 

to other modelling formalisms [14]. In detail, Zeigler [1] dis-

cussed the advantages that can be provided by DEVS (or by 

extension, obviously, by G-DEVS) modelling. DEVS model-

ling can be more convenient for our purpose (i.e. workflow 

modelling) than Petri nets modelling: firstly it gives a more 

general framework for M&S of systems by handling explicitly 

the notion of time, in particular the autonomous timed evolu-

tion of the model (while an extension of the original definition 

is required for Petri nets), secondly it proposes modular hier-

archical modelling facilities by reusing previously developed 

models, and events exchanged between models can contain 

several pieces of information, and finally it offers a formal 

definition of the simulator (simulator implementation and 

results can be mastered more easily and better compared). 

III. NEW DEVS / G-DEVS SIMULATION STRUCTURE 

The previous works all agree in terms of the performance of 

the “flattened” DEVS structure with regard to the hierarchical 

structure (i.e. § B). As a consequence, in our G-DEVS simula-

tor we chose to use a simulation structure inspired by the hier-

archical structure of abstract simulation defined in Zeigler [1], 

but containing only two hierarchical levels. This structure is 

called “compact”, (e.g. Fig. 1.b). 

From the works introduced in Kim [6] and Glinsky [7] and 

with the aim of decreasing the exchange of messages between 

the intermediate coordinators and the simulators, we suggest 

reducing the treelike structure of intermediate coordinators 

between the root coordinator and simulators. To achieve this 

goal, we chose to keep only one coordinator component to 

which atomic simulator components will be connected in 

direct succession. The reduction of the simulation structure is 

illustrated by the suppression of components that are crossed 

out in Fig. 1 a). This new structure, after reduction, is present-

ed in Fig. 1 b). 

Two main solutions can be distinguished to flatten models 

for simulation. 

The first solution consists in preserving the coupled models 

with all their hierarchy as a storage format. Only at simulation 

setting time does the environment explore the treelike struc-

ture of the considered model to get back the atomic models on 

the leaves. This solution presents the advantage to be compe-

tently applied to a classical implementation of DEVS (or G-

DEVS) coupled model. The drawback is it requires an algo-

rithm of deep treelike data structure exploration, which can be 

slow in the case of a complex coupled model. Previous works 

by Kim [6] and Glinsky [7] have exploited this solution. 

The second solution consists in making a flattening trans-

formation on saving each model step or when launching it for 

simulation. In that case, the considered models contain at most 

two hierarchical levels because the included models resulting 

from the library have been preliminarily flattened during sav-

ing. This solution implements less complex exploration algo-

rithms; in return all included models must have been flattened 

previously. 

We select the second solution because the exploration algo-

rithm is less complex and so its execution on models and cou-

pling structures is faster. At the end, our solution consists in 

archiving both a hierarchical model (for editing and compos-

ing models) and a non-hierarchical model (for simulation). 

 
 

 
Fig. 1. Flattening G-DEVS simulation structure 

 

A. LSIS_DME model class diagram  

The class diagram specified for the G-DEVS M&S envi-

ronment developed by LSIS (called LSIS_DME [15]), pre-

sented in Fig. 3, is based on the original DEVS model classes 

structure proposed by Zeigler [1]. However, the tool integrates 

a specific data structure for graphical model editing and for 
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model flattening. These functions, sets, and relations will be 

used in Fig. 3 and 4 detailed in the next point. 

 

1) LSIS_DME atomic model classes structure 

The class model description of the LSIS_DME G-DEVS 

atomic model (cf. Fig. 3) possesses the classical functions 

defined in the DEVS formalism [1]. It possesses a specific 

attribute: phase (a state variable for graphic representation). 

Also, the attribute OtherStateVariablesSet is employed to 

define other state variables that describe the model global 

state. It also possesses an attribute eventOrder defining the 

degree of the polynomial event and states in G-DEVS models. 

Finally, it contains an attribute graphicalData to store the 

information relative to the graphical representation of the 

model (size of box, position, etc.). This last attribute only has 

a meaning for reusing graphical models and optionally to run a 

step by step animated state simulation. 

 

2) LSIS_DME coupled model classes structure 

Fig. 3 also presents the LSIS_DME_Coupled_Model class to 

implement a G-DEVS coupled model. This class contains a 

list of influent ports: influentPortListWithHierarchy, de-

fining the influent input ports of the models, each of these 

ports making reference to a list of influenced ports: Influ-

encedPortList. With regard to the original representation of 

Zeigler [1], this class contains in addition the specific attrib-

utes includedModelWithoutHierarchyList and nonHierar-

chicalInfluentPortList describing the non-hierarchical 

coupled model generated by the flattening algorithm from the 

coupled model created by the tool user. These data are stored 

in a list of objects. 

B. Model transformation function 

We focus now on attributes of the coupled model data struc-

ture of LSIS_DME (cf. Fig. 3) related to the flattening func-

tion. The attribute includedModelWithHierarchyList con-

tains (itself) a set of includedModel (atomic or coupled mod-

els). The attribute includedModelWithoutHierarchyList 

contains a list of non-hierarchical includedModel (atomic). 

When creating a model, this last list is initially empty. 

The pseudo code in Fig. 2 specifies the flatteningModels 

function of LSIS_DME. This function generates the set of 

atomic models to store in includedModelWithoutHierar-

chyList from the hierarchical models of includedModel-

WithHierarchyList. This function is called when saving a 

model in the library or during an initialization preceding the 

execution of a simulation. The flatteningModels function 

goes through the includedModelWithHierarchyList set; for 

every includedModel, a test is performed. If this sub-model is 

atomic, it is copied in includedModelWithoutHierarchyList. 

If this sub-model is coupled, all the models contained in this 

sub-model are found recursively (using a tree-like structure 

exploration) and copied in the includedModelWithoutHier-

archyList of the considered model. 

 
includedModelWithoutHierarchy flatteningModels (consideredCou-

pledModel) 

for (all includedModel in consideredCoupledMod-

el.includedModelWithHierarchyList) 

if (includedModel.hierarchicalLevel == 0) // no hierarchy 

includedModelWithoutHierarchyList add (includedModel) 

 else // the included model is hierarchical 

for (all includedModelWithoutHierarchy’ in includedMod-

el.includedModelWithoutHierarchyList) 

includedModelWithoutHierarchyList add (includ-

edModelWithoutHierarchy’) 
 

Fig. 2. LSIS_DME model’s flattening function 

 

To summarize, models contained in the non-hierarchical 

models list are not modified; they (or their sub-models) are 

just copied in the non-hierarchical models list. Indeed the 

includedModelWithHierarchyList is still used for modelling 

purposes, and remains modular and hierarchical. 

 
Fig. 3. LSIS_DME G-DEVS coupled model class diagram 
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C. Model coupling transformation function 

Flattening a model also requires the transformation of in-

cluded models coupling. Indeed, the coupling relations of a 

flattened model have to refer only to atomic models of the 

non-hierarchical model and to the unique coupled model level. 

The pseudo code in Fig. 4 considers the CouplingTrans-

formation function of the environment. This function gener-

ates a set of coupling relations between atomic models and the 

considered model from the hierarchical coupling relations. 

The coupling relations are defined as a set of influent ports, 

where each element is linked to one or more influenced ports. 

The coupling flattening algorithm is divided into two parts: the 

influent ports of the coupling relation are handled in the first 

part, and the influenced ports are handled in the second part. 

The first part of the algorithm identifies the influent ports of 

the non-hierarchical model that will be inserted into nonHier-

archicalInfluentPortList of the model. Every influ-

entPort of InfluentPortListWithHirearchyList is thus 

analysed. If it has the considered model or an atomic model as 

parent, this coupling relation is directly copied in an interme-

diate list IntermediaryInfluentPortList, which contains all 

the coupling relations with influent ports referring only to 

atomic or considered models. If the influentPort has an 

included model as parent, the contents of this included model 

must be analysed to determine the influent sub-models of the 

considered influentPort and create a newInfluentPort for 

every included port influencing it. The part concerning ports 

influenced by the influentPort is copied out in every newIn-

fluentPort. Every newInfluentPort is added to Intermedi-

aryInfluentPortList. 

The second part of the algorithm handles the list Interme-

diaryInfluentPortList. Every influenced port (influ-

encedPort’) from the list influencedPortList of every in-

fluentPort’ must be analysed. If the influencedPort’ struc-

ture has as parent the considered model or an atomic model, a 

simple copy is made in the influenced ports list by newInflu-

entPort’. In the other case, influencedPortList of newIn-

fluentPort’ is completed by every influenced port by in-

fluencedPort’ recursively found inside the sub-models of the 

parent of influencedPort’. Then, these structures are added 

to the definitive nonHierarchicalInfluentPortList. 

Finally, the internal coupling relations between included 

atomic models are copied in the final nonHierarchicalInflu-

entPortList list. 

 

 

 

 

nonHierarchicalInfluentPortList CouplingTransformation (consideredCoupledModel) 

for (all influentPort in consideredCoupledModel.InfluentPortListWithHierarchy) // upstream part of influence relation 

 model = Retrieve parent with (influentPort.parentName) 

 if (model != consideredCoupledModel && model != AtomicModel) // parent of port is not the coupled model 

 includedModel = model // it is an included model 

 for (all influentPortInIncludedModel in includedModel.influentPortList) 

 for (all influencedPortInIncludedModel in influentPortInIncludedModel.influencedPortList) 

 if (influencedPortInIncludedModel == influentPort) 

 Create newInfluentPort 

 newInfluentPort.name = influentPortInIncludedModel.name 

 newInfluentPort.parentName = influentPortInIncludedModel.parentName 

 newInfluentPort. influencedPortList = InfluentPort. influencedPortList 

 add newInfluentPort in IntermediaryInfluentPortList 

 else add influentPort in IntermediaryInfluentPortList // list for computation purpose only 
 

for (all influentPort’ in IntermediaryInfluentPortList) // downstream part of influence relation 

for (all influencedPort’ in influentPort’. influencedPortList) 

influencedModel = Retrieve parent with (influencedPort’.parentName) 

if (influencedModel is non hierarchical || influencedModel is consideredCoupledModel) // no change in coupling (no 

hierarchy) 

newInfluentPort’ = influentPort’ // simple copy 

else // influencedModel is hierarchical 

newInfluentPort’.name = influentPort’.name 

newInfluentPort’.parentName = influentPort’.parentName 

for (all influentPorIntIncludedModel in influencedModel. influentPortListWithoutHierarchy) 

if (influentPorIntIncludedModel.name == influencedPort’.name) 

for (all influencedPort in influentPorIntIncludedModel.influencedPortList) 

newInfluentPort’.influencedPortList add influencedPort 

add newInfluentPort’ in nonHierarchicalInfluentPortList 
 

for (all includedModel in consideredCoupledModel.includedModelWithHierarchyList) 

for (all InfluentPort’’ in includedModel.InfluentPortListWithHierarchy) 

for (all InfluencedPort’’ in InfluentPort.influencedPortList) 

if (InfluentPort’’ parent is AtomicModel && InfluencedPort’’ parent is AtomicModel) 

if (InfluentPort’’ is already in nonHierarchicalInfluentPortList) 

add InfluencedPort’’ in InfluentPort’’.influencedPortList 

else add InfluentPort’’ in nonHierarchicalInfluentPortList 
 

 

 

Fig. 4. LSIS_DME model’s coupling flattening function 
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D. Performances of “flattened” LSIS DME simulators 

In [4] and [15], we introduced an environment that we 

called LSIS_DME (listed on G. Wainer’s website “DEVS 

Tools” [16]) for creating G-DEVS graphical models and simu-

lating them. We developed two simulation engines to power it: 

a non-hierarchical simulator and a hierarchical simulator. We 

realized performance comparison tests between those two 

engines to elect the most efficient one for powering the final 

version of our M&S environment. In this part, we propose the 

comparison result of our study. 

The configuration of our test simulation platform was a 

Pentium III 2.4 GHz with 512 Mb de RAM under Windows 

XP. Both simulators (hierarchical and non-hierarchical) were 

implemented in Java. The measurements were realized with 

JRat tool [17], allowing us to measure performances in Java 

programs by including specific classes that perform quantita-

tive measurements on the execution of code. We precise that 

all the considerations enounced in this section and the next 

one are valid for using LSIS_DME software. 

 

1) Russian Dolls Imbrications 

We executed the comparison study on G-DEVS coupled 

models whose characteristics expressed a representative range 

of graphically conceivable models. They were realistic and 

able to have been proposed by a modeller (not automatically 

generated with no connection to realistic models). We focused 

in this paper on the study of two G-DEVS coupled models of 

logical gate circuits. 

 

Various tests were realized for the same models with different 

levels of hierarchy using “Russian Dolls” Imbrications (RDI) 

for each atomic model. These imbrications consist in recur-

sively inserting an atomic model into a coupled model with 

the same input and output ports on the outer model automati-

cally linked with inner model ports. 

The first coupled model A characterizes a simple model 

composed of logical gates (2 AND Gates, 1 OR gate and 1 

NAND gate) weakly coupled with the input/output and be-

tween them, the logical model is depicted in Fig. 5. In DEVS 

representation, we illustrate for e.g. a four hierarchical RDI 

(for each atomic model) of model A in Fig. 6. 

The coupled model B contains the same atomic models (2 

AND Gates, 1 OR gate and 1 NAND gate) but it possesses a 

more important number of couplings between the coupled sub-

models, the logical model is depicted Fig. 7. For e.g., we illus-

trate, in DEVS coupled representation, a four hierarchical RDI 

of model B in Fig. 8. We confound the degree of encapsula-

tion with the number of dolls). 

In detail, for each of these types of models we defined a 

more or less hierarchical RDI of the model and coupling. Note 

that the A and B flattened models (zero level RDI) contain the 

same four G-DEVS atomic models of logical components 

inter-coupled differently on a unique hierarchical level. The 

tests were run with one to twelve hierarchical RDI levels for 

each model. For each of these structures we executed a signif-

icant number of replications to compare them as objectively as 

possible. The simulations were set with 100 to 1000 input 

events planned.

 
Fig. 5. Logic gates model A 

 

 
 

Fig. 6. Four hierarchical levels RDI G-DEVS coupled model A 

 
Fig. 7. Logic gates model B 

 

 
 

Fig. 8. Four hierarchical levels RDI G-DEVS coupled model B 
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2) Fractal Imbrications 

In addition, to validate our approach, we have proposed a 

second way of coupling models, maybe more practical accord-

ing to modeller’s customs. In this approach, we have coupled 

recurrently models A or B in Fractals (like) Imbrications (FI) 

to built Coupled Models CMA and CMB. Therefore, the mod-

els (A or B) have been coupled by 2, then 4, and so on recur-

sively to 256 (the Fig. 9 depicts 64 models). Each coupling is 

adding a hierarchical level, so in the example depicted Fig. 9, 

the hierarchical level is 7 (2 levels for initial coupling by 2 and 

one more each 4, 8, 16, 32 and 64 models). Further to the 

picture, we have automatically built up to nine hierarchical FI 

levels for the tests with 256 Atomic models. We notice that 

coupling relations are not depicted in the Fig. 9 to remain 

generic to the representation of CM* (A or B) models and not 

to complicate the figure. 

 

 
Fig. 9. Seven hierarchical levels FI DEVS CM* Model 

 

3) Simulation Results 

Fig. 10a. and b. reports tests performed on LSIS_DME 

hosting JRat [17]. The execution time has been registered, 

according to the number of hierarchical RDI levels (from 1 

level to 12 levels) for A, B models (4 atomic models) and 

from1 level to 9 FI levels for CMA and CMB (256 atomic 

models). The simulation has been launch for 100, 500, 1000 

events planned. Several replications of same configuration 

have been performed for each case to determine an arithmetic 

mean. 

It shows a growth of the execution overhead between a non-

hierarchical structure (zero RDI or FI level) and when increas-

ing (up to twelve levels) the RDI or FI hierarchical structure of 

the considered model. In Fig. 10a, the flattening reduces con-

siderably the execution time in the flattened structure, in par-

ticular for numerous events planned. For e.g., for the model B 

with 1000 events planned, the simulation reduce 13 seconds of 

execution when reducing from twelve levels to one level. 

These results are consistent with previous studies recalled in § 

III.B. 

E. Limitation of “flattened” LSIS DME simulators 

Nevertheless, the graph representation of simulation run 

shows, in Fig. 10b, that for complex models (CMA and CMB 

with FI hierarchical levels) the tendency to decrease overhead 

when reducing the models imbrications is slowed down. The 

gain of the flattening is inflected with important number of 

event to treat (between 500 and 1000 and up). In that case, we 

should discuss about the necessity to flatten the structure, 

because we must compare the simulation duration cutback 

with the flattening duration, done offline before simulation. 

We believe that the lack of gain is due to large lists of events 

and lists of models handled. The time required for handling, 

searching and classifying information appears to limit (but not 

to reverse) the performance in the case of large number of 

models and events to treat. Literature can give solution to this 

kind of problem. Indeed, the commonly admitted lack in the 

flattened simulation structure is due to the management of lists 

of events and models that contain many elements. 

In more detail, the problem of large event-schedulers and 

model lists comes from the insertion, finding, removing and 

sorting of a new element. It can be improved thanks to cus-

tomizable heuristics depending on lifetime of model states. An 

example of such heuristic can be given by the heuristic that 

consisted in defining one scheduler for the close future (with 

adjustable deadline) and a second event scheduler for the far-

away future proposed by Giambiasi [18] and Miara [19]. In 

that case, the number of schedulers and their management is 

depending on simulated models parameters and on delays 

described in the models but not on the model structure de-

scribed by the modeler. In addition, it is clear that the number 

of messages exchanged in this kind of approach is not in-

creased and the number of events is limited in each scheduler. 

We should keep in mind that most relevant results for us 

remain in use of human made models with relatively low 

complexity of behavior and structure. As well, we consider 

human controlled number of handled events in opposition to 

auto-generated models and events. The capacity to use and 

reuse of G-DEVS models from shared user libraries to make 

them interoperable is also a core consideration. 

Finally, our goal is to balance simulation performance re-

quirements with the necessity of interoperability of M&S 

platform with other software components. We present in the 

next section, the use of the HLA standard to facilitate the 

interoperability of the simulation platform with distributed 

components. 
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Fig. 10. Comparing performances of flattened and hierarchical structures 

 
 

I. G-DEVS/HLA COMPONENTS MAPPING 

We proposed in [4] to extend LSIS_DME in order to split a 

G-DEVS model structure into distributed federate component 

models (e.g. Fig. 10). The global G-DEVS model structure is 

recomposed into an HLA federation (i.e. a distributed coupled 

model). The environment maps a G-DEVS Local Coordinator 

and Simulators into HLA federates and maps the Root Coor-

dinator into RTI. Thus, the “global distributed” model (i.e. the 

federation) is constituted of intercommunicating federates.The 

G-DEVS model federates intercommunicate by publishing and 

subscribing to HLA interactions that map the coupling rela-

tions of the global distributed coupled model. This information 

is routed between federates by the RTI with respect to time 

management and the Federation Object Model description [8]. 

In fact, in [20] and [21], we developed an algorithm for G-

DEVS federation execution with a conservative synchroniza-

tion mechanism using a positive Lookahead value gained from 

the HLA LITS value. 
 

 
 

Fig. 11. G-DEVS distributed simulation structure 

II. TRANSFORMING A WORKFLOW SPECIFICATION INTO A 

G-DEVS MODEL 

Workflows are most commonly graphically modelled. The 

drawback of this representation is the fact that it is not based 

on strong formal concepts. Thus, it does not allow properties 

of semantic verification and validation of the model. Further-

more, these models are often simulated by ad-hoc engines that 

could not be compared in terms of correctness and efficiency 

in relation to others. From this postulate, in [22], we proposed 

to define a unified language for the specification of Workflow 

to be applied as a common output of Workflow editors. This 

language supports algorithms to transform a Workflow model 

into a classical formal specification for simulation inde-

pendently of the Workflow editor. 

A. Workflow representation 

The WfMC proposed an XML representation of Workflow 

established as a standard in the Workflow community [11]. 

Instances of XML Workflow process model structures’ cor-

rectness can be certified by referring to the WfMC Workflow 

Document Type Definition (DTD). This XML representation 

is not fully convenient for the XML specification of produc-

tion Workflow. Thus, we proposed in [22] a simple language 

to represent the components involved in that kind of Work-

flow. 

An XML Workflow process model is composed of task 

components, which handle items with resources, and control-

ler components that route items between tasks. Items pass over 

a sequence of these components. These components are linked 

by directed arcs in order to define a graphical component 

based model specification. Examples of complex processes 

descriptions addressed by the definition of the Workflow 

blocks library have been presented in [22]. Fig. 11 presents a 

print screen of the environment with Workflow sample mod-

els. 
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Fig. 12. LSIS Workflow Model Editor (WME) 

 

The Workflow blocks description presented in Zacharewicz 

[22] challenges the descriptions by Russell in [13] and Van 

Der Aalst in [23] and [24]. This description defines classical 

task blocks and routing sequence blocks; for example Fig 12 

(the most relevant blocks have been detailed in [22]). In addi-

tion to the coexisting Workflow cited, this description pro-

posed blocks to explicitly manage the stock levels of goods at 

run time and blocks containing algorithms for resources allo-

cation in tasks. 

These concepts have been implemented into the Workflow 

modelling tool LSIS_WME (developed at LSIS). This tool 

allows us to graphically describe a Workflow (the interface 

shown in Fig. 11 presents the interface of this software) and to 

store the model in an XML format. This software has been 

presented in detail in [22], and we invite the reader to refer to 

this document for more details. 

Finally, emerging works on human or machine behaviour 

modelling by DEVS model blocks, as defined by Seck [25], 

have been tested in the environment. Therefore, the simulation 

can provide statistical studies on the Workflow reaction re-

garding human behaviour tuning; this last step is still under 

our scope of study. 

 

B. G-DEVS representation 

In [22], we proposed a method to transform the (semi-

formal) Workflow graphical models into (formal) G-DEVS 

coupled models by connecting G-DEVS atomic models repre-

senting the Workflow basic components. The choice of G-

DEVS as a formal modelling and simulation language is based 

on the following reasons. First of all, a G-DEVS model takes 

advantage of formal properties and can be simulated with the 

efficiently improved structure described in § III. With the aim 

of modelling and simulating Workflow, our requirements were 

based on the capacity to capture all characteristics of goods 

processing. Goods are changing state during their courses in 

the Workflow, and we were looking at capturing and follow-

ing up this information. In more detail, they need to be de-

scribed by many attributes including their product references, 

routes, duration, progress, and so on. This complex state is 

evolving during progress. Also, we have implemented stock 

level and resource allocations strategies tuneable algorithms 

because these solutions were not explicitly specified or even 

worst not taken into consideration in previous approaches. For 

all these purposes, G-DEVS has been chosen as particularly 

convenient because it is based on the concept of a multiple 

attributes event. In our environment the products are described 

by multiple attributes of a G-DEVS event. In addition the G-

DEVS coupled models allow us to easily compose a workflow 

by coupling: tasks, resources, routing sequences, and stocks 

components; the behaviour of each component is described in 

G-DEVS atomic model. In addition we have developed G-

DEVS blocks for queue management [15] and resource alloca-

tion that reveal by simulation the problem of bad allocation or 

wrong dimensioning of stocks. 

 

 
Fig. 13. G-DEVS AND-JOIN workflow block model 

 

In Fig. 12 we detail the G-DEVS behavioural model of the 

AND-JOIN controller pattern block that is instantiated from a 

Workflow model (e.g. the number of input ports is instantiated 

from the Workflow model). This model receives items assimi-

lated to G-DEVS events (representing data associated to phys-

ical and non-physical products on its multiple input ports). 

The items received are stocked in a list (a complex state varia-

ble Tab_Item is employed) until the controller component 

receives an item on each of its input ports (the counting state 

variable nba is incremented); then an item is generated on the 

single output port. The attribute values of this new item are a 

composition configurable by the workflow modeller of the 

input item data. 

The LSIS_WME tool and its simulation results have been 

efficiently employed to assist human-decision making to mod-

ify wafer process flows in STMicroelectronics. It makes it 

possible to prevent errors due to a wrong modification of the 

process flow. It also allows quantitative comparisons of sever-

al modifications of a process to be made to sort the most effi-

cient ones. 

On top of LSIS_WME and LSIS_DME, the HLA compli-

ance also opens our environment to other heterogeneous com-

ponent integrations, which may even be non-DEVS or non-G-
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DEVS, to join a global distributed information system plat-

form. Consequently this platform matches actual requirements 

for interoperability in enterprises [26]. 

Then we defined a general methodology [5] in converging 

Model Driven Architecture [27], Model Driven Interoperabil-

ity [28], and HLA FEDEP [29] to formalize the transformation 

of Enterprise conceptual requirements into Workflow process 

models and then into a G-DEVS coupled model. This method 

has been applied, notably, to facilitate the transformation of 

Workflow models of electronic components manufacturing 

processes operated by the company STMicroelectronics. 

III. HLA COMPLIANT G-DEVS WORKFLOW ENVIRONMENT  

A. Components interoperability 

We demonstrated in [20] and [21] that G-DEVS models can 

be run from several computers thanks to the capability of 

LSIS_DME to create HLA federates. This capability matches 

with the distribution requirements of the actual industrial pro-

cesses. Thus, we have implemented the flattened G-DEVS 

simulation structure presented in this paper and its HLA com-

pliance detailed in [22] as the run time engine of a new dis-

tributed Workflow environment. Then, the key is to generalize 

the HLA compliance to the whole Workflow environment by 

adding other federates to the federation in order to define a 

Distributed Workflow Reference Model in terms of WfMC. 

The resulting platform is described in Fig. 14. We note that the 

flattened hierarchy of G-DEVS models joining the federation 

are coherently synchronized in the context of HLA distributed 

execution, all other federates connected to the RTI also need 

to implement a synchronization algorithm. 

Therefore, we included the Workflow modelling tool 

LSIS_WME presented in Fig. 11 (developed at LSIS) into a 

federate (i.e. Fig. 13 Interface 5). The models defined in XML 

generated by this federate are integrated into HLA objects and 

shared with LSIS_DME (Fig. 13 interface 1). 

In detail, LSIS_WME publishes to HLA objects that repre-

sent the components of the Workflow model and to which 

LSIS_DME subscribes. These objects are stored in the Work-

flow federation FOM. The updates of information are routed 

by the RTI. If the Workflow model is modified by the user of 

LSIS_WME, LSIS_DME is informed of these changes. It can 

take them into account in its G-DEVS model and reruns the 

simulation with the new coupled model structure and new 

atomic models edited settings (DEVS expert users can also 

access directly to advanced DEVS editing facilities on 

LSIS_DME models fig 13. Interface 1). On the other hand, 

during the simulation, LSIS_DME updates, in an HLA object, 

the log of events results of simulation. LSIS_WME subscribes 

to these results to give the simulation animation and results 

updates to the users. For this reason, this software can be seen 

as the modelling, control, and administration tool of the Work-

flow environment. 

 

 
 

Fig. 14. Workflow G-DEVS/HLA M&S platform 
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ing an open standard interface (thank to the HLA compliance) 

to plug other software components. In more detail, the HLA 

capability to integrate programs without recoding facilitates 

the needs of today’s flexible enterprise that needs to interoper-

ate its Information Systems and to communicate in a distribut-

ed networked environment. 

Indeed, software and humans acting in the loop are required 

in the existing Workflow process of wafer manufacturing. At 

the end, we address the Workflow definitions [10], where 

client and invoked applications can be called during the run 

time in order to process computations not tackled by the mod-

els and their simulators. Details are given below. 

On one hand, we have proposed to integrate humans in the 

loop to make qualitative choices during simulation. For that 

purpose, we implemented Web interfaces called during the 

simulation by the Workflow engine in order to specify, for 

instance, some routing of items in the process. Data exchanged 

during the call are HLA objects (i.e. Fig. 13 interface 2). 

On the other hand, some complex mathematical computa-

tions of data handling (e.g. access to a specific databases, 

specific software use, etc.) are not taken into account in transi-

tion/output functions of the G-DEVS model described with 

LSIS_DME. In that case the simulation is interrupted and data 

are transferred to specific software by publishing to an object 

(i.e. Fig. 13 interface 3). This software computes and sends 

back data to the process definition tool by publishing to HLA 

objects/interaction. 

Concretely, we have implemented and tested the platform 

described in Fig. 13, in the context of microelectronics manu-

facturing. It actually contains a LSIS_WME model editor and 

control viewer of the execution, one LSIS_DME M&S tool to 

simulate the process, several MS Excel databases, Java based 

user interfaces for microelectronic quality control, and Java 

software called to automatically store the time duration and 

stock levels. The distributed simulation results obtained on the 

platform has been confronted to expert knowledge for valida-

tion. 

Finally, we also open to interfacing, in term of data interop-

erability, the environment with other Workflow environments 

using the concept of bridges federates [30] (i.e. Fig. 13 inter-

face 4). The structure of the information exchange is HLA 

specified and information can be easily shared with respect to 

the confidentiality definition of publishing and subscribing 

rights for data. In this last interfacing, each time we create a 

new connection with another workflow system, we should 

determine the data which should be shared and the ones that 

must stay confidential between Workflows. Concretely the 

two workflows will be two HLA federates in a new federation 

and the users will need to define the HLA objects to be ex-

changed between federates. 

A. Environment Future Works 

The complete development of the proposed environment 

still requires the addition of other clients and invoked applica-

tions to the Workflow environment by integrating them in 

HLA federates. We plan to integrate other heterogeneous tools 

developed in the specific context of STMicroelectronics by 

adding code to them to make them HLA compliant. In addi-

tion, we have initiated works on interoperability of infor-

mation systems of enterprises. In these works, we are propos-

ing ontological mapping of the business knowledge. HLA is 

helping to manage the exchange of information between het-

erogeneous and distributed enterprise systems interconnected 

as a System of Systems. These works are detailed in [5]. 

Furthermore, domain experts often define Workflow task 

durations in terms of time windows rather than mean values. 

Thus, it would be possible to model Workflow with Min-Max 

DEVS to get more realistic models [31]. 

IV. CONCLUSION 

This paper presented a flattened G-DEVS model simulation 

structure. It detailed the flattening transformation algorithm 

involved in LSIS_DME. We have performed comprehensive 

tests on the LSIS_DME flattened simulator. The results reveal 

that the flattening of the simulation structure shortened the 

simulation duration. However, the efficiency of the flattening 

remains depending on the number of events handled and the 

complexity of the model. As perspectives, we will propose to 

divide the event list into several lists, to distinguish events in 

near occurrence time and far future. Such heuristics, that has 

shown their efficiency in scheduling problem solving, should 

reduce considerably the size of the event lists and improve 

sorting each time an occurred event should be handled in this 

list. Also, to prove the efficiency of the flatten simulator with 

regard to the hierarchical one, we could compute the algorith-

mic complexity of each simulator. Knowing that to conduct 

simulation on computer, we should formally estimate the heap 

memory and the execution time of each technique (flattened, 

hierarchical). This will be possible by giving a detailed study 

on the computational complexity of the used algorithms and 

data structure of the simulation (sort events, number of coor-

dinators, number of event lists that depends on the number of 

coordinator, etc.). 

We proposed to employ the new flattened structure for sim-

ulating complex Workflows models in G-DEVS formalism. 

Consequently, GDEVS Workflows models can be verified 

faster by simulation. Furthermore, we introduced a new HLA 

compliant Workflow environment using the flattened G-

DEVS structure that speeds the local execution and so orches-

trates faster the distributed components. We verified, on this 

occasion, that the use of the HLA specification facilitates 

connecting the G-DEVS components defined in the paper with 

other heterogeneous HLA compliant components in the Work-

flow environment. 

Finally, the application field of researches on Workflow 

and, more generally, process modelling has been a fast grow-

ing research domain during recent years, and it is still a prom-

ising domain in particular for service orchestration in the en-

terprise. The European International Virtual Laboratory for 

Enterprise Interoperability [32] has recently defined the in-

teroperability as a science for enterprise modelling; it confirms 

the actual high interest of enterprises for distributed and in-

teroperable information systems solutions (systems of sys-
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tems, enterprise 2.0). We believe the crossing of research 

domains: Workflow M&S and HLA will facilitate supporting 

the next generation of information systems for interoperating 

networked enterprises. 
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