1,277 research outputs found

    Multi-function power electronic interface for hybrid mini-grid systems

    Get PDF
    In the past five years, global interest regarding the development of renewable energy technologies has significantly increased. The conventional electric power generation methods sourced from fossil fuels is now problematic, from both the supply and emission points of view. Fossil fuels are non-renewable limited resources that have taken millions of years to form; eventually they will be exhausted and the current cost of automotive fuel is evidence of them becoming diminished. The carbon dioxide emissions created through the energy conversion process are causing an increase in the overall atmospheric concentrations, which through global warming may have serious consequences for humanity.Natural sources of energy production can be derived from the Sun through the use of solar and wind generation methods. Converting these sources to electricity requires the technology of power electronics, the central area of research for this dissertation. Solar energy can most easily be harnessed through the photo-electric effect which creates DC electricity. However, the majority of electric loads and transmission require AC electricity. The inverter is the electronic device required for this power conversion. Wind turbines usually create variable voltage and frequency AC that is rectified to DC and then converted to grid type AC through an inverter.Voltage source inverters, their topologies and control are investigated within this dissertation. Voltage control methods are adopted for both stand-alone and grid connected techniques where control of active and reactive power is required. Current control techniques in the form of PI and hysteresis are applied to allow novel interfaces between generation sources to be achieved. Accurate control of the power electronics allows an enhancement in the power production from the renewable energy source. The power electronic device of the DC-DC converter, either buck or boost is controlled to allow the renewable resource to operate at its optimum power point. The control aspects and algorithms of these converters are central to this research. The solar algorithms of perturb and observe, and incremental conductance are developed with the latter being more favourable to changing levels of irradiation. The author draws a parallel between rapidly changing solar conditions with normally changing wind states. This analogy with an understanding of the mechanics of PMSG allows a novel wind MPPT algorithm to be developed which is simulated in PSIM. Methods to analyse the usefulness of the algorithm are developed and general conclusions are drawn.Another aim central to the research is the efficient combination of renewable energy sources into a single reliable power system. This forms the multi-function aspect of the research. The interconnection of the sources on the AC or DC sides is investigated for both stand-alone and grid connected topologies. A requirement of the stand-alone system is to provide power when no renewable resources are available causing some form of energy storage to be utilised. Conventional batteries are used, causing the VC-VSI to become bi-directional allowing charging. This is simulated in PSIM and demonstrated as part of the Denmark and Eco Beach projects. Many differing topologies of stand alone, grid connected and edge of grid systems are developed, simulated and some are demonstrated.While investigating the currently used topologies the author invents the novel complimentary hybrid system concept. This idea allows a single inverter to be used to feed energy from either the wind or solar resource. With careful engineering of the PV array and wind turbine characteristics only a small loss of energy is caused, deemed the crossover loss. This original concept is mathematically modelled, simulated and demonstrated with results presented from the Denmark project. The strength of this idea is from the quite complimentary nature of wind and solar resources, for only a small proportion of the year are high solar and strong wind conditions occurring simultaneously.Compared to a solar resource, the wind resource is much more complicated to model. An analysis of readily available wind source data is presented with a statistical analysis of the scaling methods; a novel box and whiskers plot is used to convey this information. New software is presented to allow a more accurate and digital model of a power curve to be recreated, allowing a more precise annual energy generation calculation. For various wind turbines a capacity factor analysis is presented with its disadvantages explained. To overcome these issues the concepts of economic efficiency and conversion efficiency are explained. These prevent some of the typical methods to enhance the standard capacity factor expression. The combination of these three methods allows selection of the most suitable wind turbine for a site.The concept of a mini-grid is an isolated power generation and distribution system, which can have its renewable energy sources, centralised or decentralised. The methods used to coalesce conventional generation with renewable energy technology forms another key piece of this research. A design methodology for the development of a hybrid power system is created with examples used from projects attributed to the author. The harmonising of the renewable energy sources with the conventional generation while providing a stable and robust grid is explained in detail with respect to the generator loading and control. The careful control of the renewable resource output is shown to allow a greater overall penetration of renewable energy into the network while continuing network stability. The concept of frequency shift control is presented, simulated and demonstrated with reference to the Eco Beach project. This project epitomises much of the research that has been presented in this dissertation. It combines centralised and decentralised inverters, with battery storage and the control of diesel generators. An overall controller dictates the optimum times to charge or draw from the battery based upon the local environmental and time of day variables. Finally, the monitoring aspects of this project are representative of a future smart grid where loads may be shed on demand through under frequency or direct control

    Power Quality Enhancement in Hybrid Photovoltaic-Battery System based on three–Level Inverter associated with DC bus Voltage Control

    Get PDF
    This modest paper presents a study on the energy quality produced by a hybrid system consisting of a Photovoltaic (PV) power source connected to a battery. A three-level inverter was used in the system studied for the purpose of improving the quality of energy injected into the grid and decreasing the Total Harmonic Distortion (THD). A Maximum Power Point Tracking (MPPT) algorithm based on a Fuzzy Logic Controller (FLC) is used for the purpose of ensuring optimal production of photovoltaic energy. In addition, another FLC controller is used to ensure DC bus stabilization. The considered system was implemented in the Matlab /SimPowerSystems environment. The results show the effectiveness of the proposed inverter at three levels in improving the quality of energy injected from the system into the grid.Peer reviewedFinal Published versio

    Mitigation of power quality issues due to high penetration of renewable energy sources in electric grid systems using three-phase APF/STATCOM technologies: a review.

    Get PDF
    This study summarizes an analytical review on the comparison of three-phase static compensator (STATCOM) and active power filter (APF) inverter topologies and their control schemes using industrial standards and advanced high-power configurations. Transformerless and reduced switch count topologies are the leading technologies in power electronics that aim to reduce system cost and offer the additional benefits of small volumetric size, lightweight and compact structure, and high reliability. A detailed comparison of the topologies, control strategies and implementation structures of grid-connected high-power converters is presented. However, reducing the number of power semiconductor devices, sensors, and control circuits requires complex control strategies. This study focuses on different topological devices, namely, passive filters, shunt and hybrid filters, and STATCOMs, which are typically used for power quality improvement. Additionally, appropriate control schemes, such as sinusoidal pulse width modulation (SPWM) and space vector PWM techniques, are selected. According to recent developments in shunt APF/STATCOM inverters, simulation and experimental results prove the effectiveness of APF/STATCOM systems for harmonic mitigation based on the defined limit in IEEE-519

    Modeling and control of stand-alone AC microgrids: centralized and distributed storage, energy management and distributed photovoltaic and wind generation

    Get PDF
    El aumento de la penetración de energías renovables en la red eléctrica es necesario para el desarrollo de un sistema sostenible. Para hacerlo posible técnicamente, se ha planteado el uso de microrredes, definidas como una combinación de cargas, generadores distribuidos y elementos de almacenamiento controlados gracias a una estrategia global de gestión energética. Además, las microrredes aumentan la fiabilidad del sistema puesto que pueden funcionar en modo aislado en caso de fallo de red. Esta tesis se centra en el desarrollo de microrredes AC en funcionamiento aislado. El objetivo principal es el diseño y la implementación de estrategias de gestión energéticas sin utilizar cables de comunicación entre los distintos elementos, lo que permite reducir los costes del sistema y aumentar su fiabilidad. Para ello, se abordan los siguientes aspectos: • Gestión energética de una microrred AC con generador diesel, almacenamiento centralizado y generación renovable distribuida • Diseño de técnicas de control “droop” para repartir la corriente entre inversores conectados en paralelo • Gestión energética de una microrred AC con almacenamiento distribuido y generación renovable distribuida • Control de la etapa DC/DC de inversores fotovoltaicos con pequeño condensador de entrada en el seno de una microrred • Control de extracción de máxima potencia sin sensores mecánicos para sistemas minieólicos en el seno de una microrred.The introduction of distributed renewable generators into the electrical grid is required for a sustainable system. In order to increase the penetration of renewable energies, microgrids are usually proposed as one of the most promising technologies. A microgrid is a combination of loads, distributed generators and storage elements which behaves as a single controllable unit for the grid operator. Furthermore, microgrids make it possible to improve the system reliability because they are capable of standalone operation in case of grid failure. This thesis is focused on the development of AC microgrids under stand-alone operation. Its main objective is to design and implement overall control strategies which do not require the use of communication cables, thereby reducing costs and improving reliability. For this purpose, the following aspects are tackled: • Energy management of an AC microgrid with diesel generator, centralized storage and distributed renewable generation • Design of droop methods so that the current is shared among parallel-connected inverters • Energy management of an AC microgrid with distributed storage and distributed renewable generation • Control of the DC/DC stage in photovoltaic inverters with small input capacitors within a microgrid • Sensorless MPPT control for small wind turbines within a microgrid.Programa Oficial de Doctorado en Energías Renovables (RD 1393/2007)Energia Berriztagarrietako Doktoretza Programa Ofiziala (ED 1393/2007

    Advanced Solutions for Renewable Energy Integration into the Grid Addressing Intermittencies, Harmonics and Inertial Response

    Get PDF
    Numerous countries are trying to reach almost 100\% renewable penetration. Variable renewable energy (VRE), for instance wind and PV, will be the main provider of the future grid. The efforts to decrease the greenhouse gasses are promising on the current remarkable growth of grid connected photovoltaic (PV) capacity. This thesis provides an overview of the presented techniques, standards and grid interface of the PV systems in distribution and transmission level. This thesis reviews the most-adopted grid codes which required by system operators on large-scale grid connected Photovoltaic systems. The adopted topologies of the converters, the control methodologies for active - reactive power, maximum power point tracking (MPPT), as well as their arrangement in solar farms are studied. The unique L(LCL)2 filter is designed, developed and introduced in this thesis. This study will help researchers and industry users to establish their research based on connection requirements and compare between different existing technologies. Another, major aspect of the work is the development of Virtual Inertia Emulator (VIE) in the combination of hybrid energy storage system addressing major challenges with VRE implementations. Operation of a photovoltaic (PV) generating system under intermittent solar radiation is a challenging task. Furthermore, with high-penetration levels of photovoltaic energy sources being integrated into the current electric power grid, the performance of the conventional synchronous generators is being changed and grid inertial response is deteriorating. From an engineering standpoint, additional technical measures by the grid operators will be done to confirm the increasingly strict supply criteria in the new inverter dominated grid conditions. This dissertation proposes a combined virtual inertia emulator (VIE) and a hybrid battery-supercapacitor-based energy storage system . VIE provides a method which is based on power devices (like inverters), which makes a compatible weak grid for integration of renewable generators of electricity. This method makes the power inverters behave more similar to synchronous machines. Consequently, the synchronous machine properties, which have described the attributes of the grid up to now, will remain active, although after integration of renewable energies. Examples of some of these properties are grid and generator interactions in the function of a remote power dispatch, transients reactions, and the electrical outcomes of a rotating bulk mass. The hybrid energy storage system (HESS) is implemented to smooth the short-term power fluctuations and main reserve that allows renewable electricity generators such as PV to be considered very closely like regular rotating power generators. The objective of utilizing the HESS is to add/subtract power to/from the PV output in order to smooth out the high frequency fluctuations of the PV power, which may occur due to shadows of passing cloud on the PV panels. A control system designed and challenged by providing a solution to reduce short-term PV output variability, stabilizing the DC link voltage and avoiding short term shocks to the battery in terms of capacity and ramp rate capability. Not only could the suggested system overcome the slow response of battery system (including dynamics of battery, controller, and converter operation) by redirecting the power surges to the supercapacitor system, but also enhance the inertial response by emulating the kinetic inertia of synchronous generator

    Power Quality Enhancement in Electricity Grids with Wind Energy Using Multicell Converters and Energy Storage

    Get PDF
    In recent years, the wind power industry is experiencing a rapid growth and more wind farms with larger size wind turbines are being connected to the power system. While this contributes to the overall security of electricity supply, large-scale deployment of wind energy into the grid also presents many technical challenges. Most of these challenges are one way or another, related to the variability and intermittent nature of wind and affect the power quality of the distribution grid. Power quality relates to factors that cause variations in the voltage level and frequency as well as distortion in the voltage and current waveforms due to wind variability which produces both harmonics and inter-harmonics. The main motivation behind work is to propose a new topology of the static AC/DC/AC multicell converter to improve the power quality in grid-connected wind energy conversion systems. Serial switching cells have the ability to achieve a high power with lower-size components and improve the voltage waveforms at the input and output of the converter by increasing the number of cells. Furthermore, a battery energy storage system is included and a power management strategy is designed to ensure the continuity of power supply and consequently the autonomy of the proposed system. The simulation results are presented for a 149.2 kW wind turbine induction generator system and the results obtained demonstrate the reduced harmonics, improved transient response, and reference tracking of the voltage output of the wind energy conversion system.Peer reviewedFinal Accepted Versio

    Multilevel Converter Topologies for Utility Scale Solar Photovoltaic Power Systems

    Get PDF
    Renewable energy technologies have been growing in their installed capacity rapidly over the past few years. This growth in solar, wind and other technologies is fueled by state incentives, renewable energy mandates, increased fossil fuel prices and environmental consciousness. Utility scale systems form a substantial portion of electricity capacity addition in modern times. This sets the stage for research activity to explore new efficient, compact and alternative power electronic topologies to integrate sources like photovoltaics (PV) to the utility grid, some of which are multilevel topologies. Multilevel topologies allow for use of lower voltage semiconductor devices than two-level converters. They also produce lower distortion output voltage waveforms. This dissertation proposes a cascaded multilevel converter with medium frequency AC link which reduces the size of DC bus capacitor and also eliminates power imbalance between the three phases. A control strategy which modulates the output voltage magnitude and phase angle of the inverter cells is proposed. This improves differential power processing amongst cells while keeping the voltage and current ratings of the devices low. A battery energy storage system for the multilevel PV converter has also been proposed. Renewable technologies such as PV and wind suffer from varying degrees of intermittency, depending on the geographical location. With increased installation of these sources, management of intermittency is critical to the stability of the grid. The proposed battery system is rated at 10% of the plant it is designed to support. Energy is stored and extracted by means of a bidirectional DC-DC converter connected to the PV DC bus. Different battery chemistries available for this application are also discussed. In this dissertation, the analyses of common mode voltages and currents in various PV topologies are detailed. The grid integration of PV power employs a combination of pulse width modulation (PWM) DC-DC converters and inverters. Due to their fast switching nature a common mode voltage is generated with respect to the ground, inducing a circulating current through the ground capacitance. Common mode voltages lead to increased voltage stress, electromagnetic interference and malfunctioning of ground fault protection systems. Common mode voltages and currents present in high and low power PV systems are analyzed and mitigation strategies such as common mode filter and transformer shielding are proposed to minimize them

    STI-2062-1

    Full text link
    This project investigated solar variability, power conversion and electric power grid response aspects of high penetration solar PV. These are the primary determining factors for acceptable penetration levels. Therefore, the study not only focused on the power system interactions, but also on the design of advanced power conditioners to explore more efficient design options and to look into advanced control impacts to the higher penetration PV deployment systems. Through extensive laboratory and field testing, the team gathered the essential information to better understand grid characteristics, PV systems configuration and power conditioning systems

    Feeder flow control and operation in large scale photovoltaic power plants and microgrids : Part I Feeder ow control in large scale photovoltaic power plants : Part II Multi-microgrids and optimal feeder ow operation of microgrids

    Get PDF
    This thesis deals with the integration of photovoltaic energy into the electrical grid. For this purpose, two main approaches can be identified: the interconnection of large scale photovoltaic power plants with the transmission network, and the interconnection of small and medium-scale photovoltaic installations with the distribution network. The first part of the thesis is focussed on the interconnection of large scale photovoltaic power plants. Large scale photovoltaic power plants are required to provide different ancillary services to the electrical networks. For this purpose, it is necessary to control the active and reactive power injected by photovoltaic power plants at the point of interconnection, i.e. to control the power flow through the main feeder. In this direction, it is developed a central controller capable of coordinating the different devices of the photovoltaic power plants as photovoltaic inverters, FACTS, capacitor banks and storage. The second part is focused on the distributed generation, consisting on small and medium-scale generation facilities connected to the distribution system. In this context, distribution grids, traditionally operated as passive systems, become active operated systems. In this part, the microgrid concept is analysed, which is one of the most promising solutions to manage, in a coordinated manner, the different distributed energy resources. Taking into account the possible transformation of the current distribution system to a multi-microgrid based system, the different architectures enabling microgrids interconnections are analysed. For the multi-microgrid operation, it could result interesting that a portion of their networks operate so that the power exchange is maintained constant, i.e. controlling the power flow at the main feeder. In this thesis, an optimal power flow problem formulation for managing the distributed generation of these feeder flow controlled microgrids is proposed
    • …
    corecore