416 research outputs found

    An integrative computational model for intestinal tissue renewal

    Get PDF
    Objectives\ud \ud The luminal surface of the gut is lined with a monolayer of epithelial cells that acts as a nutrient absorptive engine and protective barrier. To maintain its integrity and functionality, the epithelium is renewed every few days. Theoretical models are powerful tools that can be used to test hypotheses concerning the regulation of this renewal process, to investigate how its dysfunction can lead to loss of homeostasis and neoplasia, and to identify potential therapeutic interventions. Here we propose a new multiscale model for crypt dynamics that links phenomena occurring at the subcellular, cellular and tissue levels of organisation.\ud \ud Methods\ud \ud At the subcellular level, deterministic models characterise molecular networks, such as cell-cycle control and Wnt signalling. The output of these models determines the behaviour of each epithelial cell in response to intra-, inter- and extracellular cues. The modular nature of the model enables us to easily modify individual assumptions and analyse their effects on the system as a whole.\ud \ud Results\ud \ud We perform virtual microdissection and labelling-index experiments, evaluate the impact of various model extensions, obtain new insight into clonal expansion in the crypt, and compare our predictions with recent mitochondrial DNA mutation data. \ud \ud Conclusions\ud \ud We demonstrate that relaxing the assumption that stem-cell positions are fixed enables clonal expansion and niche succession to occur. We also predict that the presence of extracellular factors near the base of the crypt alone suffices to explain the observed spatial variation in nuclear beta-catenin levels along the crypt axis

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1

    Allocation of Virtual Machines in Cloud Data Centers - A Survey of Problem Models and Optimization Algorithms

    Get PDF
    Data centers in public, private, and hybrid cloud settings make it possible to provision virtual machines (VMs) with unprecedented flexibility. However, purchasing, operating, and maintaining the underlying physical resources incurs significant monetary costs and also environmental impact. Therefore, cloud providers must optimize the usage of physical resources by a careful allocation of VMs to hosts, continuously balancing between the conflicting requirements on performance and operational costs. In recent years, several algorithms have been proposed for this important optimization problem. Unfortunately, the proposed approaches are hardly comparable because of subtle differences in the used problem models. This paper surveys the used problem formulations and optimization algorithms, highlighting their strengths and limitations, also pointing out the areas that need further research in the future

    Mathematical optimization for the visualization of complex datasets

    Get PDF
    This PhD dissertation focuses on developing new Mathematical Optimization models and solution approaches which help to gain insight into complex data structures arising in Information Visualization. The approaches developed in this thesis merge concepts from Multivariate Data Analysis and Mathematical Optimization, bridging theoretical mathematics with real life problems. The usefulness of Information Visualization lies with its power to improve interpretability and decision making from the unknown phenomena described by raw data, as fully discussed in Chapter 1. In particular, datasets involving frequency distributions and proximity relations, which even might vary over the time, are the ones studied in this thesis. Frameworks to visualize such enclosed information, which make use of Mixed Integer (Non)linear Programming and Difference of Convex tools, are formally proposed. Algorithmic approaches such as Large Neighborhood Search or Difference of Convex Algorithm enable us to develop matheuristics to handle such models. More specifically, Chapter 2 addresses the problem of visualizing a frequency distribution and an adjacency relation attached to a set of individuals. This information is represented using a rectangular map, i.e., a subdivision of a rectangle into rectangular portions so that their areas reflect the frequencies, and the adjacencies between portions represent the adjacencies between the individuals. The visualization problem is formulated as a Mixed Integer Linear Programming model, and a matheuristic that has this model at its heart is proposed. Chapter 3 generalizes the model presented in the previous chapter by developing a visualization framework which handles simultaneously the representation of a frequency distribution and a dissimilarity relation. This framework consists of a partition of a given rectangle into piecewise rectangular portions so that the areas of the regions represent the frequencies and the distances between them represent the dissimilarities. This visualization problem is formally stated as a Mixed Integer Nonlinear Programming model, which is solved by means of a matheuristic based on Large Neighborhood Search. Contrary to previous chapters in which a partition of the visualization region is sought, Chapter 4 addresses the problem of visualizing a set of individuals, which has attached a dissimilarity measure and a frequency distribution, without necessarily cov-ering the visualization region. In this visualization problem individuals are depicted as convex bodies whose areas are proportional to the given frequencies. The aim is to determine the location of the convex bodies in the visualization region. In order to solve this problem, which generalizes the standard Multidimensional Scaling, Difference of Convex tools are used. In Chapter 5, the model stated in the previous chapter is extended to the dynamic case, namely considering that frequencies and dissimilarities are observed along a set of time periods. The solution approach combines Difference of Convex techniques with Nonconvex Quadratic Binary Optimization. All the approaches presented are tested in real datasets. Finally, Chapter 6 closes this thesis with general conclusions and future lines of research.Esta tesis se centra en desarrollar nuevos modelos y algoritmos basados en la Optimización Matemática que ayuden a comprender estructuras de datos complejas frecuentes en el área de Visualización de la Información. Las metodologías propuestas fusionan conceptos de Análisis de Datos Multivariantes y de Optimización Matemática, aunando las matemáticas teóricas con problemas reales. Como se analiza en el Capítulo 1, una adecuada visualización de los datos ayuda a mejorar la interpretabilidad de los fenómenos desconocidos que describen, así como la toma de decisiones. Concretamente, esta tesis se centra en visualizar datos que involucran distribuciones de frecuencias y relaciones de proximidad, pudiendo incluso ambas variar a lo largo del tiempo. Se proponen diferentes herramientas para visualizar dicha información, basadas tanto en la Optimización (No) Lineal Entera Mixta como en la optimización de funciones Diferencia de Convexas. Además, metodologías como la Búsqueda por Entornos Grandes y el Algoritmo DCA permiten el desarrollo de mateheurísticas para resolver dichos modelos. Concretamente, el Capítulo 2 trata el problema de visualizar simultáneamente una distribución de frequencias y una relación de adyacencias en un conjunto de individuos. Esta información se representa a través de un mapa rectangular, es decir, una subdivisión de un rectángulo en porciones rectangulares, de manera que las áreas de estas porciones representen las frecuencias y las adyacencias entre las porciones representen las adyacencias entre los individuos. Este problema de visualización se formula con la ayuda de la Optimización Lineal Entera Mixta. Además, se propone una mateheurística basada en este modelo como método de resolución. En el Capítulo 3 se generaliza el modelo presentado en el capítulo anterior, construyendo una herramienta que permite visualizar simultáneamente una distribución de frecuencias y una relación de disimilaridades. Dicha visualización se realiza mediante la partición de un rectángulo en porciones rectangulares a trozos de manera que el área de las porciones refleje la distribución de frecuencias y las distancias entre las mismas las disimilaridades. Se plantea un modelo No Lineal Entero Mixto para este problema de visualización, que es resuelto a través de una mateheurística basada en la Búsqueda por Entornos Grandes. En contraposición a los capítulos anteriores, en los que se busca una partición de la región de visualización, el Capítulo 4 trata el problema de representar una distribución de frecuencias y una relación de disimilaridad sobre un conjunto de individuos, sin forzar a que haya que recubrir dicha región de visualización. En este modelo de visualización los individuos son representados como cuerpos convexos cuyas áreas son proporcionales a las frecuencias dadas. El objetivo es determinar la localización de dichos cuerpos convexos dentro de la región de visualización. Para resolver este problema, que generaliza el tradicional Escalado Multidimensional, se utilizan técnicas de optimización basadas en funciones Diferencia de Convexas. En el Capítulo 5, se extiende el modelo desarrollado en el capítulo anterior para el caso en el que los datos son dinámicos, es decir, las frecuencias y disimilaridades se observan a lo largo de varios instantes de tiempo. Se emplean técnicas de optimización de funciones Diferencias de Convexas así como Optimización Cuadrática Binaria No Convexa para la resolución del modelo. Todas las metodologías propuestas han sido testadas en datos reales. Finalmente, el Capítulo 6 contiene las conclusiones a esta tesis, así como futuras líneas de investigación.Premio Extraordinario de Doctorado U

    Monitoring and Control Framework for Advanced Power Plant Systems Using Artificial Intelligence Techniques

    Get PDF
    This dissertation presents the design, development, and simulation testing of a monitoring and control framework for dynamic systems using artificial intelligence techniques. A comprehensive monitoring and control system capable of detecting, identifying, evaluating, and accommodating various subsystem failures and upset conditions is presented. The system is developed by synergistically merging concepts inspired from the biological immune system with evolutionary optimization algorithms and adaptive control techniques.;The proposed methodology provides the tools for addressing the complexity and multi-dimensionality of the modern power plants in a comprehensive and integrated manner that classical approaches cannot achieve. Current approaches typically address abnormal condition (AC) detection of isolated subsystems of low complexity, affected by specific AC involving few features with limited identification capability. They do not attempt AC evaluation and mostly rely on control system robustness for accommodation. Addressing the problem of power plant monitoring and control under AC at this level of completeness has not yet been attempted.;Within the proposed framework, a novel algorithm, namely the partition of the universe, was developed for building the artificial immune system self. As compared to the clustering approach, the proposed approach is less computationally intensive and facilitates the use of full-dimensional self for system AC detection, identification, and evaluation. The approach is implemented in conjunction with a modified and improved dendritic cell algorithm. It allows for identifying the failed subsystems without previous training and is extended to address the AC evaluation using a novel approach.;The adaptive control laws are designed to augment the performance and robustness of baseline control laws under normal and abnormal operating conditions. Artificial neural network-based and artificial immune system-based approaches are developed and investigated for an advanced power plant through numerical simulation.;This dissertation also presents the development of an interactive computational environment for the optimization of power plant control system using evolutionary techniques with immunity-inspired enhancements. Several algorithms mimicking mechanisms of the immune system of superior organisms, such as cloning, affinity-based selection, seeding, and vaccination are used. These algorithms are expected to enhance the computational effectiveness, improve convergence, and be more efficient in handling multiple local extrema, through an adequate balance between exploration and exploitation.;The monitoring and control framework formulated in this dissertation applies to a wide range of technical problems. The proposed methodology is demonstrated with promising results using a high validity DynsimRTM model of the acid gas removal unit that is part of the integrated gasification combined cycle power plant available at West Virginia University AVESTAR Center. The obtained results show that the proposed system is an efficient and valuable technique to be applied to a real world application. The implementation of this methodology can potentially have significant impacts on the operational safety of many complex systems
    corecore