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Resumen

Esta tesis se centra en desarrollar nuevos modelos y algoritmos basados en la Op-
timización Matemática que ayuden a comprender estructuras de datos complejas fre-
cuentes en el área de Visualización de la Información. Las metodologías propuestas
fusionan conceptos de Análisis de Datos Multivariantes y de Optimización Matemática,
aunando las matemáticas teóricas con problemas reales.

Como se analiza en el Capítulo 1, una adecuada visualización de los datos ayuda
a mejorar la interpretabilidad de los fenómenos desconocidos que describen, así como
la toma de decisiones. Concretamente, esta tesis se centra en visualizar datos que
involucran distribuciones de frecuencias y relaciones de proximidad, pudiendo incluso
ambas variar a lo largo del tiempo. Se proponen diferentes herramientas para visua-
lizar dicha información, basadas tanto en la Optimización (No) Lineal Entera Mixta
como en la optimización de funciones Diferencia de Convexas. Además, metodologías
como la Búsqueda por Entornos Grandes y el Algoritmo DCA permiten el desarrollo de
mateheurísticas para resolver dichos modelos.

Concretamente, el Capítulo 2 trata el problema de visualizar simultáneamente una
distribución de frequencias y una relación de adyacencias en un conjunto de individuos.
Esta información se representa a través de un mapa rectangular, es decir, una subdi-
visión de un rectángulo en porciones rectangulares, de manera que las áreas de estas
porciones representen las frecuencias y las adyacencias entre las porciones representen
las adyacencias entre los individuos. Este problema de visualización se formula con la
ayuda de la Optimización Lineal Entera Mixta. Además, se propone una mateheurística
basada en este modelo como método de resolución.

En el Capítulo 3 se generaliza el modelo presentado en el capítulo anterior, constru-
yendo una herramienta que permite visualizar simultáneamente una distribución de
frecuencias y una relación de disimilaridades. Dicha visualización se realiza mediante
la partición de un rectángulo en porciones rectangulares a trozos de manera que el área
de las porciones refleje la distribución de frecuencias y las distancias entre las mismas
las disimilaridades. Se plantea un modelo No Lineal Entero Mixto para este problema
de visualización, que es resuelto a través de una mateheurística basada en la Búsqueda
por Entornos Grandes.
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En contraposición a los capítulos anteriores, en los que se busca una partición de la
región de visualización, el Capítulo 4 trata el problema de representar una distribución
de frecuencias y una relación de disimilaridad sobre un conjunto de individuos, sin forzar
a que haya que recubrir dicha región de visualización. En este modelo de visualización los
individuos son representados como cuerpos convexos cuyas áreas son proporcionales a las
frecuencias dadas. El objetivo es determinar la localización de dichos cuerpos convexos
dentro de la región de visualización. Para resolver este problema, que generaliza el
tradicional Escalado Multidimensional, se utilizan técnicas de optimización basadas en
funciones Diferencia de Convexas.

En el Capítulo 5, se extiende el modelo desarrollado en el capítulo anterior para
el caso en el que los datos son dinámicos, es decir, las frecuencias y disimilaridades se
observan a lo largo de varios instantes de tiempo. Se emplean técnicas de optimización
de funciones Diferencias de Convexas así como Optimización Cuadrática Binaria No
Convexa para la resolución del modelo.

Todas las metodologías propuestas han sido testadas en datos reales.
Finalmente, el Capítulo 6 contiene las conclusiones a esta tesis, así como futuras

líneas de investigación.



Abstract

This PhD dissertation focuses on developing newMathematical Optimization models
and solution approaches which help to gain insight into complex data structures arising
in Information Visualization. The approaches developed in this thesis merge concepts
from Multivariate Data Analysis and Mathematical Optimization, bridging theoretical
mathematics with real life problems.

The usefulness of Information Visualization lies with its power to improve inter-
pretability and decision making from the unknown phenomena described by raw data,
as fully discussed in Chapter 1. In particular, datasets involving frequency distributions
and proximity relations, which even might vary over the time, are the ones studied in
this thesis. Frameworks to visualize such enclosed information, which make use of
Mixed Integer (Non)linear Programming and Difference of Convex tools, are formally
proposed. Algorithmic approaches such as Large Neighborhood Search or Difference of
Convex Algorithm enable us to develop matheuristics to handle such models.

More specifically, Chapter 2 addresses the problem of visualizing a frequency dis-
tribution and an adjacency relation attached to a set of individuals. This information
is represented using a rectangular map, i.e., a subdivision of a rectangle into rectan-
gular portions so that their areas reflect the frequencies, and the adjacencies between
portions represent the adjacencies between the individuals. The visualization problem
is formulated as a Mixed Integer Linear Programming model, and a matheuristic that
has this model at its heart is proposed.

Chapter 3 generalizes the model presented in the previous chapter by developing a
visualization framework which handles simultaneously the representation of a frequency
distribution and a dissimilarity relation. This framework consists of a partition of a
given rectangle into piecewise rectangular portions so that the areas of the regions
represent the frequencies and the distances between them represent the dissimilarities.
This visualization problem is formally stated as a Mixed Integer Nonlinear Programming
model, which is solved by means of a matheuristic based on Large Neighborhood Search.

Contrary to previous chapters in which a partition of the visualization region is
sought, Chapter 4 addresses the problem of visualizing a set of individuals, which has
attached a dissimilarity measure and a frequency distribution, without necessarily cov-
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ering the visualization region. In this visualization problem individuals are depicted
as convex bodies whose areas are proportional to the given frequencies. The aim is
to determine the location of the convex bodies in the visualization region. In order to
solve this problem, which generalizes the standard Multidimensional Scaling, Difference
of Convex tools are used.

In Chapter 5, the model stated in the previous chapter is extended to the dynamic
case, namely considering that frequencies and dissimilarities are observed along a set
of time periods. The solution approach combines Difference of Convex techniques with
Nonconvex Quadratic Binary Optimization.

All the approaches presented are tested in real datasets.
Finally, Chapter 6 closes this thesis with general conclusions and future lines of

research.
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4 Chapter 1. Introduction

In the Big Data era, Information Visualization arises as a powerful discipline to deal
with knowledge discovery in complex datasets, (Keim et al., 2008; Liu et al., 2014; Wolfe,
2013). Extracting knowledge from data, such as global underlying patterns or unusual
behaviors, has become a crucial task for analysts to build models and improve decision
making in many areas, such as Health Care (Bertsimas et al., 2016; Ustun and Rudin,
2016), Risk Management (Baesens et al., 2003; Van Vlasselaer et al., 2016) or Data
Mining (Bao and Datta, 2014). In order to bring to the forefront those hidden structures,
visualizing data by means of suitable graphic tools is a widespread exploratory technique
in Information Visualization and, in general, in Analytics. Nevertheless, the increase
in data complexity has made the classic visualization techniques obsolete, and more
sophisticated frameworks are thus needed (Chen and Zhang, 2014).

In this context, Mathematical Optimization plays an important role, both develop-
ing new models and algorithmic approaches to adapt existent visualization tools as well
as creating new frameworks which cope with nowadays requirements, (Abbiw-Jackson
et al., 2006; Dzemyda et al., 2013; Liu et al., 2014; Olafsson et al., 2008; Strehl and
Ghosh, 2003; von Landesberger et al., 2016). Due to its versatility, Mathematical Opti-
mization allows to design (new or improved) models and solution approaches (heuristics,
matheuristics and exact methods) which gain insight into specific datasets’ features. For
instance, one can capture proximity or numerical magnitudes of data entries, such as fre-
quency distributions, as well as categorical attributes by means of aesthetic criteria, such
as colors, hues or geometric shapes and layouts. Supervised Learning (Carrizosa and
Romero Morales, 2013; Witten and Tibshirani, 2011) and visualization and dimension-
ality reduction techniques, such as Principal Component Analysis or Multidimensional
Scaling, fit into this category due to their flexibility in incorporating extra requirements
to enhance interpretability, such as sparsity (Carrizosa and Guerrero, 2014a,b).

The aim of this thesis is to develop new Mathematical Optimization models and
solution approaches to build visualization frameworks for complex datasets which arise
in Information Visualization. In particular, datasets involving frequency distributions
and proximity relations, which even might vary over time, are the ones considered in
this PhD dissertation. Dealing with data visualization from an optimization perspective
allows analysts to enhance interpretability and help decision making (Carrizosa et al.,
2010; Freitas, 2013; Martens et al., 2007).

1.1 The aim of Information Visualization

The usefulness of Information Visualization lies with its power to enhance inter-
pretability and decision making from the unknown phenomena described by raw data.
Adequately visualizing such data helps, for instance, to make the correct assumptions
involved in statistical models or data mining algorithms, as well as to obtain meaningful
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presentations of the analysis’ outputs. The challenge is to identify the most suitable tool
to make the visualization effective for the user’s purpose (Keim et al., 2008). From the
simplest to the most complex dataset, its features are encoded by means of, e.g. layouts,
shapes, colors and hues (Benbasat and Dexter, 1985; Hall et al., 2016; Shmueli et al.,
2016). Therefore, the different degrees of complexity in data endows visualization tools
with different levels of sophistication, (Dzemyda et al., 2013; Heer et al., 2010; Tufte,
1986).

One of the simplest structures of datasets consists of a list of entries with a frequency
distribution attached. Examples of these datasets are found in any real-life context: in
opinion polls, a set of political parties characterized by their number of voters; in finance,
the assets forming a market portfolio distributed by their proportions; or in text mining,
a list of words and its frequency in a text. If the aim of the analyst is to study the
distribution of data, for instance, for statistical hypothesis testing, the preferred option
may be a histogram (Tufte, 1986), i.e. a figure which plots a bar for each entry, whose
area represents the corresponding frequency. However, if the purpose of the visualization
is to give an idea about the relative sizes of the individuals involved, namely relative
frequencies, the straightforward approach is to split a given visualization region into
portions in such a way that their areas represent the relative frequencies (Spence and
Lewandowsky, 1991). The well-known pie chart and fan chart fit into this category.
More creative representations have been specifically designed in some fields. This is
the case of text visualization, for which word clouds (Viégas and Wattenberg, 2008)
have become a baseline to depict the frequency of most used words in, for instance,
speeches or Twitter’s trending topics. In a word cloud, the list of words, scaled by their
frequencies, are written forming a compact layout. This idea can be generalized to any
dataset involving frequencies, since the words could be the labels attached to the data
entries. Figure 1.1 (a) – 1.1 (d) show examples of a histogram, a pie chart, a fan chart
and a word cloud, respectively.

The complexity of a dataset structure increases due to different factors, and thus
its visualization becomes more challenging. For instance, data may involve hierarchies,
either by their own nature, as in counties, states and countries, or as a result of a
grouping procedure, such as a Cluster Analysis. Combining these hierarchies with the
faithful representation of a distribution of frequencies has been done, among others, by
means of treemaps (Shneiderman, 1992) and circle-packing layouts (Wang et al., 2006),
see Figures 1.2 (a) and 1.2 (b), respectively.

The higher the dimension of a dataset is, the more difficult is to engrave its enclosed
information on a picture (Dzemyda et al., 2013). When dealing with multivariate data,
namely a list of entries for which p variables have been measured, and thus multiple
frequency distributions exist, a scatter plot (Tufte, 1986) is the straightforward visual-
ization tool to get a first guess. In a scatter plot each observation is depicted as a dot
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in the p-dimensional Euclidean space, in which each Cartesian edge represents a vari-
able, see Figure 1.3 (a) for a scatter plot with p = 3. Since visualizing a p-dimensional
space with p > 3 is meaningless for any human eye the 2 or 3-dimensional projec-
tions are usually studied. Hence, other approaches have been proposed to visualize
complex multivariate datasets, including the standard Principal Component Analysis
(Pearson, 1901), Multidimensional Scaling (Kruskal, 1964; Torgerson, 1958), as well as
more sophisticated tools such as proportional symbol maps, (Cabello et al., 2010). In
a proportional symbol map, geometric objects, such as discs or rectangles, are placed
on a set of locations (usually geographical). Those geometric objects are scaled to one
of the frequency distributions involved in the multivariate dataset. Indeed, those geo-
metric objects might be visualization frameworks themselves, which depict e.g. another
distribution of frequencies or the results of certain analysis. However, it is unclear what
is the most suitable scale to depict such symbols (Cano et al., 2013; Kunigami et al.,
2014). Figure 1.3 (b) shows a proportional symbol map considering as locations the 48

U.S. contiguous states in which scaled pie charts are located over each state.

According to Cottam et al. (2012), data which vary over time is one of the most
relevant data to be depicted, since most datasets representing a real phenomenon are
intrinsically dynamic. The usual approach is to consider a collection of snapshots, which
depicts the desired information in each time period. Once the decision about how the
dynamic dataset is represented in each snapshot has been made, mainly depending on
the data structure, the challenge lies on how to show such collection in a clear and
understandable manner: small multiples, namely showing each snapshot independently,
and animations are the most common ways (Archambault and Purchase, 2016). How-
ever, abrupt changes in the layout or shapes go in detriment of easy identification of
individuals in future periods. Therefore, achieving smoothness in the transition between
consecutive snapshots becomes crucial to enhance interpretability.

An important piece of information in Data Science consists of the knowledge of re-
lations that a set of entities may have. Being able to visually identify how close (or far)
two individuals are helps to find groups in data and thus, eases the interpretability in
terms of vicinity (Kaufman and Rousseeuw, 2009). This type of analysis is very fre-
quent in, for instance, e-commerce to recommend the customer new products based on
customers’ previous purchases, and social networks to detect and analyze specific com-
munities (Fortunato, 2010). To perform an analysis like this, a proximity measure is to
be introduced. There exist different ways of measuring proximities, mainly depending on
the application. Adjacencies arise as a first attempt to identify (un)related individuals,
whose visualization have been usually managed by Graph Drawing techniques (Battista
et al., 1999). The individuals are represented as nodes, and there is an edge between two
individuals if they are related. See Figure 1.4 (a) for an example of such a graph. Other
approaches measure dependency between variables, such as correlations. In general,
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computing spatial distances, such the Euclidean or Manhattan distances, between each
pair of individuals yields also a straightforward way of measuring proximities. Those
numbers are frequently visualized in a matrix structure, in which color saturation shows
the intensity of the proximity, called adjaceny matrix (Heer et al., 2010). This way the
closeness of pairs of individuals by means of colors’ intensities could be easily compared.
For an example of an adjacency matrix visualization see Figure 1.4 (b). Geographical
distances are a specific example of distances that Information Visualization usually has
to deal with. Whereas standard representation methods are sufficient to correctly de-
pict them, if an extra piece of information is to be included, such as population rates
or vote intention in each region, more sophisticated tools are necessary. In order to
give answer to this combination of visualizing frequency distributions and geographical
distances, cartograms are the usual approach (Tobler, 2004). In a cartogram, each re-
gion is scaled in such a way that its area represents a frequency, whereas the relative
positions between regions are maintained. There exist approaches in which regions are
depicted with relatively simple shapes, usually rectangles (Heilmann et al., 2004) or
circles (Dorling, 1996), as the rectangular cartogram shown in Figure 1.4 (c) for the
U.S., where the states have been scaled by their land areas (Panse, 2016). Nevertheless,
there exist other possibilities rather than correlations or distances, which consist of a
set of positive coefficients that become small (close to zero) when two individuals are
close to each other and that are large when they are different. These coefficients are
called dissimilarities (Kaufman and Rousseeuw, 2009) and their faithful representation
has been usually handled through a well-studied technique in Information Visualization:
Multidimensional Scaling (MDS) (Kruskal, 1964; Torgerson, 1958). MDS is reviewed in
Section 1.2 due to its importance in the methods developed in this thesis.

In conclusion, Information Visualization has to deal with data whose complexity
may come from different sources: multivariate information, hierarchies, proximities or
time-dependent features. Although specific frameworks have been designed for some of
them, there exist issues which deserve further attention. That is the case of representing
simultaneously a distribution of relative frequencies and adjacencies or dissimilarities,
studied in Chapters 2 and 3, respectively. Moreover, combining the visualization of
dissimilarities and frequencies, which both may or may not vary over time, is a timely
topic, studied in Chapters 4 and 5.

1.2 Multidimensional Scaling

Multidimensional Scaling (MDS) (Borg and Groenen, 2005; Cox and Cox, 2000;
Kruskal, 1964; Torgerson, 1958) comprises a family of techniques for the analysis of
proximities among a set of individuals, where the term individual encompasses either
people, countries, foodstuffs, etc. The aim of MDS is to model the proximity data as
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Figure 1.4: Visualization of proximities.
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distances among points located in a low dimensional space, where each point represents
an individual. In general, measures of proximity are twofold: dissimilarities, which
measure how different two individuals are, and similarities, which quantify how much
they are alike. Since both concepts are dual, in what follows the discussion about MDS
is made for dissimilarities without loss of generality.

In general, a measure of dissimilarity between a pair of individuals is a nonnegative
real number, which is close to zero if they are alike, and which becomes large when
they are different. Hartigan (1967) gives twelve possible dissimilarity structures, listed
by Cox and Cox (2000) cf. Chapter 1, which have different levels of generality. In
this thesis, dissimilarity is a function that for each pair of individual vi and vj , their
dissimilarity δij verifies:

(i) δij ≥, for all i, j,

(ii) δii = 0, for all i,

(iii) δij = δji, for all i, j.

Straightforward examples of dissimilarity measures satisfying (i)–(iii) are distances,
such as the Euclidean or the Manhattan distances. Nevertheless, distances have stronger
assumptions since, contrary to dissimilarities, they must satisfy the triangle inequality.
Correlations between variables attached to the individuals are also a common approach
to measure the proximity between them. In order to transform correlations into dis-
similarities satisfying (i)–(iii) a monotone transformation is usually applied to make
the coefficients nonnegative and transform high correlations into small dissimilarities.
Indeed, an analogous transformation converts an adjacency relation into a dissimilarity.

Therefore, given a set of individuals V = {v1, . . . , vN}, which have attached a dis-
similarity measure satisfying (i)–(iii), MDS seeks an embedding from V to Rn such
that the dissimilarities are preserved. There exist two usual ways in which this goal is
pursued: metric and nonmetric MDS. Whereas metric MDS models (Torgerson, 1958)
attempt to find points xi ∈ Rn whose pairwise distances are approximately equal to an
algebraic transformation of the dissimilarities (‖xi−xj‖ ≈ f(δij), where ‖ · ‖ denotes a
norm and f : R −→ R is a continuous parametric monotone function), nonmetric MDS
(Kruskal, 1964) aims to represent only the ordinal properties of the dissimilarities (if
δij < δkl, then ‖xi − xj‖ < ‖xk − xl‖). The metric approach will be the one followed
in this thesis.

The usual strategy to handle a metric MDS, hereafter called simply MDS, is to
state the problem as a continuous optimization problem, in which the least square error
incurred when approximating the transformed dissimilarities by the distances between
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the points in the embedding is minimized, yielding

min
xi∈Rn
i=1,...,N

∑
vi,vj∈V

(‖xi − xj‖ − f(δij))
2 , (1.1)

where the function f is usually taken as the identity or a linear function, and ‖ ·‖ as the
Euclidean or Manhattan norm (Hubert et al., 1992; Leung and Lau, 2004). In general,
the objective function in (1.1) is known as stress. There exist some variants, such as the
normalized stress and the weighted stress, and related but different approaches, such as
the classic scaling and the s-stress (Borg and Groenen, 2005).

The global optimization problem in (1.1) is known to be multimodal (Trosset and
Mathar, 1997; Žilinskas and Podlipskytė, 2003). Indeed, there exists multiplicity of
the optimal solution since any isometric transformation of the points yields the same
objective value in (1.1). Thus, local search algorithms based on gradients or subgradi-
ent might get stuck in local optima, and several strategies have been proposed in the
literature to find its global optimum. For instance, the SMACOF algorithm, initially
proposed by De Leeuw (1977) and then refined by Groenen (1993), is based on an itera-
tive majorization procedure; ALSCAL (Takane et al., 1977) is an alternating procedure
in two phases, an optimal scaling phase and a model estimation phase; De Leeuw and
Heiser (1977) and Le Thi and Pham Dinh (2001) develop approaches based on ma-
jorization and Difference of Convex (DC) optimization techniques, and Žilinskas and
Žilinskas (2009) design a branch and bound algorithm for MDS with the Manhattan
distance.

MDS plays a very important role in the visualization of complex datasets thanks to
its capability of reducing the dimensionality to R2 or R3 (Buja et al., 2008). Whereas
the classic approach stated in (1.1) is able to deal only with dissimilarity data, some
work has been done to customize this technique to datasets with additional features,
since the Mathematical Optimization model in (1.1) may incorporate extra require-
ments by means of constraints and terms in the objective function (Chen and Buja,
2009; De Leeuw and Heiser, 1980). This is the case of some graph drawing techniques,
which locate nodes by means of an MDS (Battista et al., 1999; Dörk et al., 2012). In
a graph visualization context, MDS aims to reproduce the adjacencies’ structure while
the number of edge crossings is reduced or a certain layout is imposed. For hierarchical
data, some approaches attempt to preserve a proximity measure among the levels in
the hierarchies and make use of MDS (Duarte et al., 2014; Nocaj and Brandes, 2012).
Proportional symbol maps make use of geographical locations to depict extra informa-
tion given as frequencies (Cano et al., 2013; Kunigami et al., 2014). Indeed, using MDS
seems a sensible way to locate symbols to visualize a general dissimilarities structure
jointly with frequencies. To do this, a first approach might consist of executing an MDS,
and then replacing points by the symbols (say, discs or rectangles) centered at the MDS
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Figure 1.5: Illustration of MDS applied to dynamic dissimilarities coming from the stock
markets dataset (Groenen and Franses, 2000).

points, and whose area is proportional to the frequency value. Nevertheless, the scale
chosen by the user to (proportionally) depict such information may yield either too small
objects or excess of overlapping between them. Thus, the changes in the perception of
distances, induced by these (a posteriori) depicted objects, might yield misleading con-
clusions about the proximity between the individuals (Liu et al., 2013). MDS has been
also customized to visualize dynamic data (Groenen and Franses, 2000; Xu et al., 2013).
A straightforward approach to visualize dynamic dissimilarities, observed along T time
periods, would consist of executing T independent MDS, one per period. Nevertheless,
this approach might yield difficult-to-interpret visualizations, especially when the dis-
similarities change abruptly in consecutive periods or, since MDS results are invariant
under rotations and reflections, the snapshots may turn upside-down. In order to illus-
trate this statement, let us consider the dataset consisting of N = 13 stock markets,
studied along T = 200 time periods. Dissimilarities are measured through the corre-
lation between stock markets indices as studied in Groenen and Franses (2000). The
plots for time periods t = 30 and t = 31, obtained with the isoMDS() function in R, (R
Core Team, 2016), are given in Figure 1.5. As the reader can observe, a visual effort
is required to read from snapshot t = 30 to t = 31, since stock markets appear rotated
and further from each other.

Summarizing, MDS is a Mathematical Optimization based visualization framework
which is broadly used in Information Visualization thanks to its dimensionality reduc-
tion purpose. MDS will be at the heart of the models developed in this thesis to help
in the visualization of complex datasets.
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1.3 Contributions of this thesis

This thesis is devoted to design new Mathematical Optimization based models and
solution approaches to visualize complex datasets. Mixed Integer (Non)linear Program-
ming and Difference of Convex techniques are at the heart of these models, which
are successfully tested in real-world datasets. In what follows we briefly describe the
problems treated and the reasons which make them interesting for the Information
Visualization and the Mathematical Optimization communities.

In Chapter 2, based on the paper Carrizosa et al. (2015a), we address the problem of
visualizing a frequency distribution and an adjacency relation attached to a set of indi-
viduals. We represent this information using a rectangular map, i.e., a subdivision of a
rectangle into rectangular portions so that each portion is associated with one individ-
ual, their areas reflect the frequencies, and the adjacencies between portions represent
the adjacencies between the individuals. This approach extends the classic pie and fan
charts, in which the only freedom in the location of the portions is the choice of a per-
mutation. Due to the impossibility of satisfying both area and adjacency requirements,
our aim is to fit as well as possible the areas, while representing as many adjacent indi-
viduals as adjacent rectangular portions as possible and adding as few false adjacencies,
i.e., adjacencies between rectangular portions corresponding to non-adjacent individ-
uals, as possible. We formulate this visualization problem as a Mixed Integer Linear
Programming (MILP) model. We propose a matheuristic that has this MILP model
and a constrained Multidimensional Scaling approach at its heart. Our experimental
results demonstrate that our matheuristic provides rectangular maps with a good fit in
both the frequency distribution and the adjacency relation. The methodology proposed
in Chapter 2 is applied to three real-world datasets.

Chapter 3, which is based on the paper Carrizosa et al. (2017c), deals with the rigid-
ity of the shapes used to represent individuals in Chapter 2, namely rectangles, and the
specific nature of the proximities considered, namely adjacencies. We address the prob-
lem of visualizing a frequency distribution and a dissimilarity measure attached to a set
of individuals. This information is depicted by means of a Space-filling Box-connected
Map, which consists of a partition of a rectangle into so-called box-connected rectangles,
in such a way that the area of the box-connected rectangles reflect the frequencies and
the distances between them represent the dissimilarities. The construction of a Space-
filling Box-connected Map is formally stated as an MILP, in which the violation of the
correct representation of frequencies and dissimilarities is minimized. A matheuristic
based on Large Neighborhood Search is proposed to solve this model. The methodology
proposed in Chapter 3 is applied to three real-world datasets.

In both Chapters 2 and 3, the impossibility to represent both the frequency distri-
bution and the proximity measure accurately is stated. Thus, in Chapter 4, which is
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based on the paper Carrizosa et al. (2015b), we relax the space-filling constraint. This
way a visualization framework is obtained which faithfully represents the frequencies by
means of the areas of convex bodies, whereas it trades off the correct representation of
the dissimilarities as the distances between those objects and their spread in the visu-
alization region. This problem, which extends the standard Multidimensional Scaling,
is written as a global optimization problem whose objective is the Difference of two
Convex functions (DC). Suitable DC decompositions allow us to use the Difference of
Convex Algorithm (DCA) in a very efficient way. Our algorithmic approach is used to
visualize two real-world datasets.

As we stated in Section 1.1, visualizing dynamic datasets is crucial for enhancing
interpretability and decision making. In Chapter 5, based on the papers Carrizosa et al.
(2017a) and Carrizosa et al. (2017b), we extend the methodology developed in Chapter
4 to the dynamic case. Therefore, we develop a new framework to visualize datasets
consisting of individuals observed along different time periods. These individuals have
attached a time-dependent frequency distribution and a dissimilarity measure, which
may vary over time as well. DCA and Nonconvex Quadratic Binary Optimization
techniques are combined to solve the proposed Mathematical Optimization model. This
way a visualization framework is obtained which, besides the criteria in the static model
presented in Chapter 4, it includes also the preservation of the mental map. Our
procedure is successfully tested on dynamic geographical and linguistic datasets.

Finally, in Chapter 6 some conclusions and future lines of research are briefly dis-
cussed.
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Chapter 2. Visualizing frequencies and adjacencies as Rectangular Maps: A Mixed

Integer Linear Programming approach

In this chapter we address the problem of visualizing a dataset involving a frequency
distribution and a proximity relation, measured by adjacencies. This information is
presented using a rectangular map, i.e., a subdivision of a rectangle into rectangular
portions so that each portion is associated with one individual in the dataset, their areas
reflect the frequencies, and the adjacencies between portions represent the adjacencies
between the individuals. We formulate this visualization problem as a Mixed Integer
Linear Programming (MILP) model. We propose a matheuristic that has this MILP
model at its heart and a Multidimensional Scaling based model as surrogate to determine
the relative positions of the rectangular portions. Our experimental results demonstrate
that our matheuristic provides rectangular maps with a good fit in both the frequency
distribution and the adjacency relation.

2.1 Introduction

A natural and frequent task in Information Visualization is to depict a set of
individuals V = {v1, . . . , vN}, to which there is attached a frequency distribution,
ω = (ω1, . . . , ωN ), such that

∑N
i=1 ωi = 1 and ωi ≥ 0, i = 1, . . . , N (Spence and

Lewandowsky, 1991). Market share, vote intention or population rates, just to name
a few, are usual examples. As we noted in Section 1.1, besides histograms or word
clouds, a common approach to visualize frequencies is to consider a bounded region of
the plane and to subdivide it into portions P = (P1, . . . , PN ) of common shape whose
areas represent the frequencies. Well-known visualization tools for this kind of data are
the classic pie or fan charts, Figures 1.1 (b) and 1.1 (c) respectively, and rectangular
maps (Baudel and Broeksema, 2012; Heilmann et al., 2004), see Figure 2.1. In this kind
of representations, holes are not allowed, thus, receiving the name of planar space-filling
visualization maps.

A planar space-filling map to visualize the frequencies attached to individuals in a
bounded set Ω of the plane can be found by constructing the portions of the desired
area and putting them together to fill Ω. This is straightforward in the case of the
pie or fan charts: for a permutation σ(1), σ(2), . . . , σ(N) of the indices 1, 2, . . . , N,

portions of areas proportional to ωσ(1), ωσ(2), . . . , ωσ(N) are placed sequentially in Ω.

The only freedom in such planar space-filling visualization maps is thus the choice of
the permutation, which can be made according to different seriation criteria as exposed
by Hahsler (2017). For the case of rectangular maps, where Ω is the unit square and
portions are rectangles, the same approach, illustrated in Figure 2.1 (left), can be used,
where the rectangular portions go all the way from North to South (or, by rotation, from
West to East, for instance). While pie and fan charts only admit different sequential
arrangements, rectangular maps allow more freedom than the choice of a permutation,
as illustrated in Figure 2.1 (right). The flexible layout offered by rectangular maps is
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Figure 2.1: Examples of rectangular maps.

also desirable when, in addition to frequencies, we are interested in visualizing proximity,
measured by adjacencies, which is the subject of this chapter.

The nature of the adjacency relation can be diverse, a classical example being ge-
ographical adjacencies. As discussed in Section 1.1, cartograms have been the usual
visualization framework to simultaneously depict geographical adjacencies and frequen-
cies. Specifically, rectangular cartograms have served to analysts as easy-to-interpret
graphics thanks to the use of simple shapes, namely rectangles (Buchin et al., 2012; Epp-
stein et al., 2012; Heilmann et al., 2004; Kreveld and Speckmann, 2007; Raisz, 1934).
The approaches developed in the literature to obtain rectangular cartograms take ad-
vantage of the geographical relative positions of the individuals (countries, cities, etc.),
and thus their approaches cannot be directly extended to more general data structures.
Figure 1.4 (c) depicts a rectangular cartogram for the geographical area of the states in
the U.S. built using the Recmap package in R (Panse, 2016). There exist approaches
which build space-filling rectangular cartograms as well. This is the case of grid maps
(Eppstein et al., 2015), which represent as accurately as possible the adjacencies present
in a geographical dataset by assigning exactly one cell of the grid to each individual,
although frequencies are not taken into account. Figure 2.2 (b) depicts the grid map
built for the 48 contiguous states in the U.S. by Eppstein et al. (2015) cf. Figure 6-L2

2,
representing 56 adjacencies of the 105 present in the actual map, see Figure 2.2 (a).
With the methodology described in Section 2.3, we are able to represent 63 adjacencies
of the 105 present in Figure 2.2 (a), see Figure 2.2 (c). In this chapter, our goal is to
propose a mathematical optimization formulation and a suitable solution approach to
build rectangular maps to visualize the frequency distribution ω = (ω1, . . . , ωN ) and
the proximity between the individuals, measured by an adjacency matrix E = (eij). As
far as we are aware, this is a novel problem in the literature.

Throughout this chapter, the weighted graph G = (V,E,ω) will model the set V of
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individuals, attached with the binary relation (adjacency) E and the frequency distri-
bution ω. Similarly, we denote by GP = (V,EP,ωP), the weighted graph associated
with the rectangular map, denoted by P = (P1, . . . , PN ). The binary relation in GP is
defined as follows, (vi, vj) ∈ EP if portions Pi and Pj are adjacent, i.e., their borders
intersect in more than one point, while for the node weights ωP, ωP

i is equal to the
area of the rectangle Pi. In general, one cannot guarantee the existence of a rectangular
map that satisfies area and adjacency requirements on the rectangles, i.e., ωP = ω

and EP = E (Kreveld and Speckmann, 2007). This is especially the case when the
graph G to be represented is not planar. Alam et al. (2013) and Biedl and Genç (2005)
deal with complexity results on rectangular maps. Due to this impossibility, we seek to
represent as many adjacent individuals as adjacent rectangles as possible, and to have
as low as possible both the number of rectangular adjacent portions corresponding to
non-adjacent individuals and the total deviation of the areas of the portions from the
frequencies. This optimization problem is very hard. The computational burden might
be strongly reduced if additional information could be added to reduce the number of
possible layouts. This is done in rectangular cartograms by imposing each rectangle
to contain a point, which is usually chosen as the centroid of the geographical region
(Duarte et al., 2014; Heilmann et al., 2004; Wood and Dykes, 2008). In this chap-
ter, we develop a new tool based on Multidimensional Scaling (MDS) (Kruskal, 1964;
Torgerson, 1958) to find such a set of points, having valuable information about the
adjacencies and the frequencies, which can be applied to any type of individuals, i.e.,
not only for geographical data, as long as they have a dissimilarity measure attached to
them (Carrizosa et al., 2007).

Although not focused on Information Visualization, the case in which there are no
frequencies (weights) attached to the individuals, and the graph G is planar, has been
studied in the literature and it has many applications, for instance, in Very Large Scale
Integration circuits design (Anjos and Liers, 2012; Tani et al., 1991). The usual approach
there is to find a rectangular dual of a planar graph, which consists of a subdivision of
the unit square in such a way that each vertex (individual) corresponds to a different
rectangle in the subdivision and, if vi and vj are linked, then the corresponding portions
Pi and Pj are adjacent in the subdivision. Biedl and Genç (2005), de Berg et al. (2009)
and Koźmiński and Kinnen (1985) study some characterizations of planar graphs that
admit a rectangular dual. Rectangular duals are also related with Facility Layout (Anjos
and Vieira, 2016; Jankovits et al., 2011; Sherali et al., 2003), whose aim is to find a layout
which minimizes the flow between a set of facilities of given areas, and Graph Drawing,
(Dörk et al., 2012; Klimenta and Brandes, 2013; Owen-Smith et al., 2002; Tamassia,
2013). These frameworks use very ad-hoc approaches and either disregard the proper
representation of adjacencies, frequencies, or are not space-filling.

In this chapter, the problem of building rectangular maps which simultaneously
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(a) The U.S. map
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(b) Grid map for the U.S. built in Eppstein
et al. (2015)
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(c) Grid map for the U.S. built with the
ECPA methodology in Section 2.3

Figure 2.2: Visualizations for the U.S.

optimizes the fit in the adjacencies and areas for weighted graphs G, not necessarily
planar, is modeled by means of Mathematical Optimization. We consider the unit square
Ω split into K rows and L columns, each cell representing thus a 100/(K ×L)% of the
total area of Ω, yielding the so-called (K,L)-rectangular maps. This grid structure, also
proposed by e.g. Abbiw-Jackson et al. (2006), Eppstein et al. (2015), Fried et al. (2015),
Liu et al. (2015) and Strong and Gong (2014), allows us to easily measure areas, and
simplifies the notion of adjacency, since two portions are adjacent if they touch in, at
least, one cell.

We formulate the problem of building (K,L)-rectangular maps as a Mixed Integer
Linear Program (MILP). However, such MILP is a difficult problem and thus there is a
need for developing a sophisticated matheuristic solution approach to find good (K,L)-
rectangular maps. To do so, first, we introduce the concept of locating cells, which reduce
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the number of possible layouts by fixing the relative positions between the rectangles,
and, as will be seen in our numerical experience, they speed up the computation of the
(K,L)-rectangular maps. Second, we design a tailored MDS to choose these locating
cells by taking into account the adjacencies and area deviations measures. This MDS
can handle any set of individuals with frequencies and an adjacency relations attached,
and not necessarily of geographic nature, as is the case for rectangular cartograms
(Raisz, 1934).

The remainder of the chapter is structured as follows. In Section 2.2 we introduce
the optimization model to build (K,L)-rectangular maps and formulate it as an MILP.
In Section 2.3 we present an algorithm to compute (K,L)-rectangular maps. Section
2.4 is the experimental section. Section 2.5 concludes the chapter with a summary.

2.2 The Mathematical Optimization model

Given a set of individuals V = {v1, . . . , vN}, a (K,L)-rectangular map has associated
a weighted graph GP = (V,EP,ωP), in which (vi, vj) ∈ EP if portions Pi and Pj are
adjacent, i.e., they touch in at least one cell, and ωP denotes the rectangles’ areas.
An ideal (K,L)-rectangular map representation of a given graph G = (V,E,ω) should
satisfy the following conditions:

(C1) The portions in P = (P1, . . . , PN ) form a partition of Ω = [0, 1]× [0, 1].

(C2) Pi is a rectangle made up of a collection of cells of the (K,L)-grid in which Ω is
divided, i = 1, . . . , N .

(C3) EP = E

(C4) ωP
i = ωi, namely

1

K × L
|Pi| = ωi, where |Pi| denotes the number of cells in Pi,

i = 1, . . . , N .

Constructing (K,L)-rectangular maps which satisfy conditions (C1) and (C2) is
straightforward. One simply needs to allocate cells belonging to the same portion
forming rectangles, as in Figure 2.1 (left). However, including conditions (C3) and
(C4) as hard requirements may make the problem infeasible (Kreveld and Speckmann,
2007). Thus, we model conditions (C3) and (C4) as soft constraints, and consider their
violation, combined through a scaling vector λ = (λ1, λ2, λ3), λt ≥ 0, t = 1, 2, 3, as the
objective to be optimized. This yields the λ-Rectangular Map model (RM)λ, stated as

max λ1|E ∩ EP| − λ2|E ∩ EP| − λ3
∑N

i=1 |ωP
i − ωi|

s.t. P = (P1, . . . , PN ) satisfying (C1), (C2).
(RM)λ
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On one hand, the resemblance between E and EP, i.e. (C3), is modeled by means
of the cardinality of the sets E ∩ EP and E ∩ EP weighed through parameters λ1

and λ2, respectively, where E denotes the complement of E. This way, the number of
adjacencies in E that are also in the (K,L)-rectangular map and those that are not
in E but do appear in the map are counted. On the other hand, the condition (C4)
is stated as the sum of the deviations from the frequencies in ω to the area of the
rectangles in ωP weighed by parameter λ3. Thus, different values of λ yield different
(K,L)-rectangular maps, highlighting the different aspects involved.

Figure 2.3 illustrates the concept of (K,L)-rectangular map, using as G the weighted
graph plotted in Figure 2.3 (a), whereN = 6, |E| = 9 and ω = (0.3, 0.15, 0.1, 0.15, 0.1, 0.2).
Figure 2.3 (b) represents G as a (5, 10)-rectangular map, where the K = 5 rows are
numbered from top to bottom and the L = 10 columns from left to right. We may
observe that 8 out of the 9 true adjacencies, i.e., the adjacencies in E, are reproduced
by EP, which are shown as solid edges in the graph in Figure 2.3 (c). There is only one
true adjacency missing in EP: v3 and v4 are adjacent in G but their associated rect-
angles P3 and P4 are not in the (5, 10)-rectangular map. (Note that if two cells touch
only in a corner, they are not considered adjacent.) The (5, 10)-rectangular map adds
a false adjacency, i.e., an adjacency which was not in E, which is drawn as a dashed
edge in Figure 2.3 (c): v2 and v4 are not adjacent in G but P2 and P4 are in the (5, 10)-
rectangular map. Finally, and with respect to the weights, the (5, 10)-rectangular map
approximates them. For instance, v4 has a weight equal to ω4 = 0.15, while the area of
P4 is equal to 4/50 = 0.08.
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(b) (5, 10)-rectangular map
of G

v1
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(c) GP = (V,EP,ωP):
E ∩EP solid line, E ∩EP dashed line.

Figure 2.3: A (5, 10)-rectangular map for G; |E ∩ EP| = 8, |E ∩ EP| = 1,∑6
i=1 |ωP

i − ωi| = 0.24.

In what follows, Problem (RM)λ is stated as an MILP. Note that indices i and j
are used for portions, r for rows of the grid and s for columns.
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2.2.1 Decision variables

Let xirs be binary variables which control whether the cell (r, s) belongs to the
portion Pi or not, defined as

xirs =

{
1 if cell (r, s) belongs to portion Pi
0 otherwise.

Thanks to these variables, a portion Pi can be expressed as Pi(x) = {(r, s) : xirs =

1, r = 1, . . . ,K, s = 1, . . . , L}.

In order to model adjacencies between portions Pi(x) and Pj(x), binary variables
zij are defined as

zij =

{
1 if portion Pi(x) is adjacent to portion Pj(x)

0 otherwise.

Observe that x and z-variables are closely related: if Pi(x) and Pj(x) are two adjacent
portions, then zij = 1 and xirs = xjr′s′ = 1, where (r′, s′) is either equal to (r− 1, s) or
(r + 1, s) or (r, s+ 1) or (r, s− 1).

The variables ulijrs indicate whether portions i and j are adjacent at cell (r, s) from
above, below, to the right or to the left, respectively. Thus,

u1
ijrs =

{
1 if portion Pj(x) is adjacent to portion Pi(x) at cell (r, s) from above
0 otherwise.

Similarly, we can define u2
ijrs, u

3
ijrs, and u

4
ijrs, which indicate if portions Pi(x) and

Pj(x) are adjacent from below, to the left or to the right, respectively. Observe that
also x and u-variables are closely related, since u1

ijrs = xirs ·xjr−1s, u2
ijrs = xirs ·xir+1s,

u3
ijrs = xirs · xjrs+1 and u4

ijrs = xirs · xjrs−1.

Finally, ϕi and ψi are positive real variables to linearize the area deviation |ωP
i −ωi|,

i.e., |ωP
i − ωi| = ϕi + ψi and ωP

i − ωi = ϕi − ψi.

We illustrate these variables using the (5, 10)-rectangular map in Figure 2.3 (b).
For instance, rectangle P4 has four cells defined by x427 = x428 = x437 = x438 = 1.
Moreover, P4 has four adjacent rectangles: P1, P2, P5 and P6. Thus, z41 = z42 = z45 =

z46 = 1 and u1
4527 = u1

4528 = u2
4627 = u2

4637 = u3
4238 = u3

4228 = u4
4137 = u4

4138 = 1. The
remaining binary variables of the form x4rs, z4j and ul4jrs are zero. Finally, ϕ4 = 0 and
ψ4 = 0.07.
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2.2.2 Objective function

Because of the definition of the variables, it is straightforward to see that the objec-
tive function in Problem (RM)λ (written in maximization form) is,

λ1

∑
i,j=1...N
(i,j)∈E

zij − λ2

∑
i,j=1...N
(i,j)∈E

zij − λ3

∑
i=1,...,N

(ϕi + ψi), (2.1)

for fixed scaling nonzero vector λ = (λ1, λ2, λ3), λt ≥ 0, t = 1, 2, 3.

2.2.3 Constraints

We now write the constraints in Problem (RM)λ using the decision variables above,
and give a brief explanation of each group of constraints.

∑
i=1,...,N

xirs = 1, r = 1, . . . ,K, s = 1, . . . , L, (2.2)

∑
r=1,...,K
s=1,...,L

xirs ≥ 1, i = 1, . . . , N, (2.3)

∑
min{r,r′}≤r′′≤max{r,r′}
min{s,s′}≤s′′≤max{s,s′}

xi r′′ s′′ ≥ (|r − r′|+ 1) · (|s− s′|+ 1) · (xirs + xir′s′ − 1), i = 1, . . . , N, (2.4)

r, r′ = 1, . . . ,K,

s, s′ = 1, . . . , L,∑
r=2,...,K
s=1,...,L

u1ijrs +
∑

r=1,...,K−1
s=1,...,L

u2ijrs +
∑

r=1,...,K
s=1,...,L−1

u3ijrs +
∑

r=1,...,K
s=2,...,L

u4ijrs ≥ zij , i, j = 1, . . . , N, i 6= j, (2.5)

xirs + xj r−1 s ≤ zij + 1, i, j = 1, . . . , N, i 6= j, r = 2, . . . ,K, s = 1, . . . , L, (2.6)

xirs + xj r+1 s ≤ zij + 1, i, j = 1, . . . , N, i 6= j, r = 1, . . . ,K − 1, s = 1, . . . , L, (2.7)

xirs + xj r s+1 ≤ zij + 1, i, j = 1, . . . , N, i 6= j, r = 1, . . . ,K, s = 1, . . . , L− 1, (2.8)

xirs + xj r s−1 ≤ zij + 1, i, j = 1, . . . , N, i 6= j, r = 1, . . . ,K, s = 2, . . . , L, (2.9)

u1ijrs ≤ xirs, i, j = 1, . . . , N, i 6= j, r = 2, . . . ,K, s = 1, . . . , L, (2.10)

u1ijrs ≤ xj r−1 s, i, j = 1, . . . , N, i 6= j, r = 2, . . . ,K, s = 1, . . . , L, (2.11)

xirs + xj r−1 s ≤ u1ijrs + 1, i, j = 1, . . . , N, i 6= j, r = 2, . . . ,K, s = 1, . . . , L, (2.12)

u2ijrs ≤ xirs, i, j = 1, . . . , N, i 6= j, r = 1, . . . ,K − 1, s = 1, . . . , L, (2.13)

u2ijrs ≤ xj r+1 s, i, j = 1, . . . , N, i 6= j, r = 1, . . . ,K − 1, s = 1, . . . , L, (2.14)

xirs + xj r+1 s ≤ u2ijrs + 1, i, j = 1, . . . , N, i 6= j, r = 1, . . . ,K − 1, s = 1, . . . , L, (2.15)

u3ijrs ≤ xirs, i, j = 1, . . . , N, i 6= j, r = 1, . . . ,K, s = 1, . . . , L− 1, (2.16)

u3ijrs ≤ xj r s+1, i, j = 1, . . . , N, i 6= j, r = 1, . . . ,K, s = 1, . . . , L− 1, (2.17)

xirs + xj r s+1 ≤ u3ijrs + 1, i, j = 1, . . . , N, i 6= j, r = 1, . . . ,K, s = 1, . . . , L− 1, (2.18)

u4ijrs ≤ xirs, i, j = 1, . . . , N, i 6= j, r = 1, . . . ,K, s = 2, . . . , L, (2.19)

u4ijrs ≤ xj r s−1, i, j = 1, . . . , N, i 6= j, r = 1, . . . ,K, s = 2, . . . , L, (2.20)

xirs + xj r s−1 ≤ u4ijrs + 1, i, j = 1, . . . , N, i 6= j, r = 1, . . . ,K, s = 2, . . . , L, (2.21)

1

KL

∑
r=1,...,K
s=1,...,L

xirs − ωi = ϕi − ψi, i = 1, . . . , N, (2.22)

xirs, zij , u
l
ijrs ∈ {0, 1}, i, j = 1, . . . , N, i 6= j, r = 1, . . . ,K, s = 1, . . . , L, l = 1, . . . , 4, (2.23)

ϕi, ψi ≥ 0, i = 1, . . . , N. (2.24)
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Firstly, note that condition (C1) is satisfied thanks to the definition of the x-variables
and constraint (2.2), which forces that every cell must belong to exactly one portion,
and thus, the resulting map is space-filling. Since all the individuals must appear in the
(K,L)-rectangular map, constraint (2.3) ensures that at least one cell is allocated for
every individual. The rectangular-shaped requirement in (C2) is stated by constraint
(2.4), which forces that for every pair the cells (r, s) and (r′, s′) belonging to the same
portion, Pi(x), all the (|r − r′| + 1) · (|s − s′| + 1) cells in-between them must belong
also to Pi(x). Constraint (2.5) models the correctness of zij = 1, i.e., if variable zij
takes the value 1, then, there must be two adjacent cells belonging to portions Pi(x)

and Pj(x) respectively. Note that two rectangles can be only adjacent on one side,
namely, from above, below, to the left or to the right. Each of those relative positions
are modeled through each summation on the left hand side in constraint (2.5). On the
other hand, constraints (2.6)–(2.9) model the correctness of zij = 0, this means that
if two portions are not adjacent neither from above, below, left or right, there must
not exist contiguous cells belonging to those portions. Constraints (2.10)–(2.21) model
the fact that variables u are the product of two x variables, as noted in Section 2.2.1
(McCormick, 1976). Constraint (2.22) ensures the correctness of the absolute value in
the area deviation in the objective function. Finally, the variables’ type is modeled with
constraints (2.23) and (2.24).

2.2.4 Writing the problem as an MILP

Thus, given a weighted graph G = (V,E,ω), Problem (RM)λ can be formulated as
the following MILP

max (2.1)
s.t. (2.2)–(2.24).

(RML)λ

In a first attempt, we solved (RML)λ using a commercial MILP solver. However,
even very small instances of (RML)λ turned out to be too hard for this solver. In the
following section we propose a matheuristic for our visualization problem, which achieves
a good fit in the adjacencies and the areas for the three datasets used in our experimental
section. The matheuristic has (RML)λ at its heart, since this MILP formulation, with
a few decision variables fixed to a given value, is solved in each iteration.

2.3 Algorithmic approach

The formulation (RML)λ has a hard combinatorial structure which mainly comes
from the lack of information about how the N portions could fit together into Ω to form
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a (K,L)-rectangular map. If valuable knowledge about the relative positions among
the portions were provided, the number of possible layouts would be dramatically re-
duced and Problem (RML)λ would become computationally tractable. Similar ideas
can be found in Facility Layout, where customized procedures are designed to deter-
mine a reliable relative positioning among the facilities (Anjos and Vieira, 2016), and
Cartography, where it is customary to impose that each portion must contain a point,
which is usually the centroid of the geographical region (Duarte et al., 2014; Heilmann
et al., 2004; Wood and Dykes, 2008).

In a similar fashion, our solution approach to tackle (RML)λ is based on finding a
set of points, called hereafter locating points, which has valuable information about the
frequencies and the adjacency relation between individuals. Due to the grid structure of
our visualization model, we determine a set of locating cells instead. Thus, let us assume
that we have an external procedure that generates the locating points, q = {q1, . . . , qN}
such that qi ∈ Pi, i = 1, . . . , N . We define the set of locating cells C as,

C = {(i, r, s) : ∃qi ∈ q which lies inside the cell (r, s),

1 ≤ i ≤ N, 1 ≤ r ≤ K, 1 ≤ s ≤ L} .

Thus, solving Problem (RML)λ with locating cells becomes

max (2.1)
s.t. (2.2)–(2.24)

xirs = 1 (i, r, s) ∈ C.
(RML)λ,C

The constraints related to the locating cells are heuristic, i.e., for arbitrary locating
cells we cannot guarantee that the optimal solution obtained for (RML)λ,C is also
optimal to (RML)λ. In order to obtain a good solution to (RML)λ, we construct
an initial set of locating cells and perturbe them via an iterative procedure to further
improve the solution. The initial set of locating cells is built by a new approach based
on MDS (Kruskal, 1964; Torgerson, 1958), the MultiDimensional Scaling for (K,L)-
rectangular maps, which can be applied as long as a dissimilarity measure is given
(Carrizosa et al., 2007).

2.3.1 Multidimensional Scaling for (K,L)-rectangular maps

In order to find a set of points q that yields good (K,L)-rectangular maps, we pro-
pose a new approach based on solving a nonsmooth continuous optimization problem.
This strategy arises from adapting the MDS framework to the special features of our
problem by providing the points information about adjacencies and individuals’ fre-
quencies. Thus, our tailored MDS takes into account that the locating points are to be
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used by (RML)λ,C , i.e., they have to lie in the unit square Ω and be part of the non-
overlapping rectangular portions Pi whose areas are close to ωi and which are related
through an adjacency relation. Abbiw-Jackson et al. (2006), Klimenta and Brandes
(2013) and Liu et al. (2013) also use MDS approaches for planar visualization maps.

Let D = (dij) be the shortest path distance matrix between all nodes of graph
G = (V,E,ω). We want to find N points which lie in Ω, qi = (q1

i , q
2
i ), contained in N

rectangles defined by their NW and SE corners, (aNWi , bNWi ) and (aSEi , bSEi ) respectively.
These rectangles, called in what follows MDS rectangles, are surrogate of the rectangular
portions Pi in (RML)λ, with some important differences. First, we do not impose that
they are made of cells of the region Ω, avoiding the difficulties of the combinatorial
part of Problem (RML)λ. Second, the MDS rectangles do not necessarily cover Ω.
Third, they may overlap. A related approach is developed by Anjos and Vieira (2016)
in Facility Layout context to determine the relative positions between the departments.

The locating points q are expected to be somehow central points of portions P in
(RML)λ,C , and thus the distance ‖qi − qj‖1 between locating points qi and qj should
follow the same pattern than the distance dij . Hence, we impose that

‖qi − qj‖1 ≈ κdij , (2.25)

for some κ, to be optimized. Observe that the distances between the locating points
are measured according to the `1 norm. Although the usual choice of distance in MDS
is the `2 norm, considering the `1 norm has the advantage that our MDS model deals
with rectangles with sides parallel to the coordinate axes. Hubert et al. (1992), Leung
and Lau (2004), Žilinskas and Žilinskas (2009) and Žilinskas (2012) also develop MDS
applications using the `1 norm.

We require two conditions to the MDS rectangles. We want the area of MDS rect-
angle Pi to approximate ωi, i.e.,

(aSEi − aNWi )(bNWi − bSEi ) ≈ ωi. (2.26)

Moreover, we want the MDS rectangles not to overlap, but this is imposed as a soft
constraint, forcing the area of each intersection being close to zero:

max
{

0,min{aSEi , aSEj } −max{aNWi , aNWj }
}
·

max
{

0,min{bNWi , bNWj } −max{bSEi , bSEj }
}
≈ 0.

(2.27)

With this notation, the MDS for (K,L)-rectangular maps (MDSRM) is stated as
the problem of finding rectangles, identified by their corner coordinates (aNWi , bNWi ) and
(aSEi , bSEi ), and points qi within minimal violation of soft constraints (2.25)–(2.27). This
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is expressed as the following nonlinear nonsmooth continuous optimization problem:

min γ1

N∑
i,j=1

(dij − κ‖qi − qj‖1)2

+γ2

N∑
i=1

((
aSEi − aNWi

) (
bNWi − bSEi

)
− ωi

)2
+γ3

N∑
i,j=1

(
max

{
0,min{aSEi , aSEj } −max{aNWi , aNWj }

}
·

max
{

0,min{bNWi , bNWj } −max{bSEi , bSEj }
})

s.t.
0 ≤ aNWi ≤ q1

i ≤ aSEi ≤ 1, i = 1, . . . , N

0 ≤ bSEi ≤ q2
i ≤ bNWi ≤ 1, i = 1, . . . , N

κ > 0,

aSEi , bSEi , aNWi , bNWi , q1
i , q

2
i ∈ R, i = 1, . . . , N,

(MDSRM)

where κ is a scaling variable and γ1, γ2, γ3 ≥ 0 are scaling constants. Note that we
can use a hyperbolic smoothing to approximate the absolute value and max and min

functions
|y| ≈

√
y2 + ε,

max{y, y′} =
y + y′ + |y′ − y|

2
≈
y + y′ +

√
(y′ − y)2 + ε

2
,

min{y, y′} =
y + y′ − |y′ − y|

2
≈
y + y′ −

√
(y′ − y)2 + ε

2
,

where ε > 0.

Observe than in case there exist i 6= j, where qi and qj belong to the same cell
in the (K,L)-grid, then (RM)λ,C is infeasible. If this happens, several strategies are
possible to recover a feasible problem. For instance, one could randomly perturb the
locating points qi and qj until they lie in different cells. Alternatively, one can replace
the constraint in (RM)λ,C related with locating points by a weaker constraint of the
form

qi ∈ Pi(x), ∀i ∈ R, (2.28)

where the set R ⊂ {1, . . . , N} is such that the different locating points belong to different
cells.
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2.3.2 Cell Perturbing Algorithm

In order to find a good solution to Problem (RML)λ, we propose an iterative al-
gorithm that solves (RML)λ,C for different set of locating cells C. Let RMLλ,C be the
optimal solution to Problem (RML)λ,C , v

(
RMLλ,C

)
its objective value, and C0 the

incumbent set of locating cells.
We start with C0 = CMDS , the set of locating cells obtained by solving Problem

(MDSRM). At each iteration of the procedure, the incumbent set is perturbed, yielding
C∗, and (RML)λ,C∗ is solved. If the objective value improves, i.e., v(RMLλ,C∗) >

v(RMLλ,C0), we update C0. We refer to this procedure as the Cell Perturbing Algorithm
(CPA), whose pseudocode is provided in Algorithm 2.1.

Algorithm 2.1 Cell Perturbing Algorithm (CPA)

Input: The set of locating cells derived from locating points obtained with (MDSRM),
CMDS , and a perturbing procedure, perturb(·).

1: C0 ← CMDS ;
2: Solve RMLλ,C0 ;
3: repeat
4: C∗ ← perturb(C0);
5: Solve RMLλ,C∗ ;
6: if v(RMLλ,C∗) > v(RMLλ,C0) then
7: RMLλ,C0 ← RMLλ,C∗ ;
8: C0 ← C∗;
9: end if

10: until stop condition is met
Output: C0, RMLλ,C0

The perturb(·) procedure in CPA admits different designs and ours uses a neighbor-
hood structure in the (K,L)-grid around the current set of locating cells. We define the
ρ-neighborhood of a cell (i, j) as the set of cells formed by those which are at distance
lower or equal than ρ, namely

Nρ ((r, s)) =
{

(r′, s′) : |r − r′|+ |s− s′| ≤ ρ
}
.

Figure 2.4 illustrates the N1 and N2 neighborhoods (shaded cells) of the set of locating
cells C = {(3, 2), (2, 9), (6, 5), (9, 2), (8, 9)} (marked with “×”) in Figures 2.4 (a) and
2.4 (b), respectively, on a (10, 10)-grid. Observe that the `1 norm is considered to
measure the distance between a pair of cells.

The perturb(·) procedure we have used in our experimental results consists of, given
a set of locating cells C, N new locating cells are selected randomly, with uniform proba-
bilities, each one belonging to its corresponding ρ-neighborhood. It is worth noting that
only movements which are consistent with constraint (2.2) are allowed, namely there
cannot be a locating cell belonging to two rectangles simultaneously. Other more sophis-
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(a) N1 (b) N2

Figure 2.4: N1 and N2 neighborhoods of locating cells C =
{(3, 2), (2, 9), (6, 5), (9, 2), (8, 9)}.

ticated designs of the perturb(·) procedure are possible, such as assigning nonuniform
probabilities the cells in the neighborhood, but our experimental results are satisfactory
with the choice above.

Having a good initial set of cells, as the one given by our tailored MDS, is essential
to ensure a good solution to (RML)λ in a few iterations of the CPA. Note that if the
optimal solution to Problem (RML)λ were known and the set of locating cells C is
chosen by taking N cells of such solution, one per rectangle, then the optimal solution
of Problem (RML)λ,C would have the same objective value than the optimal solution
of (RML)λ, although the layout might change. Thus, CPA would achieve the global
optimum if the whole space of possible locating cells were explored. Nevertheless, the
size of such space explodes with the dimension of the grid.

2.3.3 Embedded Cell Perturbing Algorithm

Solving the MILPs involved in the CPA, namely (RML)λ,C , for a tight grid might
be too time-consuming, and thus performing many iterations of the CPA becomes a
long task. In order to speed up the algorithm for tight grids, we design the Embedded
Cell Perturbing Algorithm (ECPA), which successively inserts coarser grids into tighter
ones performing some iterations of CPA in-between. The ECPA pseudocode is outlined
in Algorithm 2.2.

The subdivide(·) procedure arises from the requirement of transforming the set of
locating cells from a coarser grid to a tighter one when the grids are embedded. Our
choice is making such transformation in the simplest way, namely we randomly sample,
with equal probabilities, in the space of cells resulting from dividing the locating cells
on the coarser grid to become cells on the tight one. Since we consider embeddings in
which each cell is subdivided into four new cells (each row and each column is split into
two to form the tighter grid), one of those four cells is selected randomly to become
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Algorithm 2.2 Embedded Cell Perturbing Algorithm (ECPA)
Input: The number of levels in the hierarchy T . A set of embedded grids
{(Kt, Lt)}t=1,...,T . The set of locating cells arising from locating points obtained
with (MDSRM) on the (K1, L1)-grid, CMDS

(K1,L1). A perturb and subdivide proce-
dures, perturb(·) and subdivide(·).

1:
(
C∗(K1,L1), RMLλ,C∗

(K1,L1)

)
← CPA

(
CMDS

(K1,L1), perturb(·)
)

2: for t← 2 to T do
3: C∗(Kt,Lt) ← subdivide(C∗(Kt−1,Lt−1));

4:
(
C∗(Kt,Lt), RMLλ,C∗

(Kt,Lt)

)
← CPA

(
C∗(Kt−1,Lt−11), perturb(·)

)
;

5: end for
Output: C∗(KT ,LT ), RMLλ,C∗

(KT ,LT )

locating cell in the tighter one. Other splitting procedures might be considered as well
as nonuniform probabilities on the choice of the locating cells in the tighter grid.

Figure 2.5 illustrates the ECPA algorithm with a (10, 10) and (20, 20)-grids and 5

individuals. In Figure 2.5 (a), the set of 5 locating cells, found via the MDS procedure,
are depicted as “×" on a (10, 10)-grid. A (10, 10)-rectangular map obtained by per-
forming some iterations of CPA is shown in Figure 2.5 (b). Observe how the locating
cells have changed via the perturb(·) procedure in CPA in Figures 2.5 (a) and 2.5 (b).
In Figure 2.5 (c), the candidates to become locating cells on a (20, 20)-grid are dashed,
whereas Figure 2.5 (d) contains the resulting locating cells from the subdividing pro-
cedure. Finally, Figure 2.5 (e) includes a (20, 20)-rectangular map obtained by some
iterations of CPA, where the set of locating cells on the (20, 20)-grid are highlighted
with a “×”.

2.4 Computational experience

In this section we illustrate the ECPA approach to generate (K,L)-rectangular maps
using three examples of diverse nature. The first one consists of visualizing the pro-
portion of people in each blood group in the U.S. and the compatibility between the
groups. The other two examples are cartographic applications. A (K,L)-rectangular
map is presented for each dataset with K = L = 20. In Section 2.4.1 we describe the
three datasets used in the experiments and in Section 2.4.2 how the ECPA has been
implemented. We then discuss the fit of the (20, 20)-rectangular maps generated by
ECPA in terms of the adjacency relation and the areas.

2.4.1 Datasets

The first example, Blood, consists of the weighted graph which models the propor-
tion of people in the U.S. in each blood group (Stanford Blood Center, 2014), taking
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(a) Locating cells on a
(10, 10)-grid

(b) (10, 10)-rectangular map
found by CPA

(c) Candidates locating cells
for the (20, 20)-rectangular

map

(d) Locating cells for the
(20, 20)-rectangular map

(e) (20, 20)-rectangular map
found by CPA

Figure 2.5: Illustration of ECPA.

into account the blood compatibility between donor and recipient. In the Blood graph,
the nodes, and thus the individuals, are the blood groups, and two groups vi and vj

are adjacent if either vi can donate blood to vj , or viceversa. In the second exam-
ple, Netherlands, the individuals are the provinces of The Netherlands, and the data
represented is their (normalized) population (Statistics Netherlands, 2013). The prox-
imity measure considered is the geographical location, namely, two nodes are adjacent if
the corresponding provinces are adjacent in the geographical map. The third example,
Germany, is analogous to Netherlands but with a larger amount of individuals and adja-
cencies and frequencies of a different nature. The individuals are the 16 German federal
states, and the frequencies to be represented are the (normalized) geographical area
(Destatis, Statistisches Bundesamt, 2015). Figure 2.6 shows the Blood, Netherlands
and Germany graphs.

2.4.2 Experiments details

A (20, 20)-grid is considered to build the rectangular maps, each cell thus represent-
ing a 0.25% of the area of the visualization region. In order to obtain (20, 20)-rectangular
maps, we optimize the fit in adjacencies and areas. These are modeled by means of the
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number of adjacencies reproduced in the (20, 20)-rectangular map (|E ∩EP|), the num-
ber of false adjacencies added in the (20, 20)-rectangular map (|E ∩EP|), and the area
deviation measure (

∑N
i=1 |ωP

i −ωi|), as stated in conditions (C3) and (C4) in Section 2.2.

Finally, we consider λ ∈
{(

1

|E|
,

1

|E|
, 1

)
, (1, 0, 0), (0, 1, 0), (0, 0, 1)

}
.

The locating points are obtained by solving (MDSRM) in Section 2.3.1 with γ1 =

γ3 = 1 and γ2 = 1000. Since it is a multimodal problem, a multistart with 50 runs
is executed. These continuous nonlinear problems have been solved with the IPOPT
solver (Wächter and Biegler, 2006).

The ECPA has been coded in AMPL (Fourer et al., 1993) and all the MILPs involved
have been solved with CPLEX v12.6 (CPLEX, IBM ILOG, 2014) on a PC Intelr

Core
TM

i7-2600K, 16GB of RAM. The time has been limited to ten minutes for the two
smallest datasets, Blood and Netherlands, and to fifteen minutes for the largest one,
Germany. The algorithm has been performed with a hierarchy of T = 2 levels, where a
(10, 10)-grid is used for t = 1 and the (20, 20)-grid for t = 2. We have set the radius
of perturbation ρ = 1. We have set a maximum number of iterations of CPA on the
(10, 10)-grid for the three datasets equal to 50, and equal to 10 for the (20, 20)-grid in
the Blood example. For the two largest datasets, Netherlands and Germany, no cell
perturbation was performed on the (20, 20)-grid. Please note that, for all datasets, the
optimal (10, 10)-rectangular map was obtained in each step of the algorithm in a few
seconds, and thus within the time limit.

2.4.3 Results

The performance of ECPA can be found in Table 2.1 for λ =

(
1

|E|
,

1

|E|
, 1

)
as well

as for its extreme values, namely λ ∈ {(1, 0, 0) , (0, 1, 0) , (0, 1, 0)}.
For the Blood graph, ECPA obtained a (20, 20)-rectangular map in which 17 out of

19 adjacencies are reproduced, no false adjacencies are added and with an area deviation

of 0.072 when λ =

(
1

|E|
,

1

|E|
, 1

)
. The directions of the edges between the blood groups

have been depicted with arrows on the (20, 20)-rectangular map. We note here that
our model does not take into account the nature of the graph (directed or undirected).
Observe that the relations between the different groups are well represented through the
adjacency relation in the (20, 20)-rectangular map, at the same time that the percentage
of people belonging to each group is very accurately depicted. Varying the values of λ
we have been able to obtain (20, 20)-rectangular maps which either reproduce up to 17

adjacencies, which do not introduce any false adjacency or with a total area deviation
of 0.027, for λ equal to (1, 0, 0), (0, 1, 0) and (0, 0, 1) respectively.

For the Netherlands graph, we obtained a (20, 20)-rectangular map in which 22

out of 22 adjacencies are reproduced, 3 false adjacencies are added and with an area
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Table 2.1: ECPA matheuristic approach.

λ |E ∩ EP| |E ∩ EP|
N∑
i=1

|ωP
i − ωi| Figure

Blood

(
1

|E|
,

1

|E|
, 1

)
17 0 0.072 2.7

(1, 0, 0) 17 0 0.148 2.8
(0, 1, 0) 15 0 0.052 2.9
(0, 1, 0) 13 1 0.027 2.10

Netherlands

(
1

|E|
,

1

|E|
, 1

)
22 3 0.122 2.11

(1, 0, 0) 22 0 0.228 2.12
(0, 1, 0) 22 0 0.228 2.13
(0, 1, 0) 16 7 0.070 2.14

Germany

(
1

|E|
,

1

|E|
, 1

)
28 7 0.290 2.15

(1, 0, 0) 28 2 0.738 2.16
(0, 1, 0) 27 2 0.632 2.17
(0, 1, 0) 19 14 0.119 2.18

deviation of 0.122 when λ =

(
1

|E|
,

1

|E|
, 1

)
. Varying the value of λ to its extreme

values we have been able to reproduce all the adjacencies involved in the graph, i.e., 22

adjacencies without introducing any false adjacency. The lowest area deviation we have
found is equal to 0.070.

For the Germany graph, we obtained a (20, 20)-rectangular map in which 28 out of 28

adjacencies are reproduced, 7 false adjacencies are added and with an area deviation of

0.290 when λ =

(
1

|E|
,

1

|E|
, 1

)
. For extreme values of λ, the maximum number of true

adjacencies we are able to reproduce is 28 out of 28, while the minimum number of false
adjacencies added is 2, and the minimum total area deviation is 0.119. Augmenting the
number of individuals to represent yields worse error incurred in the representation of
the areas when the size of the grid is maintained.

In view of the results obtained for the Blood, Netherlands, and Germany, we con-
clude that our model and solution approach are able to obtain good-quality (K,L)-
rectangular maps, in the sense that a good fit in the adjacencies and areas as stated
in (C3) and (C4) are obtained. In two out of three cases, Netherlands and Germany,
we are able to reproduce 100% of adjacencies, whereas a very small number of false
adjacencies is introduced. Indeed, in Blood and Netherlands the minimum area error
obtained is in an order of magnitude of 10−2.

The output of our experimental results for ECPA is presented in Figures 2.7–2.18.
Figure 2.6 (a) depicts the Blood graph G, Figures 2.7 (a)– 2.10 (a) the (20, 20)-
rectangular maps obtained as detailed in Section 2.4.2 with the locating cells marked
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with a “×”, and Figures Figures 2.7 (b)– 2.10 (b) the graphs associated to the (20, 20)-
rectangular maps, GP, in which the edges which are reproduced in the (20, 20)-rectangular
map (E ∩ EP) are depicted as a full line and those adjacent rectangles which are not
edges in G (E ∩ EP) are depicted as dashed lines. The same representation is used
for Netherlands and Germany datasets, which can be found in Figures 2.11–2.14 and
Figures 2.15–2.18, respectively.
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Figure 2.6: Graphs of Blood, Netherlands and Germany
datasets.
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(b) Graph associated with the
(20, 20)-rectangular map, GP

Figure 2.7: Blood (20, 20)-rectangular map with

|E ∩ EP| = 17, |E ∩ EP| = 0,
N∑
i=1

|ωP
i − ωi| = 0.072.
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(b) Graph associated with the
(20, 20)-rectangular map, GP

Figure 2.8: Blood (20, 20)-rectangular map with

|E ∩ EP| = 17, |E ∩ EP| = 0,
N∑
i=1

|ωP
i − ωi| = 0.148.
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(b) Graph associated with the
(20, 20)-rectangular map, GP

Figure 2.9: Blood (20, 20)-rectangular map with

|E ∩ EP| = 15, |E ∩ EP| = 0,
N∑
i=1

|ωP
i − ωi| = 0.052.
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Figure 2.10: Blood (20, 20)-rectangular map with

|E ∩ EP| = 13, |E ∩ EP| = 1,
N∑
i=1

|ωP
i − ωi| = 0.027.
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(b) Graph associated with the
(20, 20)-rectangular map, GP

Figure 2.11: Netherlands (20, 20)-rectangular map with

|E ∩ EP| = 22, |E ∩ EP| = 3,
N∑
i=1

|ωP
i − ωi| = 0.122.
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(b) Graph associated with the
(20, 20)-rectangular map, GP

Figure 2.12: Netherlands (20, 20)-rectangular map with

|E ∩ EP| = 22, |E ∩ EP| = 0,
N∑
i=1

|ωP
i − ωi| = 0.228.
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(b) Graph associated with the
(20, 20)-rectangular map, GP

Figure 2.13: Netherlands (20, 20)-rectangular map with

|E ∩ EP| = 22, |E ∩ EP| = 0,
N∑
i=1

|ωP
i − ωi| = 0.228.
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(b) Graph associated with the
(20, 20)-rectangular map, GP

Figure 2.14: Netherlands (20, 20)-rectangular map with

|E ∩ EP| = 16, |E ∩ EP| = 7,
N∑
i=1

|ωP
i − ωi| = 0.070.
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(b) Graph associated with the
(20, 20)-rectangular map, GP

Figure 2.15: Germany (20, 20)-rectangular map with

|E ∩ EP| = 28, |E ∩ EP| = 7,
N∑
i=1

|ωP
i − ωi| = 0.290.
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(b) Graph associated with the
(20, 20)-rectangular map, GP

Figure 2.16: Germany (20, 20)-rectangular map with

|E ∩ EP| = 28, |E ∩ EP| = 2,
N∑
i=1

|ωP
i − ωi| = 0.738.
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(b) Graph associated with the
(20, 20)-rectangular map, GP

Figure 2.17: Germany (20, 20)-rectangular map with

|E ∩ EP| = 27, |E ∩ EP| = 2,
N∑
i=1

|ωP
i − ωi| = 0.632.
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(b) Graph associated with the
(20, 20)-rectangular map, GP

Figure 2.18: Germany (20, 20)-rectangular map with

|E ∩ EP| = 19, |E ∩ EP| = 14,
N∑
i=1

|ωP
i − ωi| = 0.119.

2.5 Conclusions

In this chapter we have developed a new Mathematical Optimization approach to
address the problem of visualizing by means of rectangular maps a frequency distribution
and an adjacency relation attached to a set of individuals. This kind of data can be
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modeled as a weighted graph and thus, our aim is to obtain rectangular maps in which
the adjacencies in the graph are correctly reproduced, whereas as few false adjacencies
as possible are introduced and the error incurred by approximating the frequencies by
the rectangles’ areas is as small as possible. The problem is formulated as an MILP.
Due to its hard combinatorial structure, a tailored Multidimensional Scaling (MDS)
has been designed to determine the relative positions of the rectangles in the map, and
thus to reduce the number of possible layouts. This MDS acts as a surrogate of the
problem, whose partial solution (locating cells) becomes a starting point for an iterative
algorithm to improve the set of locations cells. Our approach has been illustrated using
three examples, showing that our results are competitive, most of the true adjacencies
(the ones in the original weighted graph) can be reproduced by the rectangular map,
introducing only a few false ones, and with low area deviations.
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In this chapter we go a step further in the visualization of a frequency distribution
and a proximity relation. Assuming that proximities between individuals in the dataset
are measured as dissimilarities, the (K,L)-rectangular maps in Chapter 2 are generalized
by considering more flexible portions than rectangles, the so-called box-connected rect-
angles, and alternative proximity measures to adjacencies, namely the Single, Complete
and Average Linkage. Similarly, the box-connected rectangles must form a partition
of the unit square, yielding a Space-filling Box-connected Map (SBM). The construc-
tion of an SBM is formally stated as a Mathematical Optimization problem, which
is solved heuristically by using Large Neighborhood Search. Our experimental results
demonstrate that our procedure provides SBMs with a good fit in both the frequency
distribution and the proximity relation.

3.1 Introduction

Information Visualization usually has to deal with the proper representation of a
set of individuals, V = {v1, . . . , vN}, to which there is attached a frequency distri-
bution ω = (ω1, . . . , ωN ), such that

∑N
i=1 ωi = 1 and ωi ≥ 0, i = 1, . . . , N (Spence

and Lewandowsky, 1991). Besides this piece of information, datasets usually enclose
knowledge about proximity relations between the individuals. Assuming that proxim-
ities between individuals in V are measured as dissimilarities, δ = (δij)i,j=1,...,N , this
chapter is devoted to develop a general optimization based-framework to visualize both
ω and δ. Following Chapter 2 philosophy, we seek a visualization framework consist-
ing on a partition of the unit square in the plane Ω = [0, 1] × [0, 1] subdivided into
portions P = (P1, . . . , PN ) whose areas represent the frequencies and the proximities
between the portions, to be properly defined, depict the dissimilarities, yielding a planar
space-filling visualization map.

As discussed in Chapter 1, combining simultaneously the visualization of a frequency
distribution and a dissimilarity relation is still a challenging problem to which very
specific (ad-hoc) approaches exist. For instance, tools to build cartograms (Dorling,
1996; de Berg et al., 2010; Heilmann et al., 2004; Kreveld and Speckmann, 2007; Tobler,
2004) and proportional symbol maps (Cano et al., 2013; Kunigami et al., 2014) take
advantage of the geographical information to properly depict dissimilarities, yielding
very specific approaches that usually cannot be extended to more general examples such
as the ones handled in Section 3.4. Other attempts in the Information Visualization field
either disregard dissimilarities or frequencies, or they are not space-filling visualization
frameworks (Carrizosa et al., 2015b; Dörk et al., 2012; Fried et al., 2015; Gómez-Nieto
et al., 2014; Liu et al., 2015; Strong and Gong, 2014).

In Chapter 2, space-filling rectangular maps are proposed, which take into consid-
eration adjacencies as measure of proximity and frequencies. However, the geometrical



3.2. The Mathematical Optimization model 51

shape used to represent each individual (a rectangle) seems to be too rigid to give a
good fit in both types of information. In Kreveld and Speckmann (2007), there is an ex-
ample illustrating that it may be impossible to represent accurately both dissimilarities
and frequencies in space-filling rectangular maps. Therefore, in order to overcome this
drawback, the space-filling visualization framework developed in this chapter considers
portions in P more flexible than rectangles, namely connected union of rectangles which
verify the so-called box-connectivity property (to be formally stated later). We refer to
such representation hereafter as a Space-filling Box-connected Map (SBM).

The remainder of this chapter is structured as follows. In Section 3.2, we first
establish the conditions that an SBM must satisfy. After defining the concept of box-
connectivity, the problem of constructing an SBM is formally stated as a biobjective
Mixed Integer Nonlinear Problem (MINLP) and this is then reformulated into two
single-objective Mixed Integer Linear Programs (MILP). Finally, an equivalent formu-
lation to these MILPs is provided, which, although less natural, is shown to be tighter
in general. Due to the high computational effort needed to solve such optimization
problems, a matheuristic is to be used. In Section 3.3, Large Neighborhood Search
(LNS) (Pisinger and Ropke, 2010; Shaw, 1998) is adapted to our problem. Section 3.4
contains the numerical experiments of our methodology on three datasets of different
nature. Finally, Section 3.5 closes the chapter with some conclusions.

3.2 The Mathematical Optimization model

Given a set of individuals V = {v1, . . . , vN} with a distribution of frequencies ω =

(ω1, . . . , ωN ) and a dissimilarity measure δ = (δij)i,j=1,...,N attached, our aim is to build
a Space-filling Box-connected Map (SBM) which depicts both pieces of information. In
what follows we state the conditions that an SBM must satisfy.

In order to construct an SBM, we consider the unit square Ω partitioned intoK rows
and L columns, called in what follows (K,L)-grid. Pairs of cells forming a (K,L)-grid
are considered adjacent if they share one full side, which implies that a cell can have at
most four adjacent cells. Grid structures are commonly used in Reserve Network design
to arrange a connected union of sites to protect ecosystems and species (Jafari and
Hearne, 2013; Önal and Briers, 2006; Önal et al., 2016). Since the grid layout provides
a well-structured and compact representation, it has been also used in Information
Visualization frameworks (Abbiw-Jackson et al., 2006; Eppstein et al., 2015; Fried et
al., 2015; Liu et al., 2015; Strong and Gong, 2014), and in Facility Layout as a tool to
easily measure the area of the facilities (Kochhar et al., 1998).

Definition 3.1. Given two cells (r, s) and (r′, s′) in a (K,L)-grid, we define the box
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Figure 3.1: Shaded cells in (a), (b) and (c) are not box-connected regions, while shaded
cells in (d) and (e) are box-connected regions.

generated by (r, s) and (r′, s′) as

B ((r, s), (r′, s′)) = {(r′′, s′′) ∈ (K,L)-grid : min{r, r′} ≤ r′′ ≤ max{r, r′},
min{s, s′} ≤ s′′ ≤ max{s, s′}} .

Definition 3.2. Let S be a subset of cells of a (K,L)-grid and let |S| denote its cardi-
nality. S is said to be box-connected if one of these conditions holds:

1. |S| = 1.

2. |S| = 2 and its two cells are adjacent.

3. |S| ≥ 3 and for all non-adjacent (r, s), (r′, s′) ∈ S, there exists
(r′′, s′′) ∈ B ((r, s), (r′, s′)) ∩ S such that (r′′, s′′) 6= (r, s) and (r′′, s′′) 6= (r′, s′).

Each individual vi must be depicted in the SBM as a unique box-connected portion
Pi made of cells in the (K,L)-grid. Shaded cells in Figures 3.1 (a) - 3.1 (c) represent
portions that are not allowed in our representation, since they do not verify the box-
connectivity stated in Definition 3.2. Regarding Figure 3.1 (a), there are no shaded cells
in the intersection of the set containing the shaded cells and the box B((2, 2), (2, 4)),
except for (2, 2) and (2, 4). Analogously, in Figure 3.1 (b) considering B((2, 2), (3, 3)).
Thus, we observe that disconnected portions are obviously not box-connected. Fi-
nally, Figure 3.1 (c) violates box-connectivity when considering, for instance, the box
B((2, 4), (4, 4)). Possible shapes allowed to represent the individuals in V are depicted
in Figures 3.1 (d) and 3.1 (e).

The construction of an SBM regards the partition of Ω into N box-connected por-
tions, which are made of cells in the (K,L)-grid in which Ω is subdivided, and in such a
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way that the areas of the portions depict the frequencies, ω, and the distances between
the portions are proportional to the dissimilarities, δ. These statements can be summed
up in the following conditions:

(C1) The portions in P = (P1, . . . , PN ) form a partition of Ω = [0, 1]× [0, 1],

(C2) Pi is a box-connected region, made up of a collection of cells of the (K,L)-grid in
which Ω is divided, i = 1, . . . , N ,

(C3) distance(Pi, Pj) ∝ δij , i, j = 1, . . . , N , i 6= j,

(C4) area(Pi) = ωi, namely
1

K × L
|Pi| = ωi, i = 1, . . . , N , where |Pi| denotes the

number of cells in Pi, i = 1, . . . , N .

Since the portions in P are made of connected unions of cells and they form a
partition of Ω, the grid structure helps to easily measure the proximity and the area
of the portions. In order to measure the distance between portions Pi and Pj in (C3),
those usually used in Cluster Analysis like the Single, Complete and Average Linkage
(Hansen and Jaumard, 1997) seem suitable for an SBM.

An SBM which satisfies conditions (C1) and (C2) can be obtained straightforwardly
by allocating cells belonging to the same portion sequentially until filling Ω. However,
including conditions (C3) and (C4) as hard requirements might make the problem un-
feasible (Kreveld and Speckmann, 2007). Thus, our model consists of building SBMs
in which the errors made by approximating the scaled dissimilarities, through a real
positive variable κ, by the distances between the portions, and the frequencies by their
areas, both measured in absolute value, are minimized. Indeed, to compare those dis-
tances with dissimilarities we follow the Multdidimensional Scaling approach (Kruskal,
1964; Torgerson, 1958). Our model considers then the violation of conditions (C3) and
(C4) as objectives to be minimized, yielding a Biobjective Space-filling Box-Connected
Map (BSBM) model, which reads as follows

min
∑

i,j=1,...,N
i 6=j

|distance(Pi, Pj)− κδij |

min
∑

i=1,...,N

|area(Pi)− ωi|

s.t. P = (P1, . . . , PN ) satisfying (C1) and (C2)
κ ≥ 0.

(BSBM)

Problem (BSBM) can be reformulated as a parametric problem, parametrized by
a real positive number α, in which the error between the distances in the SBM and
the scaled dissimilarities is minimized among those maps whose area error is less or
equal than α, yielding the single objective problem (α − SBM). (BSBM) can be
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also parametrized by a real positive number β, in which the error between the areas
depicted in the SBM is minimized among those maps whose error between the scaled
dissimilarities and the distances in the map is less or equal than β, yielding the single
objective problem (β − SBM):

min
∑

i,j=1,...,N
i6=j

|distance(Pi, Pj)− κδij |

s.t. P = (P1, . . . , PN ) satisfying (C1) and (C2)∑
i=1,...,N

|area(Pi)− ωi| ≤ α

κ ≥ 0.

(α− SBM)

min
∑

i=1,...,N

|area(Pi)− ωi|

s.t. P = (P1, . . . , PN ) satisfying (C1) and (C2)∑
i,j=1,...,N

i 6=j

|distance(Pi, Pj)− κδij | ≤ β

κ ≥ 0.

(β − SBM)

In what follows, we formally state Problem (α−SBM) as a Mixed Integer Nonlinear
Program (MINLP), and a similar approach can be used for (β − SBM).

3.2.1 Decision variables

Let xirs, i = 1, . . . , N , r = 1, . . . ,K and s = 1, . . . , L, be binary variables which
determine if cell (r, s) belongs to portion Pi or not, namely

xirs =

{
1 if cell (r, s) belongs to portion Pi
0 otherwise.

Thanks to these variables, we express portion Pi as Pi(x) = {(r, s) : xirs = 1, r =

1, . . .K, s = 1, . . . , L}.

Finally, let κ be a positive real variable which scales the dissimilarities δ.

3.2.2 Objective function

The expression of the objective function in (α − SBM) depends on the choice of
the distance function. With the choices mentioned above related to Cluster Analysis,
namely the Single Linkage (SL), the Complete Linkage (CL) and the Average Link-
age (AvL), these distances can be easily expressed through the binary variables of our
mathematical optimization problem, namely xirs. Firstly, we need to define how to
measure the distance between two single cells. Since the grid structure naturally calls
for the use of the `1-norm, given two cells (r, s) and (r′, s′), the distance between them
is equal to |r − r′|+ |s− s′|, where r, r′ = 1, . . . ,K and s, s′ = 1, . . . , L. Thus, the dis-
tance between two portions Pi(x) and Pj(x) on an SBM, distance(Pi(x), Pj(x)), can be
expressed respectively as SL(Pi(x), Pj(x)), or CL(Pi(x), Pj(x)), or AvL(Pi(x), Pj(x)),
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defined as

SL(Pi(x), Pj(x)) = min
r,r′=1,...,K
s,s′=1,...,L

{
|r − r′|+ |s− s′| : xirs = xjr′s′ = 1

}
, (3.1)

CL(Pi(x), Pj(x)) = max
r,r′=1,...,K
s,s′=1,...,L

{
|r − r′|+ |s− s′| : xirs = xjr′s′ = 1

}
, (3.2)

AvL(Pi(x), Pj(x)) =
1

|Pi(x)||Pj(x)|
∑

r,r′=1,...,K
s,s′=1,...,L

(|r − r′|+ |s− s′|) · xirs · xjr′s′ , (3.3)

where |Pi(x)| (respectively |Pj(x)|) denotes the number of cells of the portion Pi(x),
i.e., |Pi(x)| =

∑
r=1,...,K
s=1,...,L

xirs.

3.2.3 Constraints

We now write the constraints in Problem (α − SBM) using the decision variables
above, and give a brief explanation of each group of constraints.

∑
i=1,...,N

xirs = 1, r = 1, . . . ,K, s = 1, . . . , L, (3.4)

∑
r=1,...,K
s=1,...,L

xirs ≥ 1, i = 1, . . . , N, (3.5)

xirs ∈ {0, 1}, i = 1, . . . , N, (3.6)

κ ≥ 0 (3.7)∑
(r′′,s′′)∈B((r,s),(r′,s′))

(r′′,s′′)6=(r,s)
(r′′,s′′)6=(r′,s′)

xir′′s′′ ≥ xirs + xir′s′ − 1, i = 1, . . . , N, r, r′ = 1, . . . ,K, (3.8)
s, s′ = 1, . . . , L, such that cells
(r, s) and (r′, s′) are non-adjacent,

∑
i=1,...,N

∣∣∣∣∣∣∣∣
 1

KL

∑
r=1,...,K
s=1,...,L

xirs

− ωi
∣∣∣∣∣∣∣∣ ≤ α. (3.9)

Constraint (3.4) models condition (C1), since it forces that every cell must belong
to exactly one portion. In order to have at least one cell assigned to every portion,
constraint (3.5) is considered. Constraints (3.6) and (3.7) establish the type of the
variables. The box-connectivity in Definition 3.2, and required in (C2), is enforced
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through constraint (3.8). The box-connectivity of Pi(x) is enforced by imposing that
the box generated by each pair of non-adjacent cells belonging to Pi(x) (two cells that
do not share a common boundary) must contain also cells of Pi(x), namely the inter-
section between such box (excluding its two generator cells) and the portion must be
nonempty. Finally, the error incurred by approximating the frequencies ω by the area
of the portions is modeled through constraint (3.9).

3.2.4 Writing the problem as an MILP

Thus, given a frequency distribution ω and a dissimilarity measure δ, Problem
(α− SMB) is stated as MINLP as

min
∑

i,j=1,...,N
i 6=j

|distance(Pi(x), Pj(x))− κδij |

s.t. (3.4)–(3.9),

(α− SBM)

where distance(Pi(x), Pj(x)) in the objective function is replaced by either SL(Pi(x), Pj(x)),
CL(Pi(x), Pj(x)) or AvL(Pi(x), Pj(x)), as in (3.1)-(3.3) respectively.

One has that, for the SL and CL distances, (α−SBM) can be easily reformulated
as an MILP, and as an approximation to an MILP in the case of AvL. These three refor-
mulations of (α−SBM), one for each distance function, are described in what follows,
and they are called (α−SBM)LSL, (α−SBM)LCL and (α−SBM)LAvL, respectively. Note
that the statement of Problem (β−SBM) as an MINLP and its pertinent reformulation
as an MILP or an approximation to an MILP, yielding (β − SBM)LSL, (β − SBM)LCL
and (β − SBM)LAvL, are straightforward from the work done for (α− SBM).

In all three cases, we use the usual techniques to linearize the product of binary
variables proposed by McCormick (1976) and the absolute values both in the objective
function and constraint (3.9). Thus, we consider the following reformulations R1, R2
and R3 stated as follows:

R1: let uijrsr′s′ be defined as uijrsr′s′ = xirs · xir′s′ , which implies that

uijrsr′s′ =

{
1 if cell (r, s) belongs to portion Pi(x) and cell (r′, s′) belongs to portion Pj(x)

0 otherwise.

The following set of constraints is also needed to be included in the linear reformulation
to properly linearize the product:
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uijrsr′s′ ≤ xirs i, j = 1, . . . N, r, r′ = 1, . . . ,K, s, s′ = 1, . . . , L (3.10)

uijrsr′s′ ≤ xjr′s′ i, j = 1, . . . N, r, r′ = 1, . . . ,K, s, s′ = 1, . . . , L (3.11)

xirs + xjr′s′ ≤ uijrsr′s′ + 1 i, j = 1, . . . N, r, r′ = 1, . . . ,K, s, s′ = 1, . . . , L (3.12)

uijrsr′s′ ∈ {0, 1} i, j = 1, . . . N, r, r′ = 1, . . . ,K, s, s′ = 1, . . . , L. (3.13)

R2: The objective function of (α − SBM) is written as a linear objective subject
to additional constraints by considering the positive continuous variables ϕij , ψij ≥ 0,
i, j = 1, . . . , N , i 6= j:

min


∑

i,j=1,...,N
i6=j

|distance(Pi(x), Pj(x))− κδij | : s.t. (3.4)− (3.9)

 =

= min
∑

i,j=1,...,N
i 6=j

(ϕij + ψij)

s.t.


(3.4)− (3.9)
distance(Pi(x), Pj(x))− κδij = ϕij − ψij i, j = 1, . . . , N, i 6= j

ϕij ≥ 0 i, j = 1, . . . , N, i 6= j

ψij ≥ 0 i, j = 1, . . . , N, i 6= j

R3: Constraint (3.9) is written as the following set of linear constraints by adding
the positive continuous variables yi, i = 1, . . . , N :

 1

KL

∑
r=1,...,K
s=1,...,L

xirs

− ωi ≤ yi i = 1, . . . , N (3.9a)

 1

KL

∑
r=1,...,K
s=1,...,L

xirs

− ωi ≥ −yi i = 1, . . . , N (3.9b)

∑
i=1,...,N

yi = α (3.9c)

yi ≥ 0 i = 1, . . . , N. (3.9d)
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Single Linkage

Let zij and ηijrsr′s′ be defined as follows:

zij = min
r,r′=1,...,K
s,s′=1,...,L

{
|r − r′|+ |s− s′| : xirs = xjr′s′ = 1

}

ηijrsr′s′ =

{
1 if the minimum in SL(Pi(x), Pj(x)) is attained at pair (r, s), (r′, s′)

0 otherwise.

Thus, (α − SBM)SL is stated by using these set of variables plus the convenient
constraints to ensure that the distances between portions correspond with the Single
Linkage.

(α− SBM)SL =

= min


∑

i,j=1,...,N
i 6=j

|SL(Pi(x), Pj(x))− κδij | : s.t. (3.4)− (3.9)


= min

∑
i,j=1,...,N

i 6=j

|zij − κδij |

s.t.



(3.4)− (3.9)
zij ≥ (|r − r′|+ |s− s′|) · ηijrsr′s′ i, j = 1, . . . , N, i 6= j

r, r′ = 1, . . . ,K, s, s′ = 1, . . . , L

zij ≤ (|r − r′|+ |s− s′|) + (K + L− 2)(1− xirs · xjr′s′) i, j = 1, . . . , N, i 6= j

r, r′ = 1, . . . ,K, s, s′ = 1, . . . , L∑
i,j=1,...,N

i6=j
r,r′=1,...,K
s,s′=1,...,L

ηijrsr′s′ ≥ 1

ηijrsr′s′ ≤ xirs · xjr′s′ i, j = 1, . . . , N, i 6= j

r, r′ = 1, . . . ,K, s, s′ = 1, . . . , L

ηijrsr′s′ ∈ {0, 1} i, j = 1, . . . , N, i 6= j

r, r′ = 1, . . . ,K, s, s′ = 1, . . . , L.

First and second added constraints ensure that variables zij are well-defined, i.e.,
if the minimum is achieved in cells (r, s) and (r′, s′), then zij is equal to the minimum
distance between portions Pi and Pj . Therefore, these constraints are inactive either
if ηijrsr′s′ = 0 or if (r, s) or (r′, s′) do not belong to Pi and Pj , respectively. Third
constraint is to impose that there must exist at least one pair of cells which give the
minimum distance, and fourth that each pair must belong to the corresponding portion.
Finally, we impose the binary requirement for ηijrsr′s′ . Observe that, by applying R1-
R3 reformulations, the formulation of (α−SBM)SL as an MILP, namely (α−SBM)LSL,
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is straightforward.

Complete Linkage

Similar reasoning applied to Single Linkage leads to the statement of (α−SBM)CL

as an MILP. Let zij and ηijrsr′s′ be defined as follows:

zij = max
r,r′=1,...,K
s,s′=1,...,L

{
|r − r′|+ |s− s′| : xirs = xjr′s′ = 1

}

ηijrsr′s′ =

{
1 if the maximum in CL(Pi(x), Pj(x)) is attained at pair (r, s), (r′, s′)

0 otherwise.

Thus, (α − SBM)CL is stated by using these set of variables plus the convenient
constraints to ensure that the distances between portions correspond with the Complete
Linkage.

(α− SBM)CL =

= min


∑

i,j=1,...,N
i6=j

|CL(Pi(x), Pj(x))− κδij | : s.t. (3.4)− (3.9)


= min

∑
i,j=1,...,N

i 6=j

|zij − κδij |

s.t.



(3.4)− (3.9)
zij ≥ (|r − r′|+ |s− s′|) · xirs · xjr′s′ i, j = 1, . . . , N, i 6= j

r, r′ = 1, . . . ,K, s, s′ = 1, . . . , L

zij ≤ (|r − r′|+ |s− s′|) · ηijrsr′s′ + (K + L− 2)(1− ηijrsr′s′) i, j = 1, . . . , N, i 6= j

r, r′ = 1, . . . ,K, s, s′ = 1, . . . , L∑
i,j=1,...,N
r,r′=1,...,K
s,s′=1,...,L

ηijrsr′s′ ≥ 1

ηijrsr′s′ ≤ xirs · xjr′s′ i, j = 1, . . . , N, i 6= j

r, r′ = 1, . . . ,K, s, s′ = 1, . . . , L

ηijrsr′s′ ∈ {0, 1} i, j = 1, . . . , N, i 6= j

r, r′ = 1, . . . ,K, s, s′ = 1, . . . , L

First added constraint ensures that for any pair of cells belonging to two different
portions, the distance between those portions is greater or equal than the distance
between such cells. Second one is to ensure that the distance between two portions
is exactly the maximum distance between all possible pairs of cells, since ηijrsr′s′ are
precisely forcing that. Third constraint is to impose that there must exist at least one
pair of cells which give the maximum distance, and fourth that each pair must belong
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to the corresponding portion. Finally, we impose the binary requirement for ηijrsr′s′ .
Observe that, by applying R1-R3 reformulations, the formulation of (α− SBM)CL as
an MILP, namely (α− SBM)LCL, is straightforward.

Average Linkage

Since the frequency associated to individual vi is represented through the area of
portion Pi, we consider a surrogate of the expression of the average distance, (3.3),
by approximating the number of cells of Pi by |Pi| = ωiKL, yielding the following
expression for the Approximated Average Linkage (AvLapp)

AvLapp(Pi(x), Pj(x)) =
1

ωiωjK2L2

∑
r,r′=1,...,K
s,s′=1,...,L

(|r − r′|+ |s− s′|) · xirs · xjr′s′ . (3.14)

(α− SBM)AvL =

= min


∑

i,j=1,...,N
i6=j

|AvLapp(Pi(x), Pj(x))− κδij | : s.t. (3.4)− (3.9)


By applying R1-R3 reformulations, the formulation of (α−SBM)AvL as an MILP,

namely (α− SBM)LAvL, is obtained.

3.2.5 A tighter model

Problems (α− SBM) and (β − SBM) enforce the box-connectivity of the portions
P in the SBM through constraint (3.8). There exist several attempts in the literature
which deal with the problem of modeling connectivity with integer programming, for
instance using graph theory (Jafari and Hearne, 2013; Önal and Briers, 2006), designing
the connected portions according to fixed locations (Önal et al., 2016), or considering
node-cut sets (Carvajal et al., 2013; Wang et al., 2015).

Definition 3.3. Let G = (U,E) be a graph, whose nodes U are the cells of a (K,L)-grid.
If two nodes u, u′ ∈ U are adjacent on the grid, then there exists an edge (u, u′) ∈ E
linking the two nodes.

Given two non-adjacent nodes u, v ∈ U , a set of nodes C ⊆ U \ {u, v} is a node-
cut separating u and v if there is no path between u and v in the subgraph G′ =

(U \ C,E \ E′), where E′ = {(w,w′) : w,w′ ∈ C ∪ {u, v}}.

Figure 3.2 illustrates some possible node-cuts on a (4, 4)-grid: a horizontal cut for
cells (1, 2) and (4, 4) in Figure 3.2 (a), a vertical cut for the same cells in Figure 3.2 (b)



3.2. The Mathematical Optimization model 61

1 2 3 4

1

2

3

4

(a) Horizontal node-cut
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(b) Vertical node-cut
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(c) Diagonal node-cut

Figure 3.2: Dashed cells illustrate node-cuts of shaded cells on a (4, 4)-grid

and a diagonal cut in Figure 3.2 (b) for cells (2, 2) and (3, 3).
Thanks to Definition 3.3, the box-connectivity constraint, namely (3.8), can be mod-

eled through intersections of node-cuts yielding an equivalent formulation for Problems
(α − SBM) and (β − SBM). In what follows, we prove that box-connectivity can be
equivalently modeled through the following set of constraints:

∑
r<r′′<r′

min{s,s′}≤s′′≤max{s,s′}

xir′′s′′ ≥ xirs + xir′s′ − 1, i = 1, . . . , N, (3.8a)

r = 1, . . . ,K − 2,

r′ = r + 2, . . . ,K,

s, s′ = 1, . . . , L,∑
min{r,r′}≤r′′≤max{r,r′}

s<s′′<s′

xir′′s′′ ≥ xirs + xir′s′ − 1, i = 1, . . . , N, (3.8b)

r, r′ = 1, . . . ,K,

s = 1, . . . , L− 2,

s′ = s+ 2, . . . , L

xi,r−1,s + xi,r,s−1 ≥ xirs + xi,r−1,s−1 − 1, i = 1, . . . , N, (3.8c)

r = 2, . . . ,K, s = 2, . . . , L

xi,r−1,s + xi,r,s+1 ≥ xirs + xi,r−1,s+1 − 1, i = 1, . . . , N, (3.8d)

r = 2, . . . ,K, s = 1, . . . , L− 1

xi,r+1,s + xi,r,s−1 ≥ xirs + xi,r+1,s−1 − 1, i = 1, . . . , N, (3.8e)

r = 1, . . . ,K − 1, s = 2, . . . , L

xi,r+1,s + xi,r,s+1 ≥ xirs + xi,r+1,s+1 − 1, i = 1, . . . , N, (3.8f)

r = 1, . . . ,K − 1, s = 1, . . . , L− 1

Constraint (3.8a) considers bounded horizontal node-cuts, in the sense that it con-
siders that if two cells belong to the same portion and are placed in different and
non-contiguous rows, namely there is at least a row in between, then there must exist
cells belonging also to that portion in the rows strictly in between them. On the other
hand, constraint (3.8b) addresses bounded vertical node-cuts, which analogous to the
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horizontal ones but considering columns instead of rows. Finally, constraints (3.8c)-
(3.8f) model diagonal node-cuts, as this in Figure 3.2 (c), namely if two cells belong to
the same portion and they touch in one corner (shaded cells), then one of the two cells
in the diagonal crossing that corner must also belong to such portion (striped cells).

Let us consider Problem (α− SBM) stated as

(α− SBM)box = min


∑

i,j=1,...,N
i 6=j

|distance(Pi(x), Pj(x))− κδij | : s.t. (3.4)− (3.9)


and

(α− SBM)cut =

min


∑

i,j=1,...,N
i 6=j

|distance(Pi(x), Pj(x))− κδij | : s.t. (3.4)− (3.7), (3.8a)− (3.8f), (3.9)

 ,

where distance(Pi(x), Pj(x)) in the objective function is replaced by either SL(Pi(x), Pj(x)),
CL(Pi(x), Pj(x)) or AvL(Pi(x), Pj(x)), as in (3.1)-(3.3) respectively.

Proposition 3.1. One has that Problems (α−SBM)box and (α−SBM)cut are equiv-
alent.

Proof. Observe that constraints (3.4)-(3.7) and (3.9) appear in both problems, and thus
it remains to prove that constraint (3.8) is equivalent to constraints (3.8a)-(3.8f). Let
us prove such statement for a portion Pi(x), denoted S to simplify.

Let us prove that, if S is box-connected, then (3.8a)-(3.8f) hold.
Suppose that (3.8a) fails. Then, the summation on the left-hand-side is equal to

zero, which means that there exist two cells (r, s), (r′, s′) ∈ S, such that r < r′− 1 and

{
(r′′, s′′) : r < r′′ < r′, min{s, s′} ≤ s′′ ≤ max{s, s′}

}
∩ S = ∅. (3.15)

In particular, (3.15) is also true when s′ = s. This means

{
(r′′, s) : s < s′′ < s′

}
∩ S = ∅. (3.16)

On the other hand, S is box-connected and then,

∃(r′′, s) ∈ B
(
(r, s), (r′, s)

)
∩ S, such that r′′ 6= r and r′′ 6= r′,

which is clearly in contradiction with (3.16).
Using a similar procedure, we can prove that (3.8b)-(3.8f) also hold.
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Conversely, let us prove that, if (3.8a)-(3.8f) are satisfied, then S is box-connected.
Let (r, s), (r′, s′) ∈ S such that r < r′ − 1. Since (3.8a) is satisfied, there exists

(r′′, s′′) ∈ S such that r < r′′ < r′ and min{s, s′} ≤ s′′ ≤ max{s, s′}, which implies that
(r′′, s′′) ∈ B ((r, s), (r′, s′)) ∩ S, and it is different from (r, s) and (r′, s′). This proves
the desired result.

The case in which s < s′ − 1, constraint (3.8b) applies, showing that S is box-
connected. Finally, for pairs of cells belonging to S such that {(r, s), (r − 1, s − 1)},
{(r, s), (r− 1, s+ 1)}, {(r, s), (r+ 1, s− 1)} and {(r, s), (r+ 1, s+ 1)}, constraint (3.8c)-
(3.8f) yield, respectively, the box-connectivity of S.

In order to choose between the (α−SBM)box or the (α−SBM)cut formulations, we
study their continuous relaxation tightness. The formulation with the tightest contin-
uous relaxation will be the preferred. Thus, let us consider the continuous relaxations
of the MINLP Problems (α − SBM)box and (α − SBM)cut, obtained by substituting
constraint (3.6) by 0 ≤ xirs ≤ 1, i = 1, . . . , N, r = 1, . . . ,K, s = 1, . . . , L, and denoted
as R((α − SBM)box) and R((α − SBM)cut) respectively. We show in what follows
that, while the MINLP Problems (α− SBM)box and (α− SBM)cut are equivalent, as
stated in Proposition 3.1, it turns out that R((α − SBM)cut), is, in general, tighter
than R((α− SBM)box).

Let v(R((α− SBM)box)) and v(R((α− SBM)cut)) be the optimal objective values
of Problems R((α− SBM)box) and R((α− SBM)cut), respectively.

Proposition 3.2. One has that

v(R((α− SBM)box)) ≤ v(R((α− SBM)cut)). (3.17)

Proof. In order to show inequality (3.17), we prove that each solution x to R((α −
SBM)cut) is also feasible to R((α − SBM)box). Let x be a feasible solution to R(α −
(SBM)cut), we need to prove that x satisfies constraints (3.4)-(3.9). First, constraints
(3.4)-(3.7) and (3.9) are satisfied, since they appear in both problems. Then, let us
check that (3.8) also holds. Since x verifies (3.8a), one has for i = 1, . . . , N, r =

1, . . . ,K − 2, r′ = r + 2, . . . , L, s, s′ = 1, . . . , L

xirs + xir′s′ − 1 ≤
∑

r<r′′<r′
min{s,s′}≤s′′≤max{s,s′}

xir′′s′′ ≤
∑

(r′′,s′′)∈B((r,s),(r′,s′))
(r′′,s′′) 6=(r,s)

(r′′,s′′)6=(r′,s′)

xir′′s′′ .

In other words, x is shown to satisfy (3.8) because it also satisfies (3.8b)-(3.8f), and
then the result holds.

It turns out that the feasible region of R((α−SBM)cut) is smaller than the feasible
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region of R((α − SBM)box), due to problem instances for which feasible solutions to
R(α − (SBM)box) are unfeasible for R((α − SBM)cut). For instance, let us consider
N = 2, K = 3 and L = 2. One has that the following solution is feasible for R(α −
(SBM)box) but unfeasible for R((α− SBM)cut), taking α =∞ and κ ≥ 0:

x111 =
3

4
x112 =

1

5
x121 =

1

5
x122 =

1

5
x131 =

1

5
x132 =

3

4

x211 =
1

4
x212 =

4

5
x221 =

4

5
x222 =

4

5
x231 =

4

5
x232 =

1

4

The reasoning applied for finding a tighter reformulation to Problem (α − SBM)

also holds for Problem (β − SBM). MILPs reformulations described in Section 3.2.4
also hold in case that Problems (α−SBM) and (β−SBM) are modeled through con-
nectivity constraints (3.8a)-(3.8f) instead of (3.8). These MILPs reformulations let us
solve to optimality small instances of the optimization problems, i.e., when the number
of individuals is not very large as well as the (K,L)-grid is coarse enough. However, big
instances remain hard to solve by standard MILPs optimizers, and heuristic techniques
seem to be necessary to handle real-world examples. In Section 3.3 we describe how the
Large Neighborhood Search can be integrated in our methodology as a matheuristic to
construct SBMs.

3.3 Algorithmic approach

In this section, we adapt the Large Neighborhood Search (LNS) methodology to
the problem of building an SBM. Since small instances of the MILPs reformulations of
Problems (α − SBM) and (β − SBM) can be quickly solved by standard MILP opti-
mizers and thanks to the grid structure considered, LNS seems to be a good candidate
to take advantage from such facts. The LNS metaheuristic was first proposed by Shaw
(1998). It has been successfully applied in recent years to problems of different nature,
for instance Vehicle Routing Problems (Demir et al., 2012; Lodi et al., 2015; Ribeiro and
Laporte, 2012), Scheduling, (Korsvik et al., 2011; Pacino and Van Hentenryck, 2011)
and Information Visualization (Yoghourdjian et al., 2016). Roughly speaking, LNS per-
forms a search for good solutions in a neighborhood of a starting point. A neighborhood
of a certain point contains all the solutions that can be reached from the starting one
by a destroy procedure, which erases part of the solution, and a repair method, which
rebuilds the previously destroyed solution in order to obtain a new and better one. The
good performance of LNS does not only depend on the quality of the starting point, but
also on the destroy and repair methods. A tradeoff between the degree of destruction
and the rebuilding process needs to be established: the degree of destruction should be
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such that a large part of the search space can be explored, and the rebuilding process
should be efficient. Algorithm 3.1 contains the pseudocode of the LNS metaheuristic.
For further details on LNS see Pisinger and Ropke (2010) and references therein.

Algorithm 3.1 LNS pseudocode by Pisinger and Ropke (2010)
Input: A feasible solution x, an objective function f , destroy and repair procedures
1: x∗ ← x

2: repeat
3: xt ← repair(destroy(x∗));
4: if f(xt) < f(x∗) then
5: x∗ ← xt;
6: end if
7: until stop condition is met
Output: x∗

In order to explain the destroy and repair procedures for our model, we introduce
some necessary concepts. We define the incidence degree γ of a cell (r, s) in portion
Pi as the number of connected cells surrounding (r, s) that also belong to Pi, namely
(r − 1, s), (r, s + 1), (r + 1, s) and (r, s − 1). We say that a cell (r, s) is redundant if
its removal keeps the portion which it belongs still connected. Observe that a cell is
redundant if γ = 0, 1, 2 or 3, while γ = 4 implies that it is non-redundant.

Given an SBM, P , the destroy phase consists of selecting randomly a number µ of
redundant cells in P , and removing them as well as their eight surrounding neighbors,
yielding an incomplete SBM, destroy(P ). Figure 3.3 (b) contains µ = 5 selected re-
dundant cells (crossed bold) from the initial solution in Figure 3.3 (a), and in white
their surrounded neighbors, which are also deleted. The repair step consists of rebuild-
ing the destroyed solution destroy(P ) by assigning the free cells to portions satisfying
(C1)-(C4), yielding a new SBM, repair(destroy(P )), see Figure 3.3 (c).

The decision of selecting redundant cells in the destroy stage instead of non-redundant
ones is not arbitrary. If only non-redundant cells were chosen, the risk of getting stuck
on the initial SBM, P, increases. The reason comes from imposing box-connectivity in
the portions forming the repair(destroy(P )) SBM, which may force to reconstruct P

time after time because any other partition is feasible. On the other hand, selecting
only redundant cells yields to a destroy(P ) configuration with more freedom (regarding
box-connectivity) to obtain a new allocation of the free cells distinct from P .

As we highlighted in the previous section, small instances of the MILP reformulations
of (α−SBM) and (β−SBM) can be effortlessly solved by standard MILPs optimization
routines, and that is the key of our repairing procedure. To obtain the repaired solution,
cells which have not been removed in the destroy stage become constants in the MILP
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(a) Initial solution: P (b) destroy(P ) (c) repair(destroy(P ))

Figure 3.3: LNS algorithm for SBM.

problem, in the sense that their values are known and they are thus fixed. Those cells
that have been removed in the destroy step remain decision variables when solving the
MILP problem. Thanks to this variable-fixing procedure, the number of constraints is
also substantially reduced, since there are already cells assigned to portions (reducing
the number of constraints in (3.4) and (3.5)), there are also connected parts in the
portions (reducing then the number of constraints in (3.8a)-(3.8f)), and even the number
of extra constraints included in the linear reformulations. Therefore, the size of the
MILPs to solve in the repairing procedure is considerably reduced compared to the
full-size problems. Thus, depending on which criteria is to be improved in the current
iteration of the LNS algorithm, either the MILP version of (α− SBM) or (β − SBM)

is solved when repairing the previously destroyed SBM to find a better one.

3.4 Computational experience

The performance of the approach described in previous sections is tested in three
data sets of different sizes and nature on a (K,L)-grid withK = L = 40: first concerning
finantial markets, second one about the letters in the English alphabet, and finally the
provinces of The Netherlands as a geographic application. In Section 3.4.1 we describe
the three datasets used in the experiments. Section 3.4.2 includes the experiments
details and, finally, the obtained SBMs are presented in Section 3.4.3.

3.4.1 Datasets

The first dataset, Markets, consists of N = 11 financial markets across Europe and
Asia. The frequency distribution ω relates to the importance of each market relative
to the world market portfolio (Flavin et al., 2002), and the dissimilarity δ is based on
the correlation between markets (Borg and Groenen, 2005). The second dataset, Morse,
comes from a study regarding the confusion between the acoustic Morse signals used
for the N = 26 letters of the English alphabet (Rothkopf, 1957). The dissimilarities
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δ between two signals are computed as the average percentage with which the answer
’Same!’ was given in each combination of those signals (Borg and Groenen, 2005). The
values ω come from the relative frequencies of letters in the English language (Lewand,
2000). Last dataset, Netherlands, the individuals are the N = 12 provinces of The
Netherlands, and the frequencies ω are their population rates (Statistics Netherlands,
2013). The dissimilarity between two provinces is related to their geographical loca-
tion, and this is measured as the length of the shortest path in the graph obtained
from considering two nodes adjacent if the corresponding provinces are adjacent in the
geographical map.

3.4.2 Experiments details

The matheuristic based on LNS described in Section 3.3 has been coded in AMPL
(Fourer et al., 1993) and all the MILPs problems have been solved with CPLEX v12.6
(CPLEX, IBM ILOG, 2014) with a time limit of five minutes, on a PC Intelr Core

TM

i7-2600K, 16GB of RAM.
In order to compute an SBM with the methodology described in this chapter, some

decisions should be made in advance. Firstly, we need to choose between any of the
distances proposed in Section 3.2, namely Single, Complete or Average Linkage. Due
to the characteristics of the problem we are dealing with, we consider that the Average
Linkage reflects properly the visualization aim of the SBM, since it summarizes the
distance information between every pair of cells belonging to the portions and thus,
they become something global instead of something intrinsic of a single cell as the
Single or Complete Linkage would do. Thus, the mathematical optimization models
considered throughout this section are (α−SBM)LAvL and (β−SBM)LAvL, in which box-
connectivity has been modeled through constraints (3.8a)-(3.8f). In order to perform
the LNS procedure described in Section 3.3, we need to determine how the redundant
cells are selected in the destroy stage and which mathematical optimization problem,
either (α − SBM)LAvL and (β − SBM)LAvL, is solved in the repair phase. On one
hand, in the destroy step, µ redundant cells are selected with nonuniform probabilities,
depending on their incidence degree: a redundant cell (r, s) with incidence degree equal
to γ = 0, . . . , 3, will be selected with probability proportional to 23−γ . This way, cells
with a low incidence degree, and thus those which have more chances to be allocated
to different portions, are selected with higher probability. On the other hand, when
repairing the destroyed solution, we assume that we have an SBM for which the error
when approximating ω by the portions’ areas is pretty low, and therefore we can use a
small value of parameter α. Then, Problem (α − SBM)LAvL is solved in this phase to
improve the dissimilarities fit. We made this decision because we considered that it is
crucial that areas are very well fitted, whereas the dissimilarities admit more flexibility
when interpreting the SBM. As a stopping condition for LNS we establish a maximum
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number of iterations.
In order to construct an SBM on a (40, 40)-grid for the three previously described

datasets, we firstly obtain an initial SBM on a (10, 10)-grid by solving a surrogate of
Problem (β − SBM)LAvL, which has an accurate representation of the frequency distri-
bution as the area of the portions and also some information about the dissimilarities.
To do that, Problem (β−SBM)LAvL is solved, setting β =∞, including an extra set of
constraints that imposes that some cells are already assigned to some portions. These
cells are found accordingly to the dissimilarities between individuals by using the Mul-
tidimensional Scaling for (K,L)-rectangular maps described in Section 2.3.1. Then, 100
iterations of the LNS algorithm are performed, with µ = 4 and α equal to the objective
value obtained when solving the surrogate (β − SBM)LAvL. The so-obtained SBM is
embedded into a (20, 20)-grid, and it is considered as an initial SBM for 50 iterations of
the LNS algorithm with µ = 8 and α a 15% smaller than the objective value obtained
when solving the surrogate (β − SBM)LAvL in the first stage. Finally, the so-obtained
SBM is embedded into a (40, 40)-grid, and it is considered as an initial SBM for 25
iterations of the LNS algorithm with µ = 16 and α a 5% smaller than the objective
value obtained when solving the surrogate (β − SBM)LAvL in the previous stage.

3.4.3 Results

The process to construct an SBM for Markets dataset is illustrated in Figures 3.4-
3.5. The initial SBM on a (10, 10)-grid obtained by solving the surrogate (β−SBM)LAvL
is depicted in Figure 3.4 (a). After 100 iterations of LNS the SBM in Figure 3.4 (b) is
obtained. Then, this SBM is embedded into a (20, 20)-grid, see Figure 3.4 (c), and it
is set as the initial solution for the LNS algorithm. After 50 iterations and a reduction
of a 15% of the parameter α, the solution depicted in Figure 3.4 (d) is obtained. This
SBM is embedded into a (40, 40)-grid, see Figure 3.4 (e), and it is set as the initial
solution for the LNS algorithm. After 25 iterations and imposing a 5% reduction of the
parameter α, the solution in Figure 3.5 is obtained. Figures 3.6-3.7 show the SBMs for
Morse and Netherlands datasets, which are also obtained with the procedure described
above.
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Chapter 3. Visualizing frequencies and dissimilarities as Space-filling Box-connected

Maps: A Mixed Integer Nonlinear Programming approach

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

G
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

F
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

D
R

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

N
H

F
L

F
L

F
L

F
L

F
L

F
L

F
L

F
L

F
L

F
L

F
L

F
L

F
L

F
L

F
L

F
L

F
L

F
L

F
L

F
L

F
L

F
L

F
L

F
L

F
L

F
L

F
L

F
L

F
L

F
L

F
L

F
L

F
L

F
L

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

O
V

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

Z
H

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

U
T

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

G
E

Z
E

Z
E

Z
E

Z
E

Z
E

Z
E

Z
E

Z
E

Z
E

Z
E

Z
E

Z
E

Z
E

Z
E

Z
E

Z
E

Z
E

Z
E

Z
E

Z
E

Z
E

Z
E

Z
E

Z
E

Z
E

Z
E

Z
E

Z
E

Z
E

Z
E

Z
E

Z
E

Z
E

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

N
B

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

LI

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

LI
LI

 

 

G
R

−>
G

ro
ni

ng
en

F
R

−>
F

rie
sl

an
d

D
R

−>
D

re
nt

he
N

H
−>

N
oo

rd
 H

ol
la

nd
F

L−
>F

le
vo

la
nd

O
V

−>
O

ve
rij

ss
el

Z
H

−>
Z

ui
d 

H
ol

la
nd

U
T

−>
U

tr
ec

ht
G

E
−>

G
el

de
rla

nd
Z

E
−>

Z
ee

la
nd

N
B

−>
N

oo
rd

 B
ra

ba
nt

LI
−>

Li
m

bu
rg

F
ig
ur
e
3.
7:

SB
M

fo
r
Ne

th
er

la
nd

s
us
in
g
a

(4
0,

40
)-
gr
id
.



3.5. Conclusions 73

3.5 Conclusions

In this chapter, we have formally introduced a mathematical optimization formu-
lation for the problem of visualizing as a Space-filling Box-connected Map a frequency
distribution and a dissimilarity relation attached to a set of individuals. This visu-
alization problem is addressed by simultaneously optimizing the error incurred when
approximating the frequencies by the area of the portions and the dissimilarities by
the distances among them, satisfying the condition that the portions are box-connected
and they must form a partition of the unit square. Such approach yields a biobjective
optimization problem, which is solved as a single-objective problem that optimizes the
fit in distances ensuring a very accurate fit in the sizes of the portions. The Large
Neighborhood Search has been proposed to deal with big instances of such problems,
due to the fact that the combinatorial structure underlying in the optimization problems
makes solving them to optimality too time-demanding. The usefulness of our approach
has been illustrated in a variety of data sets, related to market indices, the Morse code
and a geographical map.
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The visualization frameworks presented in Chapters 2 and 3 seek an approximate
representation of the frequency distribution attached to a set of individuals while pre-
serving a proximity structure in a space-filling layout. In this chapter, we relax the
space-filling requirement, and seek an accurate visualization of those frequencies, while
still preserving the proximity structure. The individuals involved in the dataset are
visualized as convex bodies in a given visualization region, whose sizes depict the fre-
quencies and their locations their proximity. This problem, which extends the standard
Multidimensional Scaling Analysis, is written as a global optimization problem whose
objective is the difference of two convex functions (DC). Suitable DC decompositions
allow us to use the Difference of Convex Algorithm (DCA) in a very efficient way. Our
algorithmic approach is used to visualize two real-world datasets.

4.1 Introduction

In this chapter we present a new mathematical programming framework to build a
visualization map, in which the individuals in a set V = {v1, . . . , vN} are depicted as
convex bodies in a bounded region Ω ⊂ Rn, usually n ≤ 3. These objects must have a
volume proportional to a given frequency distribution associated with the individuals,
ω = (ω1, . . . , ωN ), and they should be placed accordingly to a dissimilarity measure
attached to the individuals, δ = (δij)i,j=1,...,N . In order to locate the objects in Ω, a
reference convex body B is used, to be translated and expanded. However, since our
final goal is to obtain a visualization map which allows the analysts to understand the
data they are working with, a criterion which somehow controls the appearance of the
plot needs to be also considered. We will deal with this paradigm by focusing on how
the objects are spread out over Ω.

The visualization model presented in this chapter may seem very close to Multidi-
mensional Scaling (MDS) (Kruskal, 1964; Torgerson, 1958). However, it has the special
feature of representing in the bounded region Ω not only dissimilarities as distances
between convex bodies, but also the frequencies ω through the volumes of these objects
in Ω. Moreover, contrary to proportional symbol maps (Cabello et al., 2010) our visu-
alization tool is able to deal with dissimilarities of any nature, not necessarily coming
from a geographical application, and rescale both the dissimilarities and the frequen-
cies associated to the individuals to fit in Ω. Observe that fitting the convex bodies
into Ω may yield representations in which the objects intersect if their sizes are not
small enough, but, on the other hand, too small objects obstruct the visualization of
the frequencies (Cano et al., 2013; Kunigami et al., 2014). Ideally the objects should
be spread out across the visualization region. This aim will be also taken into account
when modeling the problem.

The methodology proposed in this chapter has applications in fields others than
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Information Visualization, such as for instance, Location Analysis or Distance Geome-
try. In location problems, the facilities to be located are usually considered as points.
However, a natural extension is to consider facilities as dimensional structures (Díaz-
Báñez et al., 2004), and Difference of Convex (DC) techniques have been specifically
applied to this generalization (Blanquero et al., 2009; Carrizosa et al., 1998a). Ours
can also be seen as a problem in Distance Geometry optimization, as carefully reviewed
by Liberti et al. (2014). In Distance Geometry, a graph realization problem consists
of finding a configuration of points such that their (Euclidean) distances fit a given
dissimilarity matrix. Among them is the Sensor Network Location problem (Pong and
Tseng, 2011; So and Ye, 2007; Tseng, 2007; Wang et al., 2008), in which one assumes
that some individuals are anchors (their location is known) and the remaining ones are
mobile sensors, whose location is to be obtained so that their Euclidean distances fit the
dissimilarities. Thus, our method can also be applied to the Sensor Network Location
problem, in which sensors and anchors have a nonnegligible area.

In this chapter, the construction of a visualization map with the three characteris-
tics mentioned above, namely the individuals are represented as convex bodies whose
volumes are proportionals to a frequency distribution, which are located according to
a dissimmilarity measure and which are spread out in the visualization region Ω, is
written as a global biobjective optimization problem with convex constraints. We show
that the objective function of the aggregate problem can be expressed as a DC function,
and thus DC optimization tools can be used to solve the optimization program (Le Thi
and Pham Dinh, 2005).

The rest of the chapter is organized as follows. In Section 4.2 the biobjective opti-
mization program to build the visualization map is formalized. In Section 4.3, structural
properties of the optimization problem are analyzed. In Section 4.4, we present our al-
gorithmic approach. Numerical results for two datasets of different size and nature are
included in Section 4.5. Finally, Section 4.6 closes the chapter with some conclusions.

4.2 The Mathematical Optimization model

Let us consider a set of individuals V = {v1, . . . , vN}, which have attached a fre-
quency distribution ω ∈ RN+ and a dissimilarity matrix δ = (δij)i=1,...,N

j=1,...,N
. Let Ω ⊂ Rn

be a closed convex set and let B ⊂ Rn be a convex body, namely a compact convex set,
with nonempty interior, which is symmetric with respect to the origin (which belongs
to B), called reference object. Each individual vi is associated with a set of the form
ci + τriB, where ri ≥ 0 is chosen so that the volume of riB is proportional to the fre-
quency ωi, ci ∈ Rn is a translation vector and τ is a common positive rescaling for all
objects. We seek the values of the variables ci, i = 1, . . . , N , and τ so that the convex
bodies ci + τriB are contained in Ω. Figure 4.1 illustrates the previously described
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representation.

Ω

B

ci + τriB

ci

cj + τrjB
cj

ck + τrkB
ck

Figure 4.1: Example in R2 of a visualization region Ω, a reference object B and three
individuals vi, vj and vk defined through the translation vectors ci, cj and ck, which
are scaled via τri, τrj and τrk.

Hereafter, we deal with a biobjective optimization problem: the distances between
the convex bodies representing the individuals vi and vj must resemble the dissimilarities
δij between such individuals, and these objects must be spread out in Ω to make the
visualization easier. The two criteria are formalized in what follows.

Regarding the first objective, a function d, which gives us a strictly positive dis-
tance between two non-intersecting objects representing individuals vi and vj and zero
otherwise, needs to be considered. Thus, we define the function gij , which assigns such
distance to two individuals vi and vj , as follows

gij : Rn × Rn × R+ −→ R+

(ci, cj , τ) 7−→ d(ci + τriB, cj + τrjB).
(4.1)

Then, to quantify the resemblance between the distances in the visualization map
and the dissimilarities, the summation over all the individuals of the squared differences
between the distances and the rescaled dissimilarities through a positive variable κ needs
to be minimized. Thus, we consider as first objective the function F1 defined as

F1 : Rn × . . .× Rn × R+ × R+ −→ R+

(c1, . . . , cN , τ, κ) 7−→
∑

i,j=1,...,N
i 6=j

[gij(ci, cj , τ)− κδij ]2 .
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Observe that for simplicity all pairs (i, j) are considered in the summation in F1,
but our analysis remains valid if only some pairs (i, j) are taken into consideration, as
done e.g. by Trosset (2002).

To avoid that the convex bodies representing the individuals collapse in a small
subregion of Ω, we encourage objects to be spread out all over Ω. There are several
ways to model spread. For instance, we could use the overall volume covered by the
objects, the amount of intersections between them, or the distances between the objects.
This last option is the one analyzed in detail in this chapter, and therefore, our aim
is to maximize the sum over all the individuals of the distances between the objects
representing them. Let F2 be a function which, given the translation vectors, ci, and
the rescaling parameter, τ , computes the spread of the visualization map in such way.
Then, written in minimization form, one has

F2 : Rn × . . .× Rn × R+ −→ R+

(c1, . . . , cN , τ) 7−→ −
∑

i,j=1,...,N
i 6=j

g2
ij(ci, cj , τ). (4.2)

Note that F2 does not distinguish between how much the objects intersect, since it
penalizes in the same way two convex bodies one on top of the other and two tangent
objects. A possible way to quantify the amount of intersection between two objects
is by measuring the minimum-norm translation of such objects which makes them not
to intersect. This leads to the concept of penetration depth (Elkeran, 2013; Ong and
Gilbert, 1996; Umetani et al., 2009).

Let ‖·‖ be a norm, A1 and A2 two convex compact sets with nonempty interior, and
p a direction in Rn. Let int(·) be the interior of a set and ‘+’ the translator operator.
The penetration depth of A1 and A2 is defined as the minimum norm vector p ∈ Rn

such that A1 translated through the direction p, namely p+A1, is disjoint with int(A2),
i.e.

π(A1, A2) = min
p∈Rn

{‖p‖ : (p+A1) ∩ int(A2) = ∅} .

Computing the penetration depth between two sets is costly, in general. Never-
theless, exact and heuristic algorithms exist for specific types of convex bodies such as
discs and convex polytopes in R2 and R3 (Cameron and Culley, 1986; Lin and Manocha,
2004).

The amount of intersection between the objects in the visualization map can be
quantified as the sum over all the individuals of the squared penetration depth between
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pairs of them, yielding the function FΠ
2 defined as

FΠ
2 : Rn × . . .× Rn × R+ −→ R+

(c1, . . . , cN , τ) 7−→
∑

i,j=1,...,N
i 6=j

π2 (ci + τriB, cj + τrjB) . (4.3)

However, the penetration depth does not measure how separated the convex bodies
are. Then, an alternative to the two previous spread criteria, namely F2 and FΠ

2 , which
does take into account both the amount of intersection and the separation of the objects,
consists of measuring the distance between the centers of the objects. Maximizing the
sum over all the individuals of the squared distances between the centers gives an
alternative spread criterion, namely

F c2 : Rn × . . .× Rn × R+ −→ R+

(c1, . . . , cN , τ) 7−→ −
∑

i,j=1,...,N
i 6=j

‖ci − cj‖2. (4.4)

Thus, the problem of building a visualization map in which a set of convex bodies
in the form ci + τriB are represented in the region Ω, satisfying that the distances
between the objects resemble the dissimilarities between the individuals and the map
is spread enough, can be stated as a biobjective optimization problem. By proceeding
in the usual way, we consider the convex combination of the objectives and solve the
aggregate problem, see Ehrgott (2006). Thus, given λ ∈ [0, 1], the Visualization Map
problem, (VM)∗, is stated as follows

min
c1,...,cN ,τ,κ

λF1(c1, . . . , cN , τ, κ) + (1− λ)F ∗2 (c1, . . . , cN , τ)

s.t. ci + τriB ⊆ Ω, i = 1, . . . , N

τ ∈ T
κ ∈ K,

(VM)∗

where K,T ⊂ R+ and F ∗2 refers to either F2, FΠ
2 or F c2 stated in (4.2), (4.3) and (4.4),

yielding the models (VM), (VM)Π or (VM)c respectively.

4.3 Properties

In this section we study the structure of Problem (VM)∗ for the three different
choices proposed as the spread criterion, namely the three possibilities for F ∗2 given in
(4.2), (4.3) and (4.4). For each choice, we will prove that their objective functions are
DC, by considering distance functions d, defined in the space of compact convex sets of
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Rn, which satisfy the following:

Assumption 1. The function d, defined on pairs of compact convex sets of Rn, satisfies
for any A1 and A2

(i) d ≥ 0 and d is symmetric

(ii) d(A1, A2) = d(A1 + z,A2 + z), ∀z ∈ Rn

(iii) The function dz : z ∈ Rn 7−→ d(z + A1, A2) is convex and satisfies for all θ > 0

that dz(θA1, θA2) = θd 1
θ
z(A1, A2).

Typical instances of d satisfying (i)-(iii) are

1. The infimum distance, defined as

d(A1, A2) = inf{‖a1 − a2‖ : a1 ∈ A1, a2 ∈ A2} (d1)

2. The supremum distance, defined as

d(A1, A2) = sup{‖a1 − a2‖ : a1 ∈ A1, a2 ∈ A2} (d2)

3. The average distance, defined as

d(A1, A2) =

∫
‖a1 − a2‖dµ(a1)dν(a2), (d3)

4. The Hausdorff distance, defined as

d(A1, A2) = max

{
sup
a1∈A1

inf
a2∈A2

‖a1 − a2‖, sup
a2∈A2

inf
a1∈A1

‖a1 − a2‖
}
, (d4)

where µ, ν are probability distributions in Rn with support A1 and A2 (Carrizosa et al.,
1995, 1998a,b; Koshizuka and Kurita, 1991).

Observe that, thanks to Assumption 1, the distance between two convex bodies
representing individuals vi and vj , given by the function gij in (4.1), can be expressed
as

gij(ci, cj , τ) = τd 1
τ

(ci−cj)(riB, rjB), (4.5)

and thus gij is the perspective of the convex function fij(ci, cj) = dci−cj (riB, rjB).
Hence, gij is convex as well (Hiriart-Urruty and Lemaréchal, 1993).

Elementary tools of DC optimization enable us to show that objective function in
(VM), namely λF1 + (1 − λ)F2, is DC, and a DC decomposition can be given. The
result is presented in Proposition 4.1.
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Proposition 4.1. The function λF1 + (1−λ)F2 is DC, λ ∈ [0, 1], and a decomposition
is given by

λF1 + (1− λ)F2 = u− (u− λF1 − (1− λ)F2) ,

where
u =

∑
i,j=1,...,N

i 6=j

{
max{3λ− 1, 0}g2

ij(ci, cj , τ) + 2λ(κδij)
2
}
.

Proof.

λF1 + (1− λ)F2 =

=
∑

i,j=1,...,N
i 6=j

{
λ [gij(ci, cj , τ)− κδij ]2 − (1− λ)g2

ij(ci, cj , τ)
}

=
∑

i,j=1,...,N
i 6=j

{
(3λ− 1)g2

ij(ci, cj , τ) + 2λκ2δ2
ij − λ(gij(ci, cj , τ) + κδij)

2
}

Thanks to the convexity of the function gij and, since gij , λ, δij ≥ 0, then g2
ij(ci, cj , τ),

2λκ2δ2
ij and (gij(ci, cj , τ)+κδij)

2 are convex. Finally, (3λ−1)g2
ij(ci, cj , τ) is convex for

3λ− 1 ≥ 0 and concave otherwise.

In the same vein, we can prove that the objective functions in (VM)Π and (VM)c

are DC as well, as stated in the following results.

Proposition 4.2. Let hij be defined as the penetration depth between ci + τriB and
cj + τrjB, namely

hij : Rn × Rn × R+ −→ R+

(ci, cj , τ) 7−→ π (ci + τriB, cj + τrjB) .

Denoting as σB the support function of B, one has that hij is DC, and a decomposition
is given by hij = uij − (uij − hij), where

uij = max

max
ξ∈Rn
‖ξ‖=1

{
ξ>(cj − ci)− τ(ri + rj)σB(ξ)

}
, 0

 .

Proof. For convex sets A1 and A2 with nonempty interior, the condition in the definition
of penetration depth stated in Section 4.2 is equivalent to the existence of a separating
hyperplane between the sets p+A1 and A2, i.e., of some ξ 6= 0, such that

ξ>(p+ a1) ≤ ξ>a2 ∀a1 ∈ A1,a2 ∈ A2.
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Without loss of generality, we can consider ‖ξ‖ = 1 and thus we have

π(A1, A2) = min
p,ξ∈Rn

‖p‖

s.t. ξ>(p+ a1) ≤ ξ>a2 ∀a1 ∈ A1,a2 ∈ A2

‖ξ‖ = 1.

Thus, hij can be written as follows

hij(ci, cj , τ) = min
p,ξ∈Rn

‖p‖

s.t. ξ>(p+ ci + τrixi) ≤ ξ>(cj + τrjxj) ∀xi,xj ∈ B
‖ξ‖ = 1.

Equivalently, the first constraint, i.e.,

ξ>(p+ ci + τrixi) ≤ ξ>(cj + τrjxj) ∀xi,xj ∈ B,

can be written as follows,

ξ>(p+ ci) + τri max
x∈B

ξ>x ≤ ξ>cj + τrj min
x∈B

ξ>x.

Let σB be the support function of B, i.e.,

σB(z) = max
y
{y>z : y ∈ B}

Since B is assumed to be symmetric with respect to the origin, we have

max
x∈B

ξ>x = σB(ξ)

min
x∈B

ξ>x = −σB(ξ).

Hence, by replacing the expression of the support function in the constraint above,
one has

hij(ci, cj , τ) = min
p,ξ∈Rn

‖p‖

s.t. ξ>p ≤ ξ>(cj − ci)− τ(ri + rj)σB(ξ)

‖ξ‖ = 1.

For ξ fixed with ‖ξ‖ = 1, let η(ξ) = ξ>(cj − ci) − τ(ri + rj)σB(ξ). It follows
that the inner minimum in hij(ci, cj , τ), is the distance from the origin to the half-
space ξ>p ≤ η(ξ), and such distance equals 0, if 0 belongs to the halfspace, i.e., if
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0 ≤ ξ>(cj − ci)− τ(ri + rj)σB(ξ), and −η(ξ) else. Hence

hij(ci, cj , τ) = min
ξ∈Rn
‖ξ‖=1

max
{

0,−ξ>(cj − ci) + τ(ri + rj)σB(ξ)
}

= max

0, min
ξ∈Rn
‖ξ‖=1

{
−ξ>(cj − ci) + τ(ri + rj)σB(ξ)

}
But, for ξ fixed, the function (ci, cj , τ) 7−→ −ξ>(cj − ci) + τ(ri + rj)σB(ξ) is

affine, and thus the function (ci, cj , τ) 7−→ min
ξ∈Rn
‖ξ‖=1

{
−ξ>(cj − ci) + τ(ri + rj)σB(ξ)

}
is

the minimum of affine functions, and is thus concave. Hence, hij is the maximum
between 0 and a concave function, which is DC, whose decomposition is

hij(ci, cj , τ) =

= max

0, min
ξ∈Rn
‖ξ‖=1

{
−ξ>(cj − ci) + τ(ri + rj)σB(ξ)

}
= max

− min
ξ∈Rn
‖ξ‖=1

{
−ξ>(cj − ci) + τ(ri + rj)σB(ξ)

}
, 0


+ min
ξ∈Rn
‖ξ‖=1

{
−ξ>(cj − ci) + τ(ri + rj)σB(ξ)

}

= max

max
ξ∈Rn
‖ξ‖=1

{
ξ>(cj − ci)− τ(ri + rj)σB(ξ)

}
, 0


− max
ξ∈Rn
‖ξ‖=1

{
ξ>(cj − ci)− τ(ri + rj)σB(ξ)

}
= uij(ci, cj , τ)− (uij(ci, cj , τ)− hij(ci, cj , τ)).

Corollary 4.1. The function λF1 + (1− λ)FΠ
2 is DC, λ ∈ [0, 1].

Proof. The function F1 is DC. Indeed, it is sufficient to take λ = 1 in Proposition 4.1.
FΠ

2 is also DC by using Proposition 4.2 and Proposition 3.7 in Tuy (1998). Then, since
the summation of DC functions is also DC, the result holds.

Corollary 4.2. The function λF1 + (1− λ)F c2 is DC, λ ∈ [0, 1].

Proof. Since the function F1 is DC (take λ = 1 in Proposition 4.1) and F c2 is concave,
since it is minus the summation of squares of a nonnegative convex function, the result
holds.
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Therefore, DC decompositions for objective functions in (VM)Π and (VM)c are
readily available from the DC decomposition of F1 in Proposition 4.1 (λ = 1), Proposi-
tion 4.2 and the concavity of F c2 .

Showing that a function is DC and giving explicitly a DC decomposition enables
us to use DC optimization algorithms. It is well known that the performance of the
procedures may strongly depend on the choice of the DC decomposition (Blanquero and
Carrizosa, 2009; Bomze et al., 2008; Ferrer and Martínez-Legaz, 2009). Particularly,
we seek a DC decomposition involving a quadratic convex separable function as those
addressed by Le Thi (2000) and Pham Dinh and Le Thi (1998) for the special case
where (d1) is used. We will show in Section 4.4 that such alternative decomposition
yields a simple DC Algorithm (DCA) first stated in Pham Dinh and El Bernoussi (1986,
1988), whose convergence follows from the general convergence results of DCA (Le Thi
and Pham Dinh, 2013, 2005; Pham Dinh and Le Thi, 1997).

The following result, Proposition 4.3, states a different DC decomposition for the
objective function in (VM) from the one given in Proposition 4.1, when the infimum
distance given in (d1) is considered. In fact, this alternative decomposition involves a
quadratic convex separable function.

Before giving the proof of Proposition 4.3, the following technical result is needed.

Lemma 4.1. Let βij ∈ R be such that βij ≥ 2‖ribi− rjbj‖2, ∀bi, bj ∈ B. Then, g2
ij can

be expressed as a DC function, g2
ij = uij − (uij − g2

ij), where

uij(ci, cj , τ) = 2‖ci − cj‖2 + βijτ
2.

Proof.

g2
ij(ci, cj , τ) =

= min
bi,bj∈B

‖ci − cj + τ(ribi − rjbj)‖2

= min
bi,bj∈B

{
‖ci − cj‖2 + τ2‖ribi − rjbj‖2 + 2τ(ci − cj)>(ribi − rjbj)

}
= min
bi,bj∈B

{
‖ci − cj‖2 + τ2‖ribi − rjbj‖2

+‖ci − cj‖2 + τ2‖ribi − rjbj‖2 − ‖ci − cj − τ(ribi − rjbj)‖2
}

= 2‖ci − cj‖2 + βijτ
2 + min

bi,bj∈B

{
−βijτ2 + 2τ2‖ribi − rjbj‖2 − ‖ci − cj − τ (ribi − rjbj) ‖2

}
= 2‖ci − cj‖2 + βijτ

2 + min
bi,bj∈B

{
τ2
(
2‖ribi − rjbj‖2 − βij

)
− ‖ci − cj − τ (ribi − rjbj) ‖2

}
= 2‖ci − cj‖2 + βijτ

2 − max
bi,bj∈B

{
‖ci − cj − τ (ribi − rjbj) ‖2 − τ2

(
2‖ribi − rjbj‖2 − βij

)}
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Observe that taking βij ∈ R such that

2‖ribi − rjbj‖2 − βij ≤ 0 ∀bi, bj ∈ B,

the function

(ci, cj , τ) 7−→ ‖ci − cj − τ (ribi − rjbj) ‖2 − τ2
(
2‖ribi − rjbj‖2 − βij

)
is convex. Since the maximum of convex functions is convex, we have obtained a DC
decomposition for g2

ij as in the statement taking uij = 2‖ci − cj‖2 + βijτ
2.

Proposition 4.3. The function λF1 + (1−λ)F2, where d is the infimum distance (d1),
can be expressed as a DC function, λF1 + (1−λ)F2 = u− (u−λF1− (1−λ)F2), where
the quadratic separable convex function u is given by

u = max{3λ− 1, 0} ·

 ∑
i=1,...,N

{
8(N − 1)‖ci‖2

}
+ τ2

∑
i,j=1,...,N

i 6=j

βij

+ 2λκ2
∑

i,j=1,...,N
i 6=j

δ2
ij ,

where βij satisfies βij ≥ 2‖ribi − rjbj‖2 for all bi, bj ∈ B.

Proof. If λ <
1

3
, considering Proposition 4.1, one has

λF1 + (1− λ)F2 =
∑

i,j=1,...,N
i 6=j

{
2λκ2δ2

ij −
[
λ(gij + κδij)

2 − (3λ− 1)g2
ij(ci, cj , τ)

]}
,

and thus u =
∑

i,j=1,...,N
i 6=j

2λκ2δ2
ij holds.

If λ ≥ 1

3
, by using the DC decomposition for g2

ij obtained in Lemma 4.1 and Propo-
sition 4.1, one has

λF1 + (1− λ)F2 =

=
∑

i,j=1,...,N
i 6=j

{
(3λ− 1)g2

ij(ci, cj , τ) + 2λκ2δ2
ij − λ(gij(ci, cj , τ) + κδij)

2
}

=
∑

i,j=1,...,N
i 6=j

{
2(3λ− 1)‖ci − cj‖2 + (3λ− 1)βijτ

2 + 2λκ2δ2
ij −

[
λ(gij(ci, cj , τ) + κδij)

2

+ (3λ− 1) max
bi,bj∈B

{
‖ci − cj − τ (ribi − rjbj) ‖2 − τ2

(
2‖ribi − rjbj‖2 − βij

)}]}



4.4. Algorithmic approach 87

=
∑

i=1,...,N

{
8(3λ− 1)(N − 1)‖ci‖2

}
+ (3λ− 1)τ2

∑
i,j=1,...,N

i 6=j

βij + 2λκ2
∑

i,j=1,...,N
i 6=j

δ2
ij

−
∑

i,j=1,...,N
i 6=j

[
2(3λ− 1)‖ci + cj‖2 + λ(gij(ci, cj , τ) + κδij)

2

+ (3λ− 1) max
bi,bj∈B

{
‖ci − cj − τ (ribi − rjbj) ‖2 − τ2

(
2‖ribi − rjbj‖2 − βij

)}]

Section 4.4 is mainly devoted to show how Problem (VM) with the decomposition
given in Proposition 4.3 can be efficiently solved by DCA.

4.4 Algorithmic approach

Propositions 4.1-4.3 and Corollaries 4.1-4.2 show that (VM)∗ is an optimization
problem with a DC objective function with a DC decomposition available and simple
constraints. Then, DC optimization tools can be used, either of exact nature for very
low dimensional problems (Blanquero and Carrizosa, 2009; Blanquero et al., 2009), or
heuristics, as the DCA (Le Thi and Pham Dinh, 2013, 2005; Pham Dinh and Le Thi,
1997). The latter is the approach we are following in this chapter.

Roughly speaking, DCA consists of an iterative process in which a sequence of convex
programs are solved. Given a DC program of the form min{f(x) = u(x)−v(x) : x ∈ X},
where X is a convex feasible region, at each iteration, the concave part (−v(x)) is
replaced by its affine majorization at a certain x0 ∈ X, and the resulting convex problem
is then solved. Let 〈·, ·〉 be an inner product in Rn, and let ∂v(x0) the subdifferential
of v at x0. A general scheme of DCA is outlined in Algorithm 4.1.

Algorithm 4.1 DCA scheme (Le Thi and Pham Dinh, 2005)
Input: x0 ∈ X.
1: t← 0

2: repeat
3: Compute some yt ∈ ∂v(xt);
4: Compute xt+1 ∈ argmin {u(x)− (v(xt) + 〈x− xt, yt〉) : x ∈ X};
5: t← t+ 1;
6: until stop condition is met.
Output: xt

However, running times would be dramatically reduced if a DC decomposition of
the objective function were available so that the convex optimization problems to be
solved in line 4 of Algorithm 4.1 were trivial, in the sense that an explicit expression



88
Chapter 4. Visualizing frequencies and dissimilarities as geometric objects: A

Difference of Convex optimization approach

for the optimal solution is available. This idea has been studied by Le Thi (2000) and
Pham Dinh and Le Thi (1998) and it will be customized to Problem (VM), considering
the infimum distance given in (d1), in what follows.

When the DCA scheme is applied to Problem (VM) with the DC decomposition
given in Proposition 4.3, we see that the convex subproblems to be solved at line 4 of
Algorithm 4.1 have the form

min
c1,...,cN ,τ,κ

 ∑
i=1,...,N

{
Mci‖ci‖2

}
+Mκκ2 +M ττ2 +

∑
i=1,...,N

{
ci
>qci

}
+ pκκ+ pττ


s.t. ci + τriB ⊆ Ω, i = 1, . . . , N

τ ∈ T
κ ∈ K,

for scalarsMci ,Mκ,M τ ∈ R+, which come from the coefficients that multiply each term
in the u part of the DC decomposition given in Proposition 4.3, and vectors qci ∈ Rn

and scalars pκ and pτ ∈ R, which come for the computation of the subgradients at a
given point of the u− λF1 − (1− λ)F2 part.

Such problem can be written as a summation of two separate problems,

min
κ∈K

{
Mκκ2 + pκκ

}
+ min

ci+τriB⊆Ω
τ∈T

 ∑
i=1,...,N

{
Mci‖ci‖2 + ci

>qci
}

+Mττ2 + pττ

 . (4.6)

The first problem in (4.6) is a quadratic problem in one variable, for which a closed
form can be given for its optimal value. The second problem in (4.6) is separable in
the variables ci if the linking variable τ were fixed at τ0. For this reason, an alternat-
ing strategy seems to be plausible, in which one alternates the optimization of τ for
c1, . . . , cN fixed (and this is a one-dimensional quadratic problem and thus a closed
formula for the optimal solution is readily obtained), and then for τ fixed, the centers
ci are to be optimized. This is done by solving separately N optimization problems of
the form

min
ci

{
Mci‖ci‖2 + ci

>qci
}

s.t. ci ∈ Ω− τriB.
(4.7)

In order to solve Problem (VM), we propose an alternating procedure which inte-
grates a DCA strategy, to obtain c1, . . . , cN as stated in Algorithm 4.1, into an outer
loop to get τ and κ. The alternating scheme to solve (VM) is stated in Algorithm
4.2: lines 3–8 contain the DCA as outlined in Algorithm 4.1 to find c1, . . . , cN , which
is embedded in a main loop to get κ and τ (lines 1–14). We point out that line 6 in
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Algorithm 4.2 contains the convex optimization problems to be solved in each iteration
of DCA (line 4 of Algorithm 4.1), and explicit expressions for the optimal solution of the
optimization problems in lines 10 and 12 are known. Therefore, if the optimal solution
of the optimization problems in line 6 of Algorithm 4.2 could be optimally computed
without calling any external numerical optimization routine, then each iteration of the
inner DCA in lines 3–8 would be computationally cheap.

Algorithm 4.2 Alternating scheme for (VM)

Input: c0
1, . . . , c

0
N ∈ Ω, κ0 ∈ K, τ0 ∈ T .

1: s← 0;
2: repeat
3: t← 0;
4: repeat
5: Compute Mci

t and qcit , i = 1, . . . , N ;
6: Compute ct+1

1 , . . . , ct+1
N by solving (4.7) for τ fixed at τ s;

7: t← t+ 1;
8: until stop condition is met.
9: Compute Mκs and pκs ;

10: Compute κs+1 by solving the first optimization problem in (4.6);
11: Compute M τs and pτs ;
12: Compute τ s+1 by solving the second optimization problem in (4.6) for c1, . . . , cN

fixed
at ct1, . . . , ctN ;

13: s← s+ 1;
14: until stop condition is met.
Output: ct1, . . . , c

t
N , κ

t, τ s

Two particular cases of (4.7) have an amenable structure, yielding a closed formula
for the optimal solution, and thus avoiding any call to external numerical optimization
routines in line 6 of Algorithm 4.2. Indeed, suppose Ω is a rectangle, for simplicity
taken as [0, 1]n, τ is fixed to a real positive value τ0, and B is the disc centered at the
origin with radius r0. Then, the constraint in (4.7) can be rewritten as

τ0r0ri ≤ cij ≤ 1− τ0r0ri, j = 1, . . . , n,

and thus (4.7) is expressed as∑
j=1,...,n

min
cij

{
Mcic2

ij + qcij cij : τ0r0ri ≤ cij ≤ 1− τ0r0ri

}
(4.8)

In other words, (4.7) is decomposed into n one dimensional quadratic problems on
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an interval, and thus a closed formula is readily obtained for the optimal solution of
each problem of the form (4.8), and thus also for (4.7).

Similarly, suppose Ω and B are discs centered at the origin of radius 1 and r0

respectively. Then, (4.7) is rewritten as

min
ci

{
Mci‖ci‖2 + ci

>qci
}

s.t. ‖ci‖ ≤ 1− τ0r0ri.
(4.9)

Karush-Kuhn-Tucker conditions immediately yield an expression for the optimal solu-
tion of (4.9).

Summarizing, while the alternating strategy stated in Algorithm 4.2, which contains
a DCA scheme, could be applied to solve (VM)∗ for an arbitrary DC decomposition of
the objective function, we see that the DC decomposition given in Proposition 4.3 for
(VM) is particularly attractive. We have shown that some convenient choices of Ω (a
rectangle or a disc) and B (a disc) yield a closed formula for the optimal solution of the
subproblems to be addressed at each stage of the inner DCA, thus avoiding the need of
using numerical optimization routines. Le Thi (2000) successfully applied this strategy
for other problems.

4.5 Computational experience

The methodology proposed in Section 4.4 is illustrated using two real-world datasets
of diverse nature, for which both the frequency distribution and the dissimilarities are
readily available in the literature. In particular, the dissimilarity measures come from
a correlation matrix and a shortest paths matrix in a directed graph, whereas the
frequencies represent a proportion (continuous variable) and the outdegree of a set of
nodes (discrete variable), respectively.

4.5.1 Datasets

The first dataset consists of N = 11 financial markets across Europe and Asia. The
frequency distribution ω relates to the importance of each market relative to the world
market portfolio (Flavin et al., 2002), and the dissimilarity δ is based on the correlation
between pairs of markets (Borg and Groenen, 2005). The second dataset is a social
network of N = 200 musicians, modeled as a graph, where there is an arc connecting
two nodes if one musician was influential on the other (Dörk et al., 2012). The frequency
distribution ω represents the outdegree of each node and the dissimilarity between pairs
of musicians is based on the shortest distance from pairs of nodes (Dörk et al., 2012).
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4.5.2 Experiments details

Algorithm 4.2 has been coded in C and the experiments have been carried out in a
Windows 8.1 PC Intelr Core

TM
i7-4500U, 16GB of RAM. We set λ = 0.9 and B equal

to the circle centered at (0, 0) with radius equal to one. Since (VM) is a multimodal
problem and the DCA may get stuck at a local optimum, 100 runs of a multistart are
executed. Initial values for c1, . . . , cN are uniformly generated in Ω, whereas the initial
values for κ and τ are chosen as the midpoint of intervals K and T , respectively. At
each run of the multistart procedure, index s in Algorithm 4.2 takes a maximum value
of 3 and index t a maximum value of 50.

4.5.3 Results

Figure 4.2 plots the financial markets dataset on the visualization region Ω =

[0, 1] × [0, 1], with the scaling parameters ranging in the intervals K = T = [0.4, 0.6].
Observe that, the European markets are clustered above the Asian ones, covering the
upper half rectangle. These two clusters are represented with different colours. Figure
4.3 plots the musicians’ social network taking a circular visualization region, namely
Ω = B, with the scaling parameters ranging in the intervals K = [0.075, 0.100] and
T = [0.015, 0.030], respectively. In the plot at the top, we find all musicians. In the plot
at the bottom, we have highlighted one of the most influential nodes, the Rolling Stones,
and the connected nodes: musicians influencing the Rolling Stones (respectively, those
influenced by them) can be found in a lighter (respectively darker) colour.

4.6 Conclusions

In this chapter we have addressed the problem of representing, in a visualization
region Ω, a set of individuals by means of convex bodies so that the distance between
the objects fits as close as possible a given dissimilarity matrix, the volume of the objects
represents a frequency distribution, and, at the same time, the spread of the objects
within Ω is maximized.

The problem has been formulated as a DC optimization problem, and the powerful
heuristic DCA has been proposed as solution approach. For particular choices of the
visualization region Ω (a rectangle and a disc), the reference object (a disc) and the
function d (the infimum distance), closed formulas for the optimal solutions of the
DCA subproblems are obtained, thus avoiding the need to use numerical optimization
routines. The examples presented demonstrate the usefulness of our approach.



92
Chapter 4. Visualizing frequencies and dissimilarities as geometric objects: A

Difference of Convex optimization approach

bruscbs

dax

ftse

hs

madrid

milan

nikkei

sing

taiwan

vec

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Figure 4.2: Visualizing financial markets.
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In this chapter the visualization model developed in Chapter 4 is extended to the
time-varying case, namely we develop a new framework to visualize datasets which
are made up of individuals observed along different time periods. These individuals
have attached a time-dependent frequency distribution and a dissimilarity measure,
which may vary over time as well. A Mathematical Optimization model is proposed
and solved by means of difference of convex optimization techniques and nonconvex
quadratic binary optimization. This way a visualization framework is obtained, the so-
called Dynamic Visualization Map, which faithfully represents the dynamic frequencies
by means of the areas of convex bodies, whereas it trades off the correct representation
of the dissimilarities as the distances between those objects, their spread in the visual
region and the preservation of the mental map. Our procedure is successfully tested on
dynamic geographic and linguistic datasets.

5.1 Introduction

This chapter deals with datasets which consist of N individuals, V = {v1, . . . , vN},
for which a distribution of frequencies has been historically observed during T time
periods, and a measure of proximity between individuals, given as a time-dependent
dissimiliarity matrix, is also given.

Visualizing dissimilarities has been historically done by Multidimensional Scaling
(MDS) (Kruskal, 1964; Torgerson, 1958). As discussed in Chapter 1, a straightforward
approach to visualize dynamic multivariate datasets, observed along T time periods,
would consist of executing T independent MDS, one per period. Nevertheless, this
approach might yield difficult-to-interpret visualizations (Groenen and Franses, 2000;
Xu et al., 2013) especially when the dissimilarities change abruptly in consecutive pe-
riods or, since MDS results are invariant under rotations and reflections, and thus the
snapshots may turn upside-down, as shown in Figure 1.5. This drawback calls for the
construction of visualization frameworks which preserve the mental map (Misue et al.,
1995), i.e., the transitions in the layouts in two consecutive time periods should be
smooth, in the sense that the individuals do not suffer big displacements in the shift
from one period to the next one.

On top of the challenge posed by the fact that data are time-varying, we also want
to visualize the frequencies attached at each time period to each individual. To do
this, following the proportional symbol map approach (Cabello et al., 2010), a first
approach might consist of executing an MDS, and then replacing points by symmetric
objects, say, discs or rectangles, centered at the MDS points, and whose area is pro-
portional to the corresponding frequency. Nevertheless, the scale chosen by the user
to (proportionally) depict such information may yield either too small objects or ex-
cess of overlapping between them, (Kunigami et al., 2014). Indeed, the changes in the
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Figure 5.1: Visualization of Danish words by means of different rectangles, scaled ac-
cording to their frequencies, and distances representing words co-occurrence as stated
in Chapter 4.

perception of distances, induced by these (a posteriori) depicted objects, might yield
misleading conclusions about the proximity between the individuals. In Chapter 4, we
developed a generalization of MDS to visualize non-dynamic data, which simultane-
ously incorporates the information about dissimilarities and a frequency distribution by
(a priori) deciding which convex body (disc, rectangle, etc.) represents each individ-
ual. See e.g. Figure 5.1 for an example in which N = 27 Danish words are depicted as
rectangles. Here weights represent the importance of such words in the Danish news in
1995 and dissimilarities measure their co-occurrence.

This work presents a new Mathematical Optimization model to visualize dynamic
datasets involving a frequency distribution and dissimilarities. We design a one-stage
procedure, which involves a non-trivial generalization of the approach presented in
Chapter 4. This new visualization framework simultaneously builds a collection of T
snapshots, each representing a time period, in which the individuals under consideration
are depicted as convex bodies located in a visualization region Ω, whose areas represent
the frequencies and the distances between the objects depict the dissimilarities. The
novelty of the presented model is twofold. First, the preservation of the mental map is
incorporated into the optimization model by pursuing smooth transitions between two
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v1
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v3

v1
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v3

Figure 5.2: Importance of the choice of the convex bodies depicting each individual.

consecutive snapshots. Second, we assume that each individual has attached a cata-
logue of candidate convex bodies to be depicted and the choice of the object becomes a
decision of the model, making it more flexible. For instance, each individual in Figure
5.2 could be depicted by means of two different rectangles: one whose basis has two
units and one unit of height, and its 90 degrees rotation. Whereas the rectangles appear
collapsed in Figure 5.2 (left), a different choice from the catalogue makes the visualiza-
tion clearer: the same individuals are shown, but different rectangles have been chosen
for v2 and v3, Figure 5.2 (right) .

The optimization model can be formulated as a Mixed Integer Nonlinear Problem
(MINLP), which is handled through an alternating procedure. This procedure combines
the use of Difference of Convex (DC) optimization techniques, such as the Difference
of Convex Algorithm (DCA) (Pham Dinh and El Bernoussi, 1986, 1988; Le Thi and
Pham Dinh, 2013, 2005; Pham Dinh and Le Thi, 1997) and nonconvex quadratic binary
optimization. Our approach is clearly different from existing techniques in the literature,
mostly ad-hoc multi-stage procedures, which often depend on user’s manual tuning or
exploit the nature of the data, and thus cannot be used for arbitrary datasets. Some
examples are found in Graph Drawing (Battista et al., 1999; Beck et al., 2016; Lin
et al., 2011; Van Vlasselaer et al., 2016; Xu et al., 2013), or geographical applications
(Andrienko et al., 2003; Mashima et al., 2012) and others (Aigner et al., 2011; Gomez-
Nieto et al., 2016).

The remainder of this chapter is organized as follows. Section 5.2 is devoted to
present the model to visualize the dynamic complex dataset under study. In Section
5.3, we present a solution approach based on DC optimization tools and nonconvex
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quadratic binary optimization. Some computational tests, involving data of different
nature, are included in Section 5.4. Section 5.5 contains some conclusions.

5.2 The Mathematical Optimization model

In what follows, the problem of visualizing a dynamic dataset by means of convex
bodies is formally stated and written as a mathematical optimization program.

Let Ω ⊆ R2 be a visualization region, which acts as the computer screen. Let us
consider a set of N individuals, V = {v1, . . . , vN}, which have been observed over a
time horizon of T time periods. For each t = 1, . . . , T , let V (t) ⊆ V be the subset of
individuals to be represented in time period t, and let |V (t)| be its cardinality. The
elements in V (t) have attached a vector of frequencies ω(t) = (ωi,t)i∈V (t) ∈ R|V (t)|

+ and a

dissimilarity measure δ(t) = (δij,t)i,j∈V (t) ∈ R|V (t)|×|V (t)|
+ . Let Bi =

{
B1
i , . . . ,B

si
i

}
be a

catalogue of convex bodies, called reference objects, which are assumed to be symmetric
closed convex sets, centered in the origin of the coordinate system in R2. The elements
in Bi are the candidates to represent each vi ∈ V , although just one of them is chosen
for the whole time horizon. Let τ, rpi,t ∈ R+ be real positive numbers, which scale the
area of the reference objects in Bi. The scaling of the reference objects is made in
such a way that the area of rpi,tB

p
i is equal to ωi,t. Besides this scaling, τ is a positive

parameter to be chosen by the user, which rescales all the objects in all periods in order
to make sure they fit into Ω.

The dynamic dataset described above is visualized by means of a collection of T
snapshots, each containing the individuals in V (t) depicted as convex bodies, such as
discs or rectangles. In order to properly visualize the frequencies and dissimilarities
attached to the data, five conditions are considered:

(C1) Each individual vi ∈ V is represented by means of the same reference object,
chosen from the corresponding catalogue Bi, throughout the whole time horizon.

(C2) In each time period t, the area of the convex body used to represent each individual
in V (t) is proportional to its frequency ω(t).

(C3) In each time period t, the proximity between the convex bodies representing the
individuals in V (t) resemble the dissimilarities δ(t).

(C4) In each time period, the convex bodies are spread over the visualization region Ω.

(C5) The transitions between two consecutive snapshots are smooth.

In what follows, we introduce a Mathematical Optimization model which considers
(C1) and (C2) as hard conditions, whereas the violation of conditions (C3)–(C5) is
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minimized. A visualization framework satisfying these conditions is called in what
follows a Dynamic Visualization Map.

Let x = (xpi )i=1,...,N, p=1,...,si be decision variables defined as

xpi =

{
1 if individual vi is represented by Bpi ∈ Bi

0 otherwise,

and let ci,t ∈ R2 be continuous variables, which translate the reference objects in Bi

and determine their positions. In other words, if the reference object Bpi ∈ Bi is chosen
to represent individual vi, then vi will be represented at time period t by the convex
body ci,t + τrpi,tB

p
i . Therefore, constructing a Dynamic Visualization Map is stated as

a Mixed Integer Nonlinear Optimization Problem (MINLP), whose aim is to find the
choice x of reference objects and the values of the translation vectors c1,1, . . . , cN,T to
obtain a good fit in criteria (C3)–(C5) modeled through an objective function F to be
detailed later. Hence, one has to solve a problem of the form:

min
c1,1,...,cN,T ,x

F (c1,1, . . . , cN,T ,x)

s.t.
∑

p=1,...,si

xpi = 1, i = 1, . . . , N,

ci,t + τrpi,tx
p
iB

p
i ⊆ Ω, i = 1, . . . , N, p = 1, . . . , si, t = 1, . . . , T,

ci,t ∈ R2, i = 1, . . . , N ; t = 1, . . . , T,

xpi ∈ {0, 1}, i = 1, . . . , N, p = 1, . . . , si.

(DyV iMap)

The first constraint in (DyV iMap) ensures condition (C1) is satisfied, namely, for each
individual, only one reference object is chosen, among the candidates in its catalogue, to
represent the individual in all time periods. The second constraint when xpi = 1 ensures
that the whole convex body representing vi, constructed by translating and scaling the
reference object Bpi , must fit into Ω. In particular, this means that ci,t ∈ Ω. The second
constraint when xpi = 0 does not add any new information, given the observation we
just made on ci,t. Observe that thanks to the choice of parameters rpi,t, namely the
area of rpi,tB

p
i is equal to ωi,t, condition (C2) is satisfied, independently of the choice of

reference object. Finally, the type of the variables is modeled through the third and
fourth constraints.

The objective function in (DyV iMap), F , models the violation of conditions (C3)–
(C5) considering a weighted sum of three functions, FMDS , Fspread and Fsmooth, through
a vector λ = (λ1, λ2, λ3), such that λk ≥ 0 and

∑3
k=1 λk = 1, yielding

F = λ1FMDS + λ2Fspread + λ3Fsmooth. (5.1)

The first term, FMDS , measures the discrepancy between the given dissimilarities
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and the proximity between the objects (condition (C3)), by considering the stress ex-
pression in MDS (Borg and Groenen, 2005; Cox and Cox, 2000). The second one,
Fspread, quantifies the spread of the objects in the visualization region (condition (C4)).
Finally, Fsmooth models the smoothness in the transition between two consecutive peri-
ods (condition (C5)).

In order to measure the proximity between two convex bodies in the t-th time period,
namely the distance between ci,t + τrpi,tB

p
i and cj,t + τrqj,tB

q
j , we consider the infimum

distance between two closed convex sets, which is a convex function (Hiriart-Urruty
and Lemaréchal, 1993). Let ‖ · ‖ denote the Euclidean norm, then the infimum distance
between ci,t + τrpi,tB

p
i and cj,t + τrqj,tB

q
j is defined as

dτrpi,tB
p
i ; τrqj,tB

q
j

: R2 × R2 −→ R+

(ci,t, cj,t) 7−→ inf
bi,t∈Bpi
bj,t∈Bqj

∥∥∥(ci,t + τrpi,tbi,t

)
−
(
cj,t + τrqj,tbj,t

)∥∥∥ ,
Then, the expressions of FMDS , Fspread and Fsmooth are:

FMDS(c1,1, . . . , cN,T ,x) =
T∑
t=1

∑
i,j∈V (t)

∑
p=1,...,si
q=1,...,sj

[
d(ci,t + τrpi,tB

p
i , cj,t + τrqj,tB

q
j )− κδij,t

]2
xpi x

q
j ,

Fspread(c1,1, . . . , cN,T ,x) = −
T∑
t=1

∑
i,j∈V (t)

∑
p=1,...,si
q=1,...,sj

d2(ci,t + τrpi,tB
p
i , cj,t + τrqj,tB

q
j )x

p
i x
q
j

Fsmooth(c1,1, . . . , cN,T ) =

T−1∑
t=1

∑
i=1,...,N

‖ci,t − ci,t+1‖2.

Note that FMDS and Fspread are generalizations from those presented in Chapter 4
for the particular case in which the dataset is not dynamic, i.e., just one time period is
considered. The expression of FMDS includes a positive parameter κ (to be chosen by
the user), which scales the dissimilarities to make them comparable with the distances
between objects measured by means of the infimum distance. Contrary to the model
stated in Chapter 4, in which κ and τ are variables of the optimization problem, both
are here parameters of the problem. The spread criterion, modeled through Fspread,
aims to separate the convex bodies representing the individuals as much as possible by
means of the squared infimum distance between them. The preservation of the mental
map is modeled through Fsmooth, which imposes that the locations of the objects, given
by their translation vectors, do not suffer big changes from one time period to the next
one (Xu et al., 2013), and by the fact that an individual is depicted by means of the
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same reference object throughout the whole time horizon, since x does not depend on
the time period.

The aim of the presented model is to obtain a trade-off between the criteria in-
volved to enhance the interpretability of the dynamic complex data structure under
consideration.

5.3 Algorithmic approach

Section 5.2 states the problem of building a Dynamic Visualization Map as a Mixed
Integer Nonlinear Problem (MINLP). This section is devoted to present a solution ap-
proach to solve (DyV iMap), in which continuous and binary variables are optimized
in an alternating fashion: the choice x of reference objects depicting the individuals,
belonging to their corresponding catalogue, is optimized for translations c1,1, . . . , cN,T

fixed, then the translation vectors c1,1, . . . , cN,T are optimized for x fixed, and the
process is repeated until a stopping criterion is satisfied.

On one hand, observe that if the continuous variables c1,1, . . . , cN,T in (DyV iMap)

are fixed, the resulting problem is a nonconvex binary quadratic optimization problem
with assignment constraints of the form

min
x

∑
i,j∈V

∑
p=1,...,si
q=1,...,sj

apqij (c)xpi x
q
j

s.t.
∑si

p=1 x
p
i = 1, i = 1, . . . , N,

xpi ∈ {0, 1}, i = 1, . . . , N, p = 1, . . . , si,

(DyV iMap)c

where the coefficients apqij (c) take the form

apqij (c) =∑
t: i,j∈V (t)

(
λ1

[
d(ci,t + τrpi,tB

p
i , cj,t + τrqj,tB

q
j )− κδij,t

]2
− λ2d

2(ci,t + τrpi,tB
p
i , cj,t + τrqj,tB

q
j )

)

Problem (DyV iMap)c can thus be solved by standard MINLP Global Optimization
solvers, at the expense of high running times. However, when, at most, two reference
objects are in the catalogue of each individual, e.g., just two rectangles are allocated to
each individual, the problem can be rewritten as a convex quadratic problem, speeding
up convergence. Indeed, in this special case, the nonconvex binary quadratic problem
(DyV iMap)c can be rewritten as an unconstrained convex quadratic 0–1 problem by
setting x2

i = 1−x1
i for all i = 1, . . . , N , and then one can solve the problem via e.g. any

of the convexifications of the objective function described by Billionnet and Elloumi
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(2007).

On the other hand, for fixed values of x, (DyV iMap) becomes a nonlinear contin-
uous optimization problem, which involves a Difference of Convex (DC) function to be
minimized. Indeed, when x is fixed, F is DC due to the fact that FMDS and Fsmooth
are convex, Fspread is concave, and λk ≥ 0, k = 1, 2, 3. It is worth noting that, since x

is fixed, each individual is allocated to one reference object, and the model is analogous
to the single-object case studied in Chapter 4 with the additional convex term Fsmooth

in the objective.

Thus, the Difference of Convex Algorithm (DCA) is a suitable tool to find good
quality solutions which requires a DC decomposition of the objective function. The
performance of the DCA strongly depends on the choice of the DC decomposition
(Blanquero and Carrizosa, 2009; Bomze et al., 2008; Ferrer and Martínez-Legaz, 2009).
In this chapter, as done in Chapter 4 and in Le Thi (2000) and Pham Dinh and Le Thi
(1998), we seek a DC decomposition of F , with fixed x, whose expression is formed
by a quadratic separable convex function minus a convex function, as stated in Propo-
sition 5.1. We prove first the following result concerning a DC decomposition of the
distance function dτrpi,tBpi ; τrqj,tB

q
j
.

Lemma 5.1. Let dτrpi,tBpi ; τrqj,tB
q
j
be the infimum distance between the two closed, con-

vex, and symmetric with respect the origin, sets ci,t + τrpi,tB
p
i and cj,t + τrqj,tB

q
j . Then,

d2
τrpi,tB

p
i ; τrqj,tB

q
j
can be expressed as a DC function, d2

τrpi,tB
p
i ; τrqj,tB

q
j

= u−
(
u− d2

τrpi,tB
p
i ; τrqj,tB

q
j

)
,

where
u (ci,t, cj,t) = 2

(
‖ci,t‖2 + ‖cj,t‖2

)
.

Proof.

d2
τrpi,tB

p
i ; τrqj,tB

q
j

(ci,t, cj,t) =

= inf
zi∈ci,t+τr

p
i,tB

p
i

zj∈cj,t+τr
q
j,tB

q
j

‖zi − zj‖2

= inf
yi∈τrpi,tB

p
i

yj∈τrqj,tB
q
j

‖(ci,t + yi)− (cj,t + yj)‖2

= inf
yi∈τrpi,tB

p
i

yj∈τrqj,tB
q
j

{
‖ci,t − cj,t‖2 + ‖yi,t − yj,t‖2 + 2 (ci,t − cj,t)> (yi,t − yj,t)

}

= ‖ci,t − cj,t‖2 + inf
yi∈τrpi,tB

p
i

yj∈τrqj,tB
q
j

{
‖yi,t − yj,t‖2 + 2 (ci,t − cj,t)> (yi,t − yj,t)

}

= 2
(
‖ci,t‖2 + ‖cj,t‖2

)
−

‖ci,t + cj,t‖2 + sup
yi∈τrpi,tB

p
i

yj∈τrqj,tB
q
j

{
‖yj,t − yi,t‖2 + 2 (ci,t − cj,t)> (yj,t − yi,t)

}
= 2

(
‖ci,t‖2 + ‖cj,t‖2

)
− ϕ (ci,t, cj,t)
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Function ϕ (ci,t, cj,t) is the sum of two convex functions, and it is thus convex.
Therefore, the result in the statement holds.

Proposition 5.1. Let F as in (5.1). For a given x, function F can be expressed as a
DC function, F = u− (u−F ), where the quadratic separable convex function u is given
by

u =

T∑
t=1

∑
i,j∈V (t)

{
2 max{λ1 − λ2, 0}

(
‖ci,t‖2 + ‖cj,t‖2

)
+ λ1κ

2δ2
ij,t

}

+2λ3

N∑
i=1

‖ci,1‖2 + ‖ci,T ‖2 + 2
∑

t=2,...,T−1

‖ci,t‖2


Proof. Note that since x is fixed by assumption, we know in advance the reference
object used to represent each individual. Therefore, we can drop the dependence on p
and q, and we rename the distance function as dτrpi,tBpi ; τrqj,tB

q
j

= dij,t.

If λ1 ≥ λ2, one has

F =

=

T∑
t=1

∑
i,j∈V (t)

{
λ1

(
d2
ij,t + κ2δ2

ij,t − 2κδij,tdij,t
)
− λ2d

2
ij,t

}
+λ3

N∑
i=1

T−1∑
t=1

{
2‖ci,t‖2 + 2‖ci,t+1‖2 − ‖ci,t + ci,t+1‖2

}
=

 T∑
t=1

∑
i,j∈V (t)

{
(λ1 − λ2)d2

ij,t + λ1κ
2δ2
ij,t

}
+ 2λ3

N∑
i=1

{
‖ci,1‖2 + ‖ci,T ‖2 + 2

T−2∑
t=1

‖ci,t‖2
}

−

 T∑
t=1

∑
i,j∈V (t)

{2λ1κδij,tdij,t}+ λ3

N∑
i=1

T−1∑
t=1

‖ci,t + ci,t+1‖2


Lemma 5.1
=

 T∑
t=1

∑
i,j∈V (t)

{
2(λ1 − λ2)(‖ci,t‖2 + ‖cj,t‖2) + λ1κ

2δ2
ij,t

}
+2λ3

N∑
i=1

{
‖ci,1‖2 + ‖ci,T ‖2 + 2

T−2∑
t=1

‖ci,t‖2
}]

−

 T∑
t=1

∑
i,j∈V (t)

{
2(λ1 − λ2)(‖ci,t‖2 + ‖cj,t‖2)− (λ1 − λ2)d2

ij,t + 2λ1κδij,tdij,t
}

+λ3

N∑
i=1

T−1∑
t=1

‖ci,t + ci,t+1‖2
]
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If λ1 < λ2, one has

F =

=

T∑
t=1

∑
i,j∈V (t)

{
λ1

(
d2
ij,t + κ2δ2

ij,t − 2κδij,tdij,t
)
− λ2d

2
ij,t

}
+λ3

N∑
i=1

T−1∑
t=1

{
2‖ci,t‖2 + 2‖ci,t+1‖2 − ‖ci,t + ci,t+1‖2

}
=

 T∑
t=1

∑
i,j∈V (t)

{
λ1κ

2δ2
ij,t

}
+ 2λ3

N∑
i=1

{
‖ci,1‖2 + ‖ci,T ‖2 + 2

T−2∑
t=1

‖ci,t‖2
}

−

 T∑
t=1

∑
i,j∈V (t)

{
(λ2 − λ1)d2

ij,t + 2λ1κδij,tdij,t
}

+ λ3

N∑
i=1

T−1∑
t=1

‖ci,t + ci,t+1‖2
 .

Recall that DCA is an iterative process in which a sequence of convex programs
are solved. At each iteration, the concave part is replaced by its affine majorization
at a certain feasible point, and the resulting convex problem is then solve (Le Thi and
Pham Dinh, 2013, 2005; Pham Dinh and Le Thi, 1997). Thanks to the DC decom-
position of F given in Proposition 5.1, for x fixed, one needs to solve N × T convex
quadratic problems with simple constraints:

min
ci,t

{
Mi,t‖ci,t‖2 + c>i,tγ

c̄
i,t

}
s.t. ci,t + τrpi,tx

p
iB

p
i ⊆ Ω,

ci,t ∈ R2,

(DyV iMap)DCAi,t

for scalars Mi,t ∈ R+, which follow from the coefficients that multiply each term in the
u part (after grouping terms) in Proposition 5.1. Vectors γ c̄i,t ∈ R2 are subgradients
of the function u − F evaluated in the locations obtained in the previous iteration of
DCA, c̄ = (c̄1,1, . . . , c̄N,T ). When Ω has an amenable form, for instance a box or a disc,
the optimal solution of Problems (DyV iMap)DCAi,t , i = 1, . . . , N, t = 1, . . . , T , can
be readily obtained by differentiating and equating the gradient to zero (considering
correctly the constraints). In this case, as noted in Chapter 4, running times will be
strongly reduced since the convex optimization problems to be solved at each stage of
DCA have a closed expression for their optimal value.

The DCA scheme for solving (DyV iMap) with fixed x is outlined in Algorithm 5.1.
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Algorithm 5.1 DCA scheme for (DyV iMap) with fixed x

Input: cini =
(
cini1,1, . . . , c

ini
N,T

)
, such that cinii,t + τrpi,tx

p
iB

p
i ⊆ Ω, i = 1, . . . , N, t =

1, . . . , T .
1: c̄← cini

2: repeat
3: Compute γ c̄i,t ∈ ∂ (u− F ) (c̄);
4: Compute c = (c1,1, . . . , cN,T ) as the solution of Problem (DyV iMap)DCAi,t , for

all i = 1, . . . , N, t = 1, . . . , T ;
5: c̄← c;
6: until stop condition is met.
Output: c̄ = (c̄1,1, . . . , c̄N,T ).

Summarizing, solving Problem (DyV iMap) by means of an alternating algorithm
which optimizes its continuous and binary variables, respectively, requires the call to
a DCA subroutine in the first case (Algorithm 5.1 to optimize c1,1, . . . , cN,T ) and an
integer nonconvex quadratic solver to optimize x. The alternating routine to solve
(DyV iMap) is given in Algorithm 5.2.

Algorithm 5.2 Alternating scheme for (DyV iMap)

Input: xini =
(
(xini)pi

)
∈ {0, 1}S , where S =

∑N
k=1 sk, and

cini =
(
cini1,1, . . . , c

ini
N,T

)
, such that cinii,t + τrpi,t(x

ini)piB
p
i ⊆ Ω,

i = 1, . . . , N, p = 1, . . . , si, t = 1, . . . , T.

1: c̄← cini;
2: x̄← xini;
3: repeat
4: c̄← Algorithm 5.1(c̄);
5: x̄← solve (DyV iMap)c;
6: until stop condition is met.
Output: c̄ = (c̄1,1, . . . , c̄N,T ), x̄ = (x̄pi ) , i = 1, . . . , N, p = 1, . . . , si.

5.4 Computational experience

The methodology proposed in Section 5.3 is illustrated in four datasets, one ge-
ographic a three linguistic examples. In Section 5.4.1 we describe the four datasets
used in the experiments and in Section 5.4.2 how Algorithms 5.1 and 5.2 have been
implemented. Finally, Section 5.4.3 includes the results.
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5.4.1 Datasets

Our first example consists of visualizing the evolution of the population in the states
forming the U.S. across three time periods. The U.S. dataset consists of N = 50

individuals, the states forming the country, for which the population in T = 3 time
periods (three years: 1890, 1950 and 2010), ω(t), has been recorded, (Census Bureau,
2012). The dissimilarities, δ(t), depict the geodesic distance between the centroids of the
states. These dissimilarities have been computed in R, (R Core Team, 2016), running
the gdist function to the latitude/longitud coordinates given in state.center data.
The dataset measurement is incomplete, in the sense that there are no data available
for Alaska (AK) and Hawaii (HI) in 1890. In other words, V (1) consists of all states
excepting AK and HI, whereas V (2) and V (3) contain the 50 states.

The linguistic datasets consist of the most popular words arising in Danish news
around the three different topics along a time period: internet between 1994 and
1997, terror between 2001 and 2015 and immigration between 1995 and 2015 (Car-
rizosa et al., 2017a). The relevance of each word per year, ω(t), is measured by means
of the term frequency inverse document frequency (tf-idf) weighting factor, whereas
δ(t) depicts the co-occurrence of pairs of words using the cosine vector similarity for-
mula (Salton and Buckley, 1988). We have a corpus of words V , and we set V (t) =

{v ∈ V : v is relevant in time period t}.

5.4.2 Experiments details

Algorithms 5.1 and 5.2 have been coded in AMPL (Fourer et al., 1993), and the
quadratic binary problems have been solved with CPLEX 12.6, (CPLEX, IBM ILOG,
2014). The computational experiments have been carried out on a PC Intelr Core

TM

i7-2600K, 16GB of RAM. Since Problem (DyV iMap) is expected to be multimodal,
since it extends standard MDS (known to be multimodal, Trosset and Mathar (1997)
and Žilinskas and Podlipskytė (2003)), DCA may get stuck in local optima. For this
reason, Algorithm 5.2 has been embedded in a multistart routine.

We set Ω = [0, 1] × [0, 1], and λ1 = 0.7, λ2 = 0.2 and λ3 = 0.1. The choices of τ
and κ are made dependent on the dataset following the expressions in (5.2) and (5.3),
respectively.

τ =
1

max
t

N∑
i=1

ωi,t

· 0.05 (5.2)
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κ =
N(N − 1)T
T∑
t=1

∑
i,j=1,...,N

i 6=j

δij,t

· 0.30 (5.3)

The unit square in R2 is considered as the reference object for all the U.S. dataset,
this is Bi = {Ω = [0, 1] × [0, 1]}, i = 1, . . . , N . Since there exists only one reference
object per individual, variables x are known (fixed) a priori and the alternating strategy
in Algorithm 5.2 reduces to Algorithm 5.1. The maximum number of iterations in
Algorithm 5.1 is set to 100 and the number of iterations of the multistart routine to 50.
Initial values of the translation vectors, cini are uniformly generated in Ω, taking into
account the feasible region.

For the linguistic datasets related to internet and terror topics, the unit disc in R2

is considered as the reference object for all the words, this is Bi = {(a, b) : a2 + b2 ≤ 1},
i = 1, . . . , N , and thus Bi = {Bi}. Similarly to the U.S. example, variables x are known
a priori and the alternating strategy in Algorithm 5.2 reduces to Algorithm 5.1.

For the linguistic datasets related to immigration topic, we consider that each word
vi ∈ V has associated as a set of potential reference objects Bi =

{
R1
i ,R2

i

}
, where Rpi

are rectangles parallel to the coordinate axes, p = 1, 2. The height of R1
i is equal to one

unit, whereas its basis corresponds to the number of letters of the word. R2
i is obtained

using a 90 degree rotation of R1
i . Since two reference objects per word are considered,

the 0–1 quadratic optimization problems to be solved in Algorithm 5.2 can be rewritten
as 0–1 unconstrained convex quadratic problems. The convexification of the problem is
made following the first approach described by Billionnet and Elloumi (2007), namely
computing the smallest eigenvalue of the matrix by means of the Gerschgorin Theorem
(Gershgorin, 1931). We set the maximum number of iterations in Algorithm 5.2 to 10,
where the inside call to Algorithm 5.1 is made with a maximum number of iterations
of 10 as well, and the number of runs of the multistart routine to 50. Initial values of
the translation vectors, cini are randomly generated in Ω.

5.4.3 Results

Figures 5.3–5.5 show the Dynamic Visualization Map representing the U.S. dataset.
Besides the good fitting of dissimilarities, we observe how the squares representing the
states are spread over region Ω and they do not suffer big shifts from one period to
another.

Figure 5.6 shows the Dynamic Visualization Map representing the linguistic dataset
related to internet, whereas Figures 5.7–5.9 relate to terror topic and Figures 5.10–5.13
with immigration. Words that are not in a period t but they are in t + 1 have been
underlined to highlight their first appearance. Despite the continuous changing in the
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words in each time period, the preservation of the mental map (smoothness criterion)
is achieved for those words that are present in (almost) the whole time horizon.

5.5 Conclusions

In this chapter we have addressed the problem of visualizing a dynamic complex
dataset, by preserving its underlying structure as well as the mental map to make the
interpretability easier. A Mathematical Optimization model has been proposed, which
yields a Mixed Integer Nonlinear Program. We assume that there exists a catalogue of
candidate reference objects to represent each individual in the dataset, and the choice
should be made according to three goodness of fit criteria that pursue the preservation of
the data structure: first, the distance between the convex bodies must resemble a given
dissimilarity; second, the objects must be spread over the visualization region; finally,
the mental map should be preserved. An alternating algorithm, which combines the
use of DC optimization tools (Difference of Convex Algorithm) as well as 0–1 quadratic
programming, has been proposed as solution approach. Our numerical experience shows
the suitability of our algorithm. Indeed, the stated model for dynamic complex datasets
can be straightforwardly generalized to Rn, n ≥ 3. Moreover, different distances than
the infimum could be considered as well.
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Figure 5.3: U.S. dataset visualization in T = 1.
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Figure 5.4: U.S. dataset visualization in T = 2.
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U.S. POPULATION 2010
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Figure 5.5: U.S. dataset visualization in T = 3.
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Figure 5.10: Linguistic dataset visualization in T = 1, . . . , 6.
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Figure 5.11: Linguistic dataset visualization in T = 7, . . . , 12.
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Figure 5.12: Linguistic dataset visualization in T = 13, . . . , 18.
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Figure 5.13: Linguistic dataset visualization in T = 19, . . . , 21.
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In this PhD dissertation, Mathematical Optimization has been the common thread
to deal with Information Visualization challenges. Different ways of visualizing a com-
plex dataset by maintaining its underlying structure have been presented through the
chapters forming this thesis. Specifically, we have dealt with data involving a frequency
distribution and a proximity relationship, in terms of adjacencies or dissimilarities.
Moreover, these magnitudes may vary over time as well. Roughly speaking, the vi-
sualization frameworks presented in this thesis consist of representing each individual
involved in the dataset as a geometric object, which is scaled according to the frequency
distribution and located in a given visualization region according to the proximity rela-
tionship. Indeed, each of these geometric objects may contain extra information such as
frequencies, hierarchies or proximity relations, represented e.g. by means of histograms,
treemaps, or graphs, respectively, as well as additional numerical or categorical vari-
ables, which can be visualized by means of colors, hues, etc. (Benbasat and Dexter,
1985; Gomez-Nieto et al., 2016; Shmueli et al., 2016).

In order to build visualization frameworks for these datasets, new optimization mod-
els based on Mixed Integer (Non) Linear Programming (Chapters 2, 3 and 5) and Dif-
ference of Convex tools (Chapters 4 and 5) have been formally stated. In addition,
solution approaches consisting of matheuristics that exploit the structure of the prob-
lems have been either specifically designed (Cell Perturbing Algorithm and Embedded
Cell Perturbing Algorithm in Chapter 2) or adapted (Large Neighborhood Search in
Chapter 3 and Difference of Convex Algorithm in Chapters 4 and 5) to obtain high-
quality solutions.

There are several interesting lines for future research. Regarding Chapters 2 and
3, the so-called “segment moving heuristic” (Kreveld and Speckmann, 2007), could be
customized to our problem in order to improve the approximation made in the areas after
having a (K,L)-rectangular map or a Space-filling Box-connected Map. Nevertheless,
even if we were able to detect the portions whose sizes can be changed, and thus,
the segments that can be moved without destroying either the rectangular shapes or
the box-connectivity, the proximities’ structure could be dramatically changed by such
movements. Hence, local changes are difficult to detect due to the rigid structure
of the visualization frameworks and this approach deserves further study. In addition,
modeling dynamic (K,L)-rectangular map and Space-filling Box-connected Maps which
can handle temporal changes seems to be also a very interesting problem (Cui et al.,
2010; de Pinho et al., 2010; Mashima et al., 2012). Finally, considering visualization
regions different from a rectangle, in which a regular grid cannot be obtained in a
straightforward manner, is a challenging problem when modeling portions’ connectivity
(Carvajal et al., 2013; Wang et al., 2015).

Regarding Chapters 4 and 5, we have considered the infimum distance (d1). Instead,
one can consider other classical distances in Cluster Analysis such as the supremum
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distance (d2) or the average one (d3), Hansen and Jaumard (1997), as well as other
approaches such as the Hausdorff distance (d4). First, it should be observed that the
average distance between two convex sets may not have an easy expression, and thus
approximations may be needed (Koshizuka and Kurita, 1991; Vaughan, 1984). Second,
we have assumed the reference objects B and Bpi to be convex, to guarantee the convexity
of the function giving the infimum distance and thus allowing us to express (VM)∗ and
(DyV iMap) as DC optimization problems. However, for arbitrary reference objects
the infimum distance (d1) and the Hausdorff distance (d4) functions may not be DC
(Blanquero and Carrizosa, 2009). Nevertheless, as discussed e.g. by Blanquero et al.
(2009), important classes of nonconvex sets (e.g. finite union of convex sets) make
the infimum distance a DC function, and thus the analysis in these chapters extend
gracefully to such cases. It should be observed that if the supremum distance or the
average distance are used instead, then the distance function is convex for arbitrary
reference objects. This follows from the fact that the supremum in (d2) and the integral
in (d3) preserve the convexity of the norm function used in their definitions. Thus, the
objective function of (VM)∗ and (DyV iMap) would be DC regardless of the shape
of the reference objects. Third, working on different ways of addressing the spread
criterion as well as the overlapping between the objects depicting the individuals might
be interesting. Dealing with new functions, which may have good properties in terms of
convexity or DC decompositions as those studied in these chapters, sets a new challenge
in terms of modeling.

In general, there exist interesting extensions of the work presented in this PhD
dissertation as well as the possibility of studying other applications of Mathematical
Optimization to Information Visualization. First, the solution approaches used in this
thesis are heuristic, and thus, the convergence of the algorithm to the global optima is
not guaranteed. A better performance can be obtained if these algorithms are plugged,
as local search routines, within a strategy which avoids local optima, such as (contin-
uous) Variable Neighborhood Search (Carrizosa et al., 2012; Mladenović and Hansen,
1997; Mladenović et al., 2008). Second, all visualization frameworks developed can also
be adapted to visualize hierarchical data, in which inside every object representing the
individuals, namely rectangles, box-connected rectangles or general geometric objects,
a new set of individuals have to be depicted. However, this extension is not straight-
forward since nested proximity relationships need to be taken into account and con-
sequently depicted: the individuals in the same group should respect their in-between
proximities but also the relationship among the members of other groups. Third, the
online version of these problems is a challenging extension of the studies made in this
PhD dissertation: instead of considering that the dataset is fully known in advance for
the whole time horizon, it is natural to assume that in forthcoming time periods new
individuals may appear. These new individuals should be integrated in the previously
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constructed visualization framework in real-time.
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