9,366 research outputs found

    Establishment of a Visual Analog Scale for DBS Programming (VISUAL-STIM Trial)

    Get PDF
    Background: Deep brain stimulation (DBS) has become a standard treatment for advanced stages of Parkinson's disease, essential tremor, and dystonia. In addition to the correct surgical device implantation, effective programming is regarded to be the most important factor for clinical outcome. Despite established strategies for adjusting neurostimulation, DBS programming remains time- and resource-consuming. Although kinematic and neuronal biosignals have recently been examined as potential feedback for closed-loop DBS (CL-DBS), there is an ongoing need for programming strategies to adapt the stimulation parameters and electrode configurations accurately and effectively. Methods: Here, we tested the usefulness of a patient-rated visual analog scale (VAS) for real-time adjustment of DBS parameters. The stimulation parameters (contact and amplitude) in Parkinson's patients with STN-DBS (n = 17) were optimized based on the patient's subjective VAS rating. A Minkowski distance (Md) was calculated to compare the individual combination of contact selection and amplitude to the stimulation parameters that resulted from classical programming based on clinical signs and symptoms. Results: We found no statistically significant difference between VAS-based and classical programming in regard to the specific contact or amplitude used or in regard to the clinical disease severity (UPDRS). Conclusions: Our data suggest that VAS-based and classical programming strategies both lead to similar short-term results. Although further research will be required to assess the validity of VAS-based DBS programming, our results support the investigation of the patient's subjective rating as an additional and valid feedback signal for individualized DBS adjustment

    Space, the Final Frontier-Expanding FCC Regulation of Indecent Content onto Direct Broadcast Satellite

    Get PDF
    The vast majority of viewers today receive video programming from multichannel video programming providers-mostly cable television or direct broadcast satellite ( DBS )-rather than directly over-the-air from broadcast stations. While the FCC has not hesitated to sanction broadcasters for what it deems to be indecent content, it consistently has found that it lacks the authority to regulate indecency on subscription services like cable television. Citizens groups and some in Congress now seek to extend indecency restrictions to DBS services under existing law or through the enactment of new legislation. It is true that DBS, because of its use of radio spectrum to deliver programming to consumers, does share some similarities with broadcasters. Although the Supreme Court has not considered the issue, we believe that the nature of the DBS service more closely resembles cable television than broadcasting. Assuming that the FCC has statutory authority to regulate indecency on DBS (which is itself doubtful), Supreme Court precedent regarding the regulation of content on cable and the Internet strongly suggests that any restriction on DBS indecency would contravene the First Amendment

    Optimal Parameters of Deep Brain Stimulation in Essential Tremor:A Meta-Analysis and Novel Programming Strategy

    Get PDF
    The programming of deep brain stimulation (DBS) parameters for tremor is laborious and empirical. Despite extensive efforts, the end-result is often suboptimal. One reason for this is the poorly understood relationship between the stimulation parameters' voltage, pulse width, and frequency. In this study, we aim to improve DBS programming for essential tremor (ET) by exploring a new strategy. At first, the role of the individual DBS parameters in tremor control was characterized using a meta-analysis documenting all the available parameters and tremor outcomes. In our novel programming strategy, we applied 10 random combinations of stimulation parameters in eight ET-DBS patients with suboptimal tremor control. Tremor severity was assessed using accelerometers and immediate and sustained patient-reported outcomes (PRO's), including the occurrence of side-effects. The meta-analysis showed no substantial relationship between individual DBS parameters and tremor suppression. Nevertheless, with our novel programming strategy, a significantly improved (accelerometer p = 0.02, PRO p = 0.02) and sustained (p = 0.01) tremor suppression compared to baseline was achieved. Less side-effects were encountered compared to baseline. Our pilot data show that with this novel approach, tremor control can be improved in ET patients with suboptimal tremor control on DBS. In addition, this approach proved to have a beneficial effect on stimulation-related complications

    TOR: modular search with hookable disjunction

    Get PDF
    Horn Clause Programs have a natural exhaustive depth-first procedural semantics. However, for many programs this semantics is ineffective. In order to compute useful solutions, one needs the ability to modify the search method that explores the alternative execution branches. Tor, a well-defined hook into Prolog disjunction, provides this ability. It is light-weight thanks to its library approach and efficient because it is based on program transformation. Tor is general enough to mimic search-modifying predicates like ECLiPSe's search/6. Moreover, Tor supports modular composition of search methods and other hooks. The Tor library is already provided and used as an add-on to SWI-Prolog.publisher: Elsevier articletitle: Tor: Modular search with hookable disjunction journaltitle: Science of Computer Programming articlelink: http://dx.doi.org/10.1016/j.scico.2013.05.008 content_type: article copyright: Copyright © 2013 Elsevier B.V. All rights reserved.status: publishe

    Tor: modular search with hookable disjunction

    Get PDF
    Horn Clause Programs have a natural exhaustive depth-first procedural semantics. However, for many programs this semantics is ineffective. In order to compute useful solutions, one needs the ability to modify the search method that explores the alternative execution branches. Tor, a well-defined hook into Prolog disjunction, provides this ability. It is light-weight thanks to its library approach. Tor supports modular composition of search methods and other hooks. The Tor library is already provided and used as an add-on to SWI-Prolog

    A practical guide to troubleshooting pallidal deep brain stimulation issues in patients with dystonia

    Get PDF
    High frequency deep brain stimulation (DBS) of the internal portion of the globus pallidus has, in the last two decades, become a mainstream therapy for the management of medically-refractory dystonia syndromes. Such increasing uptake places an onus on movement disorder physicians to become familiar with this treatment modality, in particular optimal patient selection for the procedure and how to troubleshoot problems relating to sub-optimal efficacy and therapy-related side effects. Deep brain stimulation for dystonic conditions presents some unique challenges. For example, the frequent lack of immediate change in clinical status following stimulation alterations means that programming often relies on personal experience and local practice rather than real-time indicators of efficacy. Further, dystonia is a highly heterogeneous disorder, making the development of unifying guidelines and programming algorithms for DBS in this population difficult. Consequently, physicians may feel less confident in managing DBS for dystonia as compared to other indications e.g. Parkinson's disease. In this review, we integrate our years of personal experience of the programming of DBS systems for dystonia with a critical appraisal of the literature to produce a practical guide for troubleshooting common issues encountered in patients with dystonia treated with DBS, in the hope of improving the care for these patients

    Decomposition Based Search - A theoretical and experimental evaluation

    Full text link
    In this paper we present and evaluate a search strategy called Decomposition Based Search (DBS) which is based on two steps: subproblem generation and subproblem solution. The generation of subproblems is done through value ranking and domain splitting. Subdomains are explored so as to generate, according to the heuristic chosen, promising subproblems first. We show that two well known search strategies, Limited Discrepancy Search (LDS) and Iterative Broadening (IB), can be seen as special cases of DBS. First we present a tuning of DBS that visits the same search nodes as IB, but avoids restarts. Then we compare both theoretically and computationally DBS and LDS using the same heuristic. We prove that DBS has a higher probability of being successful than LDS on a comparable number of nodes, under realistic assumptions. Experiments on a constraint satisfaction problem and an optimization problem show that DBS is indeed very effective if compared to LDS.Comment: 16 pages, 8 figures. LIA Technical Report LIA00203, University of Bologna, 200
    corecore