164 research outputs found

    D2D-Based Grouped Random Access to Mitigate Mobile Access Congestion in 5G Sensor Networks

    Full text link
    The Fifth Generation (5G) wireless service of sensor networks involves significant challenges when dealing with the coordination of ever-increasing number of devices accessing shared resources. This has drawn major interest from the research community as many existing works focus on the radio access network congestion control to efficiently manage resources in the context of device-to-device (D2D) interaction in huge sensor networks. In this context, this paper pioneers a study on the impact of D2D link reliability in group-assisted random access protocols, by shedding the light on beneficial performance and potential limitations of approaches of this kind against tunable parameters such as group size, number of sensors and reliability of D2D links. Additionally, we leverage on the association with a Geolocation Database (GDB) capability to assist the grouping decisions by drawing parallels with recent regulatory-driven initiatives around GDBs and arguing benefits of the suggested proposal. Finally, the proposed method is approved to significantly reduce the delay over random access channels, by means of an exhaustive simulation campaign.Comment: First submission to IEEE Communications Magazine on Oct.28.2017. Accepted on Aug.18.2019. This is the camera-ready versio

    5GAuRA. D3.3: RAN Analytics Mechanisms and Performance Benchmarking of Video, Time Critical, and Social Applications

    Get PDF
    5GAuRA deliverable D3.3.This is the final deliverable of Work Package 3 (WP3) of the 5GAuRA project, providing a report on the project’s developments on the topics of Radio Access Network (RAN) analytics and application performance benchmarking. The focus of this deliverable is to extend and deepen the methods and results provided in the 5GAuRA deliverable D3.2 in the context of specific use scenarios of video, time critical, and social applications. In this respect, four major topics of WP3 of 5GAuRA – namely edge-cloud enhanced RAN architecture, machine learning assisted Random Access Channel (RACH) approach, Multi-access Edge Computing (MEC) content caching, and active queue management – are put forward. Specifically, this document provides a detailed discussion on the service level agreement between tenant and service provider in the context of network slicing in Fifth Generation (5G) communication networks. Network slicing is considered as a key enabler to 5G communication system. Legacy telecommunication networks have been providing various services to all kinds of customers through a single network infrastructure. In contrast, by deploying network slicing, operators are now able to partition one network into individual slices, each with its own configuration and Quality of Service (QoS) requirements. There are many applications across industry that open new business opportunities with new business models. Every application instance requires an independent slice with its own network functions and features, whereby every single slice needs an individual Service Level Agreement (SLA). In D3.3, we propose a comprehensive end-to-end structure of SLA between the tenant and the service provider of sliced 5G network, which balances the interests of both sides. The proposed SLA defines reliability, availability, and performance of delivered telecommunication services in order to ensure that right information is delivered to the right destination at right time, safely and securely. We also discuss the metrics of slicebased network SLA such as throughput, penalty, cost, revenue, profit, and QoS related metrics, which are, in the view of 5GAuRA, critical features of the agreement.Peer ReviewedPostprint (published version

    Game Theory for Multi-Access Edge Computing:Survey, Use Cases, and Future Trends

    Get PDF
    Game theory (GT) has been used with significant success to formulate, and either design or optimize, the operation of many representative communications and networking scenarios. The games in these scenarios involve, as usual, diverse players with conflicting goals. This paper primarily surveys the literature that has applied theoretical games to wireless networks, emphasizing use cases of upcoming multiaccess edge computing (MEC). MEC is relatively new and offers cloud services at the network periphery, aiming to reduce service latency backhaul load, and enhance relevant operational aspects such as quality of experience or security. Our presentation of GT is focused on the major challenges imposed by MEC services over the wireless resources. The survey is divided into classical and evolutionary games. Then, our discussion proceeds to more specific aspects which have a considerable impact on the game's usefulness, namely, rational versus evolving strategies, cooperation among players, available game information, the way the game is played (single turn, repeated), the game's model evaluation, and how the model results can be applied for both optimizing resource-constrained resources and balancing diverse tradeoffs in real edge networking scenarios. Finally, we reflect on lessons learned, highlighting future trends and research directions for applying theoretical model games in upcoming MEC services, considering both network design issues and usage scenarios

    Delay and energy efficiency optimizations in smart grid neighbourhood area networks

    Get PDF
    Smart grids play a significant role in addressing climate change and growing energy demand. The role of smart grids includes reducing greenhouse gas emission reduction by providing alternative energy resources to the traditional grid. Smart grids exploit renewable energy resources into the power grid and provide effective two-way communications between smart grid domains for efficient grid control. The smart grid communication plays a pivotal role in coordinating energy generation, energy transmission, and energy distribution. Cellular technology with long term evolution (LTE)-based standards has been a preference for smart grid communication networks. However, integrating the cellular technology and the smart grid communication network puts forth a significant challenge for the LTE because LTE was initially invented for human centric broadband purpose. Delay and energy efficiency are two critical parameters in smart grid communication networks. Some data in smart grids are real-time delay-sensitive data which is crucial in ensuring stability of the grid. On the other hand, when abnormal events occur, most communication devices in smart grids are powered by local energy sources with limited power supply, therefore energy-efficient communications are required. This thesis studies energy-efficient and delay-optimization schemes in smart grid communication networks to make the grid more efficient and reliable. A joint power control and mode selection in device-to-device communications underlying cellular networks is proposed for energy management in the Future Renewable Electric Energy Delivery and Managements system. Moreover, a joint resource allocation and power control in heterogeneous cellular networks is proposed for phasor measurement units to achieve efficient grid control. Simulation results are presented to show the effectiveness of the proposed schemes

    A Comprehensive Review of D2D Communication in 5G and B5G Networks

    Get PDF
    The evolution of Device-to-device (D2D) communication represents a significant breakthrough within the realm of mobile technology, particularly in the context of 5G and beyond 5G (B5G) networks. This innovation streamlines the process of data transfer between devices that are in close physical proximity to each other. D2D communication capitalizes on the capabilities of nearby devices to communicate directly with one another, thereby optimizing the efficient utilization of available network resources, reducing latency, enhancing data transmission speed, and increasing the overall network capacity. In essence, it empowers more effective and rapid data sharing among neighboring devices, which is especially advantageous within the advanced landscape of mobile networks such as 5G and B5G. The development of D2D communication is largely driven by mobile operators who gather and leverage short-range communications data to propel this technology forward. This data is vital for maintaining proximity-based services and enhancing network performance. The primary objective of this research is to provide a comprehensive overview of recent progress in different aspects of D2D communication, including the discovery process, mode selection methods, interference management, power allocation, and how D2D is employed in 5G technologies. Furthermore, the study also underscores the unresolved issues and identifies the challenges associated with D2D communication, shedding light on areas that need further exploration and developmen

    Prioritised Random Access Channel Protocols for Delay Critical M2M Communication over Cellular Networks

    Get PDF
    With the ever-increasing technological evolution, the current and future generation communication systems are geared towards accommodating Machine to Machine (M2M) communication as a necessary prerequisite for Internet of Things (IoT). Machine Type Communication (MTC) can sustain many promising applications through connecting a huge number of devices into one network. As current studies indicate, the number of devices is escalating at a high rate. Consequently, the network becomes congested because of its lower capacity, when the massive number of devices attempts simultaneous connection through the Random Access Channel (RACH). This results in RACH resource shortage, which can lead to high collision probability and massive access delay. Hence, it is critical to upgrade conventional Random Access (RA) techniques to support a massive number of Machine Type Communication (MTC) devices including Delay-Critical (DC) MTC. This thesis approaches to tackle this problem by modeling and optimising the access throughput and access delay performance of massive random access of M2M communications in Long-Term Evolution (LTE) networks. This thesis investigates the performance of different random access schemes in different scenarios. The study begins with the design and inspection of a group based 2-step Slotted-Aloha RACH (SA-RACH) scheme considering the coexistence of Human-to-Human (H2H) and M2M communication, the latter of which is categorised as: Delay-Critical user equipments (DC-UEs) and Non-Delay-Critical user equipments (NDC-UEs). Next, a novel RACH scheme termed the Priority-based Dynamic RACH (PD-RACH) model is proposed which utilises a coded preamble based collision probability model. Finally, being a key enabler of IoT, Machine Learning, i.e. a Q-learning based approach has been adopted, and a learning assisted Prioritised RACH scheme has been developed and investigated to prioritise a specific user group. In this work, the performance analysis of these novel RACH schemes show promising results compared to that of conventional RACH

    D4.3 Final Report on Network-Level Solutions

    Full text link
    Research activities in METIS reported in this document focus on proposing solutions to the network-level challenges of future wireless communication networks. Thereby, a large variety of scenarios is considered and a set of technical concepts is proposed to serve the needs envisioned for the 2020 and beyond. This document provides the final findings on several network-level aspects and groups of solutions that are considered essential for designing future 5G solutions. Specifically, it elaborates on: -Interference management and resource allocation schemes -Mobility management and robustness enhancements -Context aware approaches -D2D and V2X mechanisms -Technology components focused on clustering -Dynamic reconfiguration enablers These novel network-level technology concepts are evaluated against requirements defined by METIS for future 5G systems. Moreover, functional enablers which can support the solutions mentioned aboveare proposed. We find that the network level solutions and technology components developed during the course of METIS complement the lower layer technology components and thereby effectively contribute to meeting 5G requirements and targets.Aydin, O.; Valentin, S.; Ren, Z.; Botsov, M.; Lakshmana, TR.; Sui, Y.; Sun, W.... (2015). D4.3 Final Report on Network-Level Solutions. http://hdl.handle.net/10251/7675
    • …
    corecore