737 research outputs found

    Infinities of stable periodic orbits in systems of coupled oscillators

    Get PDF
    We consider the dynamical behavior of coupled oscillators with robust heteroclinic cycles between saddles that may be periodic or chaotic. We differentiate attracting cycles into types that we call phase resetting and free running depending on whether the cycle approaches a given saddle along one or many trajectories. At loss of stability of attracting cycling, we show in a phase-resetting example the existence of an infinite family of stable periodic orbits that accumulate on the cycling, whereas for a free-running example loss of stability of the cycling gives rise to a single quasiperiodic or chaotic attractor

    Coupled dynamics of voltage and calcium in paced cardiac cells

    Full text link
    We investigate numerically and analytically the coupled dynamics of transmembrane voltage and intracellular calcium cycling in paced cardiac cells using a detailed physiological model and its reduction to a three-dimensional discrete map. The results provide a theoretical framework to interpret various experimentally observed modes of instability ranging from electromechanically concordant and discordant alternans to quasiperiodic oscillations of voltage and calcium

    Using Delay-Differential Equations for Modeling Calcium Cycling in Cardiac Myocytes

    Get PDF
    The cycling of calcium at the intracellular level of cardiac cells plays a key role in the excitation-contraction process. The interplay between ionic currents, buffering agents, and calcium release from the sarcoplasmic reticulum (SR) is a complex system that has been shown experimentally to exhibit complex dynamics including period-2 states (alternans) and higher-order rhythms. Many of the calcium cycling activities involve the sensing, binding, or diffusion of calcium between intracellular compartments; these are physical processes that take time and typically are modeled by “relaxation” equations where the steady-state value and time course of a particular variable are specified through an ordinary differential equation (ODE) with a time constant. An alternative approach is to use delay-differential equations (DDEs), where the delays in the system correspond to non-instantaneous events. In this thesis, we present a thorough overview of results from calcium cycling experiments and proposed intracellular calcium cycling models, as well as the context of alternans and delay-differential equations in cardiac modeling. We utilize a DDE to model the diffusion of calcium through the SR by replacing the relaxation ODE typically used for this process. The relaxation time constant τa is replaced by a delay δj, which could also be interpreted as the refractoriness of ryanodine receptor channels after releasing calcium from the sarcoplasmic reticulum. This is the first application of delay-differential equations to modeling calcium cycling dynamics, and to modeling cardiac systems at the cellular level. We analyzed the dynamical behaviors of the system and focus on the factors that have been shown to produce alternans and irregular dynamics in experiments and models with cardiac myocytes. We found that chaotic calcium dynamics could occur even for a more physiologically revelant SR calcium release slope than comparable ODE models. Increasing the SR release slope did not affect the calcium dynamics, but only shifted behavior down to lower values of the delay, allowing alternans, higher-order behavior, and chaos to occur for smaller delays than in simulations with a normal SR release slope. For moderate values of the delay, solely alternans and 1:1 steady-state behavior were observed. Above a particular threshold value for the delay, chaos appeared in the dynamics and further increasing the delay caused the system to destabilize under broader ranges of periods. We also compare our results with other models of intracellular calcium cycling and suggest promising avenues for further development of our preliminary work

    Cardiac cell modelling: Observations from the heart of the cardiac physiome project

    Get PDF
    In this manuscript we review the state of cardiac cell modelling in the context of international initiatives such as the IUPS Physiome and Virtual Physiological Human Projects, which aim to integrate computational models across scales and physics. In particular we focus on the relationship between experimental data and model parameterisation across a range of model types and cellular physiological systems. Finally, in the context of parameter identification and model reuse within the Cardiac Physiome, we suggest some future priority areas for this field

    Ca2+ Alternans in a Cardiac Myocyte Model that Uses Moment Equations to Represent Heterogeneous Junctional SR Ca2+

    Get PDF
    AbstractMultiscale whole-cell models that accurately represent local control of Ca2+-induced Ca2+ release in cardiac myocytes can reproduce high-gain Ca2+ release that is graded with changes in membrane potential. Using a recently introduced formalism that represents heterogeneous local Ca2+ using moment equations, we present a model of cardiac myocyte Ca2+ cycling that exhibits alternating sarcoplasmic reticulum (SR) Ca2+ release when periodically stimulated by depolarizing voltage pulses. The model predicts that the distribution of junctional SR [Ca2+] across a large population of Ca2+ release units is distinct on alternating cycles. Load-release and release-uptake functions computed from this model give insight into how Ca2+ fluxes and stimulation frequency combine to determine the presence or absence of Ca2+ alternans. Our results show that the conditions for the onset of Ca2+ alternans cannot be explained solely by the steepness of the load-release function, but that changes in the release-uptake process also play an important role. We analyze the effect of the junctional SR refilling time constant on Ca2+ alternans and conclude that physiologically realistic models of defective Ca2+ cycling must represent the dynamics of heterogeneous junctional SR [Ca2+] without assuming rapid equilibration of junctional and network SR [Ca2+]
    • …
    corecore