3,932 research outputs found

    Replica determinism and flexible scheduling in hard real-time dependable systems

    Get PDF
    Fault-tolerant real-time systems are typically based on active replication where replicated entities are required to deliver their outputs in an identical order within a given time interval. Distributed scheduling of replicated tasks, however, violates this requirement if on-line scheduling, preemptive scheduling, or scheduling of dissimilar replicated task sets is employed. This problem of inconsistent task outputs has been solved previously by coordinating the decisions of the local schedulers such that replicated tasks are executed in an identical order. Global coordination results either in an extremely high communication effort to agree on each schedule decision or in an overly restrictive execution model where on-line scheduling, arbitrary preemptions, and nonidentically replicated task sets are not allowed. To overcome these restrictions, a new method, called timed messages, is introduced. Timed messages guarantee deterministic operation by presenting consistent message versions to the replicated tasks. This approach is based on simulated common knowledge and a sparse time base. Timed messages are very effective since they neither require communication between the local scheduler nor do they restrict usage of on-line flexible scheduling, preemptions and nonidentically replicated task sets

    Escalonar sistemas de tempo-real de alta críticalidade

    Get PDF
    Cyclic executives are used to schedule safety-critical real-time systems because of their determinism, simplicity, and efficiency. One major challenge of the cyclic executive model is to produce the cyclic scheduling timetable. This problem is related to the bin-packing problem [34] and is NP-Hard in the strong sense. Unnecessary context switches within the scheduling table can introduce significant overhead; in IMA (Integrated Modular Avionics), cache-related overheads can increase task execution times up to 33% [18]. Developed in the context of the Software Engineering Master’s Degree at ISEP, the Polytechnic Institute of Engineering in Porto Portugal, this thesis contains two contributions to the scheduling literature. The first is a precise and exact approach to computing the slack of a job set that is schedule policy independent. The method introduces several operations to update and maintain the slack at runtime, ensuring the slack of all jobs is valid and coherent. The second contribution is the definition of a state-of-the-art preemptive scheduling algorithm focused on minimizing the number of system preemptions for real-time safety-critical applications within a reasonable amount of time. Both contributions have been implemented and extensively tested in scala. Experimental results suggest our scheduling algorithm has similar non-preemptive schedulability ratio than Chain Window RM [69], yet lower ratio in high utilizations than Chain Window EDF [69] and BB-Moore [68]. For ask sets that failed to be scheduled non-preemptively, 98-99% of all jobs are scheduled without preemptions. Considering the fact that our scheduler is preemptive, being able to compete with non-preemptive schedulers is an excellent result indeed. In terms of execution time, our proposal is multiple orders of magnitude faster than the aforementioned algorithms. Both contributions of this work are planned to be presented at future conferences such as RTSS@Work and RTAS

    Schedulability analysis and optimization of time-partitioned distributed real-time systems

    Get PDF
    RESUMEN: La creciente complejidad de los sistemas de control modernos lleva a muchas empresas a tener que re-dimensionar o re-diseñar sus soluciones para adecuarlas a nuevas funcionalidades y requisitos. Un caso paradigmático de esta situación se ha dado en el sector ferroviario, donde la implementación de las aplicaciones de señalización se ha llevado a cabo empleando técnicas tradicionales que, si bien ahora mismo cumplen con los requisitos básicos, su rendimiento temporal y escalabilidad funcional son sustancialmente mejorables. A partir de las soluciones propuestas en esta tesis, además de contribuir a la validación de sistemas que requieren certificación de seguridad funcional, también se creará la tecnología base de análisis de planificabilidad y optimización de sistemas de tiempo real distribuidos generales y también basados en particionado temporal, que podrá ser aplicada en distintos entornos en los que los sistemas ciberfísicos juegan un rol clave, por ejemplo en aplicaciones de Industria 4.0, en los que pueden presentarse problemas similares en el futuro.ABSTRACT:he increasing complexity of modern control systems leads many companies to have to resize or redesign their solutions to adapt them to new functionalities and requirements. A paradigmatic case of this situation has occurred in the railway sector, where the implementation of signaling applications has been carried out using traditional techniques that, although they currently meet the basic requirements, their time performance and functional scalability can be substantially improved. From the solutions proposed in this thesis, besides contributing to the assessment of systems that require functional safety certification, the base technology for schedulability analysis and optimization of general as well as time-partitioned distributed real-time systems will be derived, which can be applied in different environments where cyber-physical systems play a key role, for example in Industry 4.0 applications, where similar problems may arise in the future

    Simultaneous Multithreading and Hard Real Time: Can It Be Safe?

    Get PDF
    The applicability of Simultaneous Multithreading (SMT) to real-time systems has been hampered by the difficulty of obtaining reliable execution costs in an SMT-enabled system. This problem is addressed by introducing a scheduling framework, called CERT-MT, that combines scheduling-aware timing analysis with a cyclic-executive scheduler in a way that minimizes SMT-related timing variations. The proposed scheduling-aware timing analysis is based on maximum observed execution times and accounts for the uncertainty inherent in measurement-based timing analysis. The timing analysis is found to work for tasks with and without SMT, though some adjustments are required in the former case. A large-scale schedulability study is presented that shows CERT-MT can schedule systems with total utilizations approaching 1.4 times the core count, without sacrificing safety

    A Survey of Research into Mixed Criticality Systems

    Get PDF
    This survey covers research into mixed criticality systems that has been published since Vestal’s seminal paper in 2007, up until the end of 2016. The survey is organised along the lines of the major research areas within this topic. These include single processor analysis (including fixed priority and EDF scheduling, shared resources and static and synchronous scheduling), multiprocessor analysis, realistic models, and systems issues. The survey also explores the relationship between research into mixed criticality systems and other topics such as hard and soft time constraints, fault tolerant scheduling, hierarchical scheduling, cyber physical systems, probabilistic real-time systems, and industrial safety standards

    A Real-time Calculus Approach for Integrating Sporadic Events in Time-triggered Systems

    Full text link
    In time-triggered systems, where the schedule table is predefined and statically configured at design time, sporadic event-triggered (ET) tasks can only be handled within specially dedicated slots or when time-triggered (TT) tasks finish their execution early. We introduce a new paradigm for synthesizing TT schedules that guarantee the correct temporal behavior of TT tasks and the schedulability of sporadic ET tasks with arbitrary deadlines. The approach first expresses a constraint for the TT task schedule in the form of a maximal affine envelope that guarantees that as long as the schedule generation respects this envelope, all sporadic ET tasks meet their deadline. The second step consists of modeling this envelope as a burst limiting constraint and building the TT schedule via simulating a modified Least-Laxity-First (LLF) scheduler. Using this novel technique, we show that we achieve equal or better schedulability and a faster schedule generation for most use-cases compared to other approaches inspired by, e.g., hierarchical scheduling. Moreover, we present an extension to our method that finds the most favourable schedule for TT tasks with respect to ET schedulability, thus increasing the probability of the computed TT schedule remaining feasible when ET tasks are later added or changed

    Design, Implementation, and Evaluation of a Distributed Real-Time Kernel for Distributed Robotics (Dissertation Proposal)

    Get PDF
    Modern robotics applications are becoming more complex due to greater numbers of sensors and actuators. The control of such systems may require multiple processors to meet the computational demands and to support the physical topology of the sensors and actuators. A distributed real-time system is needed to perform the required communication and processing while meeting application-specified timing constraints. We are designing and implementing a real-time kernel for distributed robotics applications. The kernel\u27s salient features are consistent, user-definable scheduling, explicit dynamic timing constraints, and a two-tiered interrupt approach. The kernel wi1l be evaluated by implementing a two-arm robot control example. Its goal is to locate and manipulate cylindrical objects with spillable contents. Using the application and the kernel, we will investigate the effects of time granularity, network type and protocol, and the handling of external events using interrupts versus polling. Our research will enhance understanding of real-time kernels for distributed robotics control

    Control techniques for thermal-aware energy-efficient real time multiprocessor scheduling

    Get PDF
    La utilización de microprocesadores multinúcleo no sólo es atractiva para la industria sino que en muchos ámbitos es la única opción. La planificación tiempo real sobre estas plataformas es mucho más compleja que sobre monoprocesadores y en general empeoran el problema de sobre-diseño, llevando a la utilización de muchos más procesadores /núcleos de los necesarios. Se han propuesto algoritmos basados en planificación fluida que optimizan la utilización de los procesadores, pero hasta el momento presentan en general inconvenientes que los alejan de su aplicación práctica, no siendo el menor el elevado número de cambios de contexto y migraciones.Esta tesis parte de la hipótesis de que es posible diseñar algoritmos basados en planificación fluida, que optimizan la utilización de los procesadores, cumpliendo restricciones temporales, térmicas y energéticas, con un bajo número de cambios de contexto y migraciones, y compatibles tanto con la generación fuera de línea de ejecutivos cíclicos atractivos para la industria, como de planificadores que integran técnicas de control en tiempo de ejecución que permiten la gestión eficiente tanto de tareas aperiódicas como de desviaciones paramétricas o pequeñas perturbaciones.A este respecto, esta tesis contribuye con varias soluciones. En primer lugar, mejora una metodología de modelo que representa todas las dimensiones del problema bajo un único formalismo (Redes de Petri Continuas Temporizadas). En segundo lugar, propone un método de generación de un ejecutivo cíclico, calculado en ciclos de procesador, para un conjunto de tareas tiempo real duro sobre multiprocesadores que optimiza la utilización de los núcleos de procesamiento respetando también restricciones térmicas y de energía, sobre la base de una planificación fluida. Considerar la sobrecarga derivada del número de cambios de contexto y migraciones en un ejecutivo cíclico plantea un dilema de causalidad: el número de cambios de contexto (y en consecuencia su sobrecarga) no se conoce hasta generar el ejecutivo cíclico, pero dicho número no se puede minimizar hasta que se ha calculado. La tesis propone una solución a este dilema mediante un método iterativo de convergencia demostrada que logra minimizar la sobrecarga mencionada.En definitiva, la tesis consigue explotar la idea de planificación fluida para maximizar la utilización (donde maximizar la utilización es un gran problema en la industria) generando un sencillo ejecutivo cíclico de mínima sobrecarga (ya que la sobrecarga implica un gran problema de los planificadores basados en planificación fluida).Finalmente, se propone un método para utilizar las referencias de la planificación fuera de línea establecida en el ejecutivo cíclico para su seguimiento por parte de un controlador de frecuencia en línea, de modo que se pueden afrontar pequeñas perturbaciones y variaciones paramétricas, integrando la gestión de tareas aperiódicas (tiempo real blando) mientras se asegura la integridad de la ejecución del conjunto de tiempo real duro.Estas aportaciones constituyen una novedad en el campo, refrendada por las publicaciones derivadas de este trabajo de tesis.<br /
    • …
    corecore