19,723 research outputs found

    Monomial right ideals and the Hilbert series of noncommutative modules

    Full text link
    In this paper we present a procedure for computing the rational sum of the Hilbert series of a finitely generated monomial right module NN over the free associative algebra K⟹x1,
,xn⟩K\langle x_1,\ldots,x_n \rangle. We show that such procedure terminates, that is, the rational sum exists, when all the cyclic submodules decomposing NN are annihilated by monomial right ideals whose monomials define regular formal languages. The method is based on the iterative application of the colon right ideal operation to monomial ideals which are given by an eventual infinite basis. By using automata theory, we prove that the number of these iterations is a minimal one. In fact, we have experimented efficient computations with an implementation of the procedure in Maple which is the first general one for noncommutative Hilbert series.Comment: 15 pages, to appear in Journal of Symbolic Computatio

    A thread calculus with molecular dynamics

    Get PDF
    We present a theory of threads, interleaving of threads, and interaction between threads and services with features of molecular dynamics, a model of computation that bears on computations in which dynamic data structures are involved. Threads can interact with services of which the states consist of structured data objects and computations take place by means of actions which may change the structure of the data objects. The features introduced include restriction of the scope of names used in threads to refer to data objects. Because that feature makes it troublesome to provide a model based on structural operational semantics and bisimulation, we construct a projective limit model for the theory.Comment: 47 pages; examples and results added, phrasing improved, references replace

    Cyclic Complexity of Words

    Get PDF
    We introduce and study a complexity function on words cx(n),c_x(n), called \emph{cyclic complexity}, which counts the number of conjugacy classes of factors of length nn of an infinite word x.x. We extend the well-known Morse-Hedlund theorem to the setting of cyclic complexity by showing that a word is ultimately periodic if and only if it has bounded cyclic complexity. Unlike most complexity functions, cyclic complexity distinguishes between Sturmian words of different slopes. We prove that if xx is a Sturmian word and yy is a word having the same cyclic complexity of x,x, then up to renaming letters, xx and yy have the same set of factors. In particular, yy is also Sturmian of slope equal to that of x.x. Since cx(n)=1c_x(n)=1 for some n≄1n\geq 1 implies xx is periodic, it is natural to consider the quantity lim inf⁥n→∞cx(n).\liminf_{n\rightarrow \infty} c_x(n). We show that if xx is a Sturmian word, then lim inf⁥n→∞cx(n)=2.\liminf_{n\rightarrow \infty} c_x(n)=2. We prove however that this is not a characterization of Sturmian words by exhibiting a restricted class of Toeplitz words, including the period-doubling word, which also verify this same condition on the limit infimum. In contrast we show that, for the Thue-Morse word tt, lim inf⁥n→∞ct(n)=+∞.\liminf_{n\rightarrow \infty} c_t(n)=+\infty.Comment: To appear in Journal of Combinatorial Theory, Series

    Multigraded Hilbert Series of noncommutative modules

    Full text link
    In this paper, we propose methods for computing the Hilbert series of multigraded right modules over the free associative algebra. In particular, we compute such series for noncommutative multigraded algebras. Using results from the theory of regular languages, we provide conditions when the methods are effective and hence the sum of the Hilbert series is a rational function. Moreover, a characterization of finite-dimensional algebras is obtained in terms of the nilpotency of a key matrix involved in the computations. Using this result, efficient variants of the methods are also developed for the computation of Hilbert series of truncated infinite-dimensional algebras whose (non-truncated) Hilbert series may not be rational functions. We consider some applications of the computation of multigraded Hilbert series to algebras that are invariant under the action of the general linear group. In fact, in this case such series are symmetric functions which can be decomposed in terms of Schur functions. Finally, we present an efficient and complete implementation of (standard) graded and multigraded Hilbert series that has been developed in the kernel of the computer algebra system Singular. A large set of tests provides a comprehensive experimentation for the proposed algorithms and their implementations.Comment: 28 pages, to appear in Journal of Algebr

    Unary probabilistic and quantum automata on promise problems

    Full text link
    We continue the systematic investigation of probabilistic and quantum finite automata (PFAs and QFAs) on promise problems by focusing on unary languages. We show that bounded-error QFAs are more powerful than PFAs. But, in contrary to the binary problems, the computational powers of Las-Vegas QFAs and bounded-error PFAs are equivalent to deterministic finite automata (DFAs). Lastly, we present a new family of unary promise problems with two parameters such that when fixing one parameter QFAs can be exponentially more succinct than PFAs and when fixing the other parameter PFAs can be exponentially more succinct than DFAs.Comment: Minor correction

    Groups with context-free co-word problem

    Get PDF
    The class of co-context-free groups is studied. A co-context-free group is defined as one whose coword problem (the complement of its word problem) is context-free. This class is larger than the subclass of context-free groups, being closed under the taking of finite direct products, restricted standard wreath products with context-free top groups, and passing to finitely generated subgroups and finite index overgroups. No other examples of co-context-free groups are known. It is proved that the only examples amongst polycyclic groups or the Baumslag–Solitar groups are virtually abelian. This is done by proving that languages with certain purely arithmetical properties cannot be context-free; this result may be of independent interest
    • 

    corecore