19 research outputs found

    Cyclic production in regular robotic cells: A counterexample to the 1-cycle conjecture

    No full text
    Robotic cells consist in a flow-shop where transportation of the parts between machines is handled by a robot. We consider cyclic production of identical parts and optimization of the cell's throughput. Production cycle of 1 part are easier to describe implement and there is a conjecture about their dominance. This conjecture has been studied for linear layout cells, for which the 1-cycles are well known, but not for cells with circular layout, where the input and output buffers are at the same position. We provide a counterexample to the conjecture for this case

    Good Production Cycles for Circular Robotic Cells

    No full text
    In this paper, we study cyclic production for throughput optimization in robotic flow-shops. We are focusing on simple production cycles. Robotic cells can have a linear or a circular layout: most classical results on linear cells cannot be extended to circular cells, making it difficult to quantify the potential gain brought by the latter configuration. Moreover, though the problem of finding the best one part production cycle is polynomial for linear cells, it is NP-hard for circular cells. We consider the special case of circular balanced cells. We first consider three basic production cycles, and focus on one which is specific to circular cells, for which we establish the expression of the cycle time. Then, we provide a counterexample to a classical conjecture still open in this configuration. Finally, based on computational experiments, we make a conjecture on the dominance of a family of cycle, which could lead to a polynomial algorithm for finding the best 1-cycle for circular balanced cells

    Pure cycles in flexible robotic cells

    Get PDF
    Cataloged from PDF version of article.In this study, an m-machine flexible robotic manufacturing cell consisting of CNC machines is considered. The flexibility of the machines leads to a new class of robot move cycles called the pure cycles. We first model the problem of determining the best pure cycle in an m-machine cell as a special travelling salesman problem in which the distance matrix consists of decision variables as well as parameters.We focus on two specific cycles among the huge class of pure cycles.We prove that, in most of the regions, either one of these two cycles is optimal. For the remaining regions we derive worst case performances of these cycles.We also prove that the set of pure cycles dominates the flowshop-type robot move cycles considered in the literature. As a design problem, we consider the number of machines in a cell as a decision variable. We determine the optimal number of machines that minimizes the cycle time for given cell parameters such as the processing times, robot travel times and the loading/unloading times of the machines. 2007 Elsevier Ltd. All rights reserved

    Scheduling in a three-machine robotic flexible manufacturing cell

    Get PDF
    Cataloged from PDF version of article.In this study, we consider a flexible manufacturing cell (FMC) processing identical parts on which the loading and unloading of machines are made by a robot. The machines used in FMCs are predominantly CNC machines and these machines are flexible enough for performing several operations provided that the required tools are stored in their tool magazines. Traditional research in this area considers a flowshop type system. The current study relaxes this flowshop assumption which unnecessarily limits the number of alternatives. In traditional robotic cell scheduling literature, the processing time of each part on each machine is a known parameter. However, in this study the processing times of the parts on the machines are decision variables. Therefore, we investigated the productivity gain attained by the additional flexibility introduced by the FMCs. We propose new lower bounds for the 1-unit and 2-unit robot move cycles (for which we present a completely new procedure to derive the activity sequences of 2-unit cycles in a three-machine robotic cell) under the new problem domain for the flowshop type robot move cycles. We also propose a new robot move cycle which is a direct consequence of process and operational flexibility of CNC machines.We prove that this proposed cycle dominates all 2-unit robot move cycles and present the regions where the proposed cycle dominates all 1-unit cycles.We also present a worst case performance bound of using this proposed cycle. 2005 Elsevier Ltd. All rights reserved

    Part sequencing in three-machine no-wait robotic cells

    Get PDF
    Abstract A no-wait robotic cell is an automated ow shop in which a robot is used to move the parts from a machine to the next. Parts are not allowed to wait. We analyze the complexity of the part sequencing problem in a robotic cell with three machines, for di erent periodical patterns of robot moves, when the objective is productivity maximization

    Robotic flowshop scheduling is strongly NP-complete

    Get PDF

    Cyclic scheduling in 3-machine robotic flow shops

    Get PDF

    Pure cycles in flexible robotic cells

    Get PDF
    In this study, an m-machine flexible robotic manufacturing cell consisting of CNC machines is considered. The flexibility of the machines leads to a new class of robot move cycles called the pure cycles. We first model the problem of determining the best pure cycle in an m-machine cell as a special travelling salesman problem in which the distance matrix consists of decision variables as well as parameters. We focus on two specific cycles among the huge class of pure cycles. We prove that, in most of the regions, either one of these two cycles is optimal. For the remaining regions we derive worst case performances of these cycles. We also prove that the set of pure cycles dominates the flowshop-type robot move cycles considered in the literature. As a design problem, we consider the number of machines in a cell as a decision variable. We determine the optimal number of machines that minimizes the cycle time for given cell parameters such as the processing times, robot travel times and the loading/unloading times of the machines. © 2007 Elsevier Ltd. All rights reserved

    Robotic cell scheduling with operational flexibility

    Get PDF
    In this paper, we study the problem of two-machine, identical parts robotic cell scheduling with operational flexibility. We assume that every part to be processed has a number of operations to be completed in these two machines and both machines are capable of performing all of the operations. The decision to be made includes finding the optimal robot move cycle and the corresponding optimal allocation of operations to these two machines that jointly minimize the cycle time. We prove that with this definition of the problem 1-unit robot move cycles are no longer necessarily optimal and that according to the given parameters either one of the 1-unit robot move cycles or a 2-unit robot move cycle is optimal. The regions of optimality are presented. © 2004 Elsevier B.V. All rights reserved
    corecore