
Operations Research Letters 27 (2000) 185–192
www.elsevier.com/locate/dsw

Part sequencing in three-machine no-wait robotic cells

A. Agnetisa ; ∗, D. Pacciarellib
aDipartimento di Informatica e Sistemistica, Universit�a di Roma “La Sapienza”, via Buonarroti 12, 00185 Roma, Italy
bDipartimento di Informatica e Automazione, Universit�a di Roma Tre, via della Vasca Navale 79, 00146 Roma, Italy

Received 1 September 1998; received in revised form 1 April 2000

Abstract

A no-wait robotic cell is an automated ow shop in which a robot is used to move the parts from a machine to the next.
Parts are not allowed to wait. We analyze the complexity of the part sequencing problem in a robotic cell with three machines,
for di�erent periodical patterns of robot moves, when the objective is productivity maximization. c© 2000 Elsevier Science
B.V. All rights reserved.

Keywords: Robotic cells; No-wait ow shop; Polynomial algorithms; NP-complete problems

1. Introduction

The ow shop scheduling problem consists of se-
quencing parts on mmachines. Each machine can pro-
cess only one part at a time, and all parts must visit the
m machines in the same order, i.e., M1; M2; : : : ; Mm. A
robotic cell (Fig. 1) is a ow shop which also includes
an input station (M0), an output station (Mm+1), and
one robot, which is in charge of moving the parts from
each machine to the next, and between the machines
and the input=output stations. Most of the existing lit-
erature on this subject has been devoted to cells with-
out bu�ers in which parts are allowed to wait on a
machine, even after the completion of the processing
on that machine, if either the next machine or the robot

∗ Corresponding author. Fax: +39-6-48299218.
E-mail addresses: agnetis@dis.uniromal.it (A. Agnetis), pac-

ciare@dia.uniroma3.it (D. Pacciarelli).

Fig. 1. The layout of a robotic cell.

are not available. These are referred to as bu�erless
robotic cells.
In this paper we focus on the problem arising when

the parts must satisfy the no-wait constraint, i.e., as
soon as a part is completed by a machine, the robot
must immediately move it to the next machine (or
to the output station). In other words, machines are

0167-6377/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S 0167 -6377(00)00046 -8



186 A. Agnetis, D. Pacciarelli / Operations Research Letters 27 (2000) 185–192

not allowed to act as bu�ers. We refer to this case as
no-wait robotic cells.
Management problems in robotic cells consist

in concurrently �nding a schedule for parts and
robot moves which maximizes productivity. For
two-machine cells, the problem can be e�ciently
solved (see [5] for bu�erless cells, and [1] for no-wait
cells). For cells with three or more machines, when
the parts are di�erent from each other, the overall
management problem is very hard. In fact, for both
bu�erless and no-wait robotic cells, if the time re-
quired by robot movement is negligible, the problem
reduces to a pure part sequencing problem, which is
by itself NP-hard [8]. On the other hand, it may not be
practical for the robot to perform complex sequences
of moves, but rather it is convenient to cyclically
repeat short sequences of moves. For these reasons,
some authors have especially analyzed one-unit cy-
cles, i.e., patterns of robot moves during which the
robot unloads (or, equivalently, loads) each machine
exactly once.
When parts are all identical, the optimal one-unit

cycle in a no-waitm-machine robotic cell can be found
in polynomial time [6,7]. In [1] special results are
derived for m = 3, showing that the optimal cycle is
either a one-unit or a two-unit cycle.
In this paper we address the problem of �nd-

ing the optimal one-unit cycle in a three-machine
no-wait robotic cell when the parts are di�erent from
each other. In particular, for each of the six possi-
ble one-unit cycles, we investigate the complexity of
the resulting part sequencing problem. For bu�erless
robotic cells, Hall et al. [5] carried out a similar study,
showing that for two out of six one-unit cycles the
part sequencing problem is NP-hard, and providing
polynomial algorithms for the remaining four cycles.
From the part sequencing viewpoint, a major di�er-
ence between bu�erless and no-wait cells is the fol-
lowing. In the bu�erless case, for any �xed one-unit
cycle, all part sequences are feasible. In the no-wait
case, for some �xed one-unit cycles there may not
even be feasible solutions, due to the fact that the
robot must always reach a part on a machine no later
than the end of processing on that machine. Hence,
for each one-unit cycle we will be concerned with
a feasibility problem and an optimization problem.
We show that in four out of six cases the feasibility
problem is polynomial, and in the remaining two is

NP-complete. For what concerns �nding the optimal
part sequencing, in two cases the problem is poly-
nomial, in another two it is NP-complete, and in the
remaining two the problem is still open. In Section 2,
de�nitions and notation are introduced. In Section 3,
the six one-unit cycles are analyzed.

2. De�nitions and notation

We consider robotic cells consisting of three ma-
chines,M1; M2; M3, whileM0 andM4 denote the input
and output stations, respectively. The robot performs
part transfers and empty movements throughout the
cell. To transfer a part from machine Mi to machine
Mi+1, the robot must consecutively unload a part from
Mi, travel fromMi toMi+1, and load the part onMi+1.
Such a part transfer operation is called activity Ai [2],
its length being denoted by ci; i+1; i=0; 1; 2; 3. We de-
note by dij the time the empty robot takes to move
from machineMi toMj, for i; j=0; : : : ; 4 (with i 6= j).
The robot movements are completely speci�ed by

the order in which activities are carried out. A cycle is
a feasible sequence of activities that the robot inde�-
nitely repeats (on di�erent parts). A one-unit cycle is
a cycle in which each activity A0; : : : ; A3 appears ex-
actly once (and hence exactly one part is produced).
Since we can always describe a one-unit cycle as start-
ing with A0, there are six possible one-unit cycles,
namely [9]

S1: {A0; A1; A2; A3}; S2: {A0; A2; A1; A3};
S3: {A0; A1; A3; A2};
S4: {A0; A3; A1; A2}; S5: {A0; A2; A3; A1};
S6: {A0; A3; A2; A1}:
There are n parts to be cyclically produced, i.e.,

we consider closed-loop schedules in which the last
scheduled part is followed by the �rst. For a �xed
one-unit cycle, a feasible sequencing of parts deter-
mines the time between the loading of the �rst part in
two consecutive repetitions of the schedule. This is the
time required to cyclically produce the n parts, and will
be denoted by span. Part h requires three consecutive
operations, denoted by Oh1; Oh2; Oh3, to be performed
by machines M1; M2; M3, respectively. The length of
operation Ohj is denoted by phj. Note that, due to the



A. Agnetis, D. Pacciarelli / Operations Research Letters 27 (2000) 185–192 187

no-wait constraint, if part h enters the cell at time t,
thenOh1 starts at time t+c01,Oh2 starts at time t+c01+
ph1+c12,Oh3 at time t+c01+ph1+c12+ph2+c23, and
at time t+c01+ph1+c12+ph2+c23+ph3+c34 part h
leaves the cell. The robot must therefore be available at
machineMj at time t+

∑j
i=1(ci−1; i+phi); j=0; 1; 2; 3,

in order to perform the required activities on time.
For a �xed one-unit cycle we are concerned with

two problems: (i) determine whether or not a feasible
sequencing of parts exists, and (ii) if there are feasible
sequences, �nd the one having minimum span. More
formally, the problems addressed in the next section
are the following.

Problem F(Si). Given a three-machine no-wait
robotic cell; characterized by part transfer times
ci; i+1; i = 0; : : : ; 3; and empty robot movement times
dij; i; j = 0; : : : ; 4; a set of n parts having processing
times phj; h=1; : : : ; n; j=1; 2; 3; determine a feasible
sequence of the parts when the robot performs the
one-unit cycle Si; or prove that it does not exist.

Problem O(Si). Given a three-machine no-wait
robotic cell; characterized by part transfer times
ci; i+1; i = 0; : : : ; 3 and empty robot movement times
dij; i; j=0; : : : ; 4; a MPS of n parts having processing
times phj; h = 1; : : : ; n; j = 1; 2; 3; �nd; if it exists; a
feasible sequence of the parts so that the span is min-
imum when the robot performs the one-unit cycle Si.

In what follows, let � denote a sequence of parts
and �(k) the kth part in the sequence �. (Note that
�(n+ 1) = �(1).)

3. Complexity of part sequencing for the six
one-unit cycles

3.1. Cycle S1

This case (Fig. 2) is trivial, since all sequences are
feasible and have the same span. The span T (S1) is
simply given by the sum of the times spent in the cell
by all parts, plus the time taken by the robot to move
fromM4 back toM0 after the completion of each part:

T (S1) =
n∑

h=1

3∑

j=1

phj + n(c01 + c12 + c23 + c34 + d40):

Fig. 2. A feasible schedule for cycle S1: {A0; A1; A2; A3}.

Fig. 3. A feasible schedule for cycle S4: {A0; A3; A1; A2}.

3.2. Cycle S4

In this section we show that both problems F(S4)
and O(S4) are easy. Let us �rst consider F(S4). Dur-
ing the execution of each one-unit cycle, the robot
performs A3 on �(k) between activities A0 and A1 on
�(k+1) (see Fig. 3). Hence, for any two consecutive
parts (�(k); �(k+1)), the only overlapping operations
are O�(k);3 and O�(k+1);1. In particular, after perform-
ing A2 on part �(k), the robot must move to M0, per-
form A0 (on �(k + 1)) and move back to M3 on time
for the end of the operation O�(k);3. This implies that
each part h must satisfy the following condition:

ph3¿d30 + c01 + d13: (1)

Similarly, we observe that after performing A0 on part
�(k +1), the robot must move to M3, perform A3 (on
�(k)) and move back to M1 on time for the end of
the operation O�(k+1);1, and this leads to the following
condition:

ph1¿d13 + c34 + d41: (2)

As a consequence of the following lemma, problem
F(S4) can be solved in linear time.

Lemma 1. Given an instance of F(S4); a feasible se-
quence exists if and only if conditions (1) and (2) are
satis�ed for all h= 1; : : : ; n.

Proof. The “only if ” part is implied by the above dis-
cussion. For what concerns the “if ” part, it is su�cient



188 A. Agnetis, D. Pacciarelli / Operations Research Letters 27 (2000) 185–192

to observe that, given any sequence, it is straightfor-
ward to get a feasible schedule. If tk denotes the com-
pletion time of operation O�(k);3, just let part �(k+1)
enter the cell at time tk − d13 − c01. This is certainly
feasible, due to condition (1).

Let us now turn toO(S4). From now on, we suppose
that the conditions in Lemma 1 are satis�ed. Given
a feasible schedule, consider two consecutive parts,
�(k) and �(k + 1). After performing A2 on �(k), the
robot moves toM0. Let xk denote the idle time spent by
the robot inM0 before starting activity A0 on �(k+1).
We can then write the span of the schedule as
n∑

k=1

xk+
n∑

k=1

(c01+p�(k);1+c12+p�(k);2+c23+d31):

(3)

Hence, in order to solve O(S4), we must minimize the
�st term in (3), since the other does not depend on
the schedule. Given �, we observe that O�(k+1);1 can-
not start too early, since the robot must have enough
time to go to M3, possibly wait for the end of O�(k);3,
perform A3 and be back in M1 on time for the end of
O�(k+1);1. In other words, it must hold (see Fig. 3):

d30 + xk + c01 + p�(k+1);1¿p�(k);3 + c34 + d41:

Hence, the minimum value xk can attain is given by

xk =max{0; p�(k);3 + c34 + d41
− (d30 + c01 + p�(k+1);1)}: (4)

In conclusion, expression (4) shows that in order
to minimize the span we must solve an instance of a
TSP problem in which the cost for going from city
r to city s is given by max{0; p′

r2 − p′
s1}, where

p′
r2 =pr3 +c34 +d41 and p

′
s1 =ps1 +c01 +d30, for all

r; s = 1; : : : ; n. This cost structure is the same occur-
ring in an instance of two-machine no-wait ow shop
with n jobs, in which job h has processing times p′

h1
and p′

h2 on the �rst and second machine respectively.
Problem O(S4) can therefore be solved in O(n log n)
by means of the well-known algorithm by Gilmore
and Gomory [4].

3.3. Cycle S2

In this section we establish the complexity of
F(S2) (see Fig. 4). This problem turns out to be

Fig. 4. A feasible schedule for cycle S2: {A0; A2; A1; A3}.

NP-complete, and this implies the NP-hardness of
O(S2). We use the following NP-complete problem
[3]:
Numerical matching with target sums (NMTS).

Let X ={x1; : : : ; xs}, Y ={y1; : : : ; ys}, Z={z1; : : : ; z2}
be sets of positive integers; such that

∑s
h=1 zh =∑s

h=1 xh +
∑s

h=1 yh. Does there exist a partition of
X ∪ Y into s disjoint pairs P1 = (x1; y1); : : : ; Ps =
(xs; ys), each containing exactly one element from X
and Y and such that xi + yi = zi for i = 1; : : : ; s?

Theorem 1. Problem F(S2) is unary NP-complete.

Proof. Clearly, F(S2) is in NP. We next reduce
NMTS to F(S2). Given an instance of NMTS, we de-
�ne the following instance of F(S2). Let ci; i+1=dij=1
for all i; j. There are 3s parts, divided into three groups
of s parts, namely X-parts, Y-parts and Z-parts. The
processing times of the parts are de�ned as follows,
for the three groups respectively, for h= 1; : : : ; s :

pxh1 = 3; pxh2 = 5; pxh3 = 6 + xh;

pyh1 = B+ yh; pyh2 = 5; pyh3 = 3;

pzh1 = 6; pzh2 = B+ 2 + zh; pzh3 = 3;

where B=7+maxh{xh}. The thesis will follow from a
set of intermediate claims on the structure of a feasible
schedule.

Claim 1. If an operation has length 3 on M1 or M3;
or if an operation has length 5 on M2; then in a fea-
sible schedule the robot can never be idle during its
execution. This claim follows from the observation
that during the execution of an operation by M2; the
robot must perform three empty moves and two ac-
tivities (A3 and A0); whereas during the execution
of an operation by M1 or M3; the robot must per-
form two empty moves and one activity (A2 or A1;
respectively).



A. Agnetis, D. Pacciarelli / Operations Research Letters 27 (2000) 185–192 189

Claim 2. If a feasible schedule exists; each Y-part
is followed by an X-part. Consider the second and
third operations of a Y-part; call them Oyh2 and O

y
h3.

From the previous claim; it follows that from the
start of Oyh2 to the end of O

y
h3 the robot can never

stay idle. So; if the next part is not an X-part; its
�rst operation is longer than 3; and hence the robot
would wait atM1 for the end of such operation during
the execution of Oyh3 (see Fig. 4). On the other hand;
one can immediately verify that scheduling an X-part
after a Y-part does not violate feasibility.

Claim 3. If a feasible schedule exists; each X-part
is followed by a Z-part. Let Ox

h3 indicate the third
operation of the X-part. Let us �rst show that the
next cannot be another X-part. If the next part is
an X-part; the robot would be back in M3 strictly
earlier than the completion of Ox

h3; thus being idle
for some time during the execution of the second
operation of the next part; but this is unacceptable
because of Claim 1. On the other hand; the next part
cannot be a Y-part. In fact; the �rst operation of
a Y-part is strictly longer than Ox

h3; and therefore;
after performing A1 on the next part; the robot would
be in M3 after the end of Ox

h3. Finally; since O
x
h3 is

longer than the �rst operation of a Z-part; scheduling
a Z-part after an X-part does not violate feasibility.

As a consequence of the above claims, and since
there are exactly s parts in each group, any feasible
schedule has the structure : : :Y–X–Z–Y–X–Z: : : :We
are now in the position of showing that a feasible
schedule exists if and only if the instance of NMTS
is feasible. Given a feasible schedule, consider a sub-
sequence of parts X–Z–Y, corresponding to the inte-
gers xt ; zv; yu, respectively. In the time interval from
the beginning of the �rst and the end of the third oper-
ation on the Z-part, the robot must perform activities
A2 and A3 on the X-part, A0 and A1 on the Y-part, be-
sides A1 and A2 on the Z-part. Due to the feasibility of
the schedule, the robot must be inM3 no later than the
end of the third operation on the Z-part, and therefore
(see Fig. 4)

6 + c12 + (B+ 2 + zv) + c23 + 3¿d12 + c23

+ (6+xt)+c34 +d40 +c01 +(B+ yu) + c12 + d23
(5)

Fig. 5. A feasible schedule for cycle S6 : {A0; A3; A2; A1}.

recalling that ci; i+1 =dij=1 for all i; j, expression (5)
yields

zv¿xt + yu; (6)

since expression (6) must hold for all the s subse-
quences X–Z–Y, and since

∑s
h=1 zh =

∑s
h=1 xh +∑s

h=1 yh, all the (6) are indeed equalitites and a
numerical matching exists. This construction also
shows that if a numerical matching exists, a feasible
schedule can be built having the same structure.

3.4. Cycle S6

In this section we establish the NP-completeness of
F(S6) (see Fig. 5), and hence of O(S6).

Theorem 2. Problem F(S6) is unary NP-complete.

Proof. Clearly, F(S6) is in NP. We next reduce
NMTS to F(S6). Given an instance of NMTS, we de-
�ne the following instance of F(S6). Let ci; i+1=dij=1
for all i; j. Therer are 3s parts, divided into three groups
of s parts, namely X-parts, Y-parts and Z-parts. The
processing times of the parts are de�ned as follows,
for the three groups respectively, for h= 1; : : : ; s:

pxh1 = 5; pxh2 = 5; pxh3 = 5 + xh;

pyh1 = B+ 5 + yh; p
y
h2 = 5; pyh3 = 5;

pzh1 = 5; pzh2 = B+ 5 + zh; p
z
h3 = 5;

where B=maxh{xh}. Again, let us suppose that a fea-
sible schedule exists. We show that then a numerical
matching exists. Let us �rst state some intermediate
results.

Claim 1. If an operation has length 5; then in a feasi-
ble schedule the robot can never be idle during its ex-
ecution. This follows from the observation that dur-
ing the execution of any operation; the robot must
perform three empty moves and two activities.



190 A. Agnetis, D. Pacciarelli / Operations Research Letters 27 (2000) 185–192

Claim 2. If a feasible schedule exists; each X-part is
followed by a Z-part. Let Ox

h3be the third operation
of the X-part; of length 5 + xh. Note that the robot
reaches M3 to unload the X-part strictly before the
end of Ox

h3 (Fig. 5). If the next is also an X-part; the
robot would be idle during the execution of the second
operation of the next X-part; and this is impossible
because of Claim 1. Suppose now that the next is a
Y-part; and let B + 5 + yl be the length of its �rst
operation. During the execution of Ox

h3; the robot
performs two activities (A1 and A0) and three empty
movements; and it must wait B+ yl time units at M1
(see Fig. 5). Since 5 + B + yl ¿ 5 + xh; the robot
cannot be back in M3 in time for the end of Ox

h3. It
is straightforward to verify that scheduling a Z-part
after an X-part does not violate feasibility.

In the remainder of the proof, we let Ox
h3 and O

z
k2

denote the third and second operations of the X-part
and the Z-part in a subsequence X–Z, and we indicate
by 5+ xh and 5+B+ zk their lengths. We also denote
by tk the starting time of Ozk2.

Claim 3. If a feasible schedule exists; each subse-
quence X–Z is followed by a Y-part. After perform-
ing A1 on the Z-part; the robot goes toM0 to perform
A0 on the next part. The idle time of the robot in M0
cannot exceed xh; since otherwise the robot does not
get toM3 before the end ofOx

h3. So; the �rst operation
of the next part cannot start later than tk + 2 + xh.
On the other hand; after the end of Ozk2; the robot
cannot be in M1 before tk + 5 + B + zk + 2. Hence;
since the schedule is feasible; the �rst operation of
the next part must be strictly greater than 5; i.e.; the
next part is necessarily a Y-part.

As a consequence of the above claims, and since
there are exactly s parts in each group, any feasi-
ble schedule has the structure : : :X–Z–Y–X–Z–Y: : : :
We are now in the position of showing that a fea-
sible schedule exists if and only if the instance of
NMTS is feasible. Given a feasible schedule, con-
sider a subsequence of parts X–Z–Y, corresponding
to the integers xh; zk ; yl, respectively. From Claim 3,
the �rst operation of the Y-part cannot end later than
tk +2+ xh +5+ B+ yl, while the robot does not get
to M1 before tk + 5 + B + zk + 2. Since on the other
hand the robot must get to M1 no later than the end of

Fig. 6. A feasible schedule for cycle S5: {A0; A2; A3; A1}.

Fig. 7. A feasible schedule for cycle S3: {A0; A1; A3; A2}.

the �rst operation of the Y-part, it follows that

zk6xh + yl; (7)

since expression (7) must hold for all the s subse-
quences X–Z–Y, and since

∑s
h=1 zh =

∑s
h=1 xh +∑s

h=1 yh, all the (7) are indeed equalities and a nu-
merical matching exists. This construction also shows
that if a numerical matching exists, a feasible schedule
can be built having the same structure.

3.5. Cycles S3 and S5

In this section we show that problems F(S3) and
F(S5) are easy. Let us �rst consider F(S5).
During the execution of each one-unit cycle, the

robot must perform A0 on �(k +1) before activity A2
on �(k) (see Fig. 6). On the other hand, A1 on �(k+1)
must be executed after A3 on �(k). As in Section 3.2,
xk denotes the idle time spent by the robot inM0 before
A0 on �(k +1). For a sequencing � to be feasible, the
following conditions must be satis�ed by each pair of
consecutive parts (see Fig. 6).

p�(k);2¿d20 + x�(k) + c01 + d12;

p�(k);2 + c23 + p�(k);3 + c34 + d41

6d20 + x�(k) + c01 + p�(k+1);1;

since x�(k) is nonnegative, these are equivalent to

p�(k);2¿d20 + c01 + d12; (8)

c23 + p�(k);3 + c34 + d41

6p�(k+1);1 − d12: (9)



A. Agnetis, D. Pacciarelli / Operations Research Letters 27 (2000) 185–192 191

Table 1
Complexity of no-wait and bu�erless problems

Cycle Feasibility no-wait Optimality no-wait Optimality bu�erless

S1 Trivial Trivial Trivial
S2 NPC NP-hard NP-hard
S3 O(n log n) Open O(n log n)
S4 O(n) O(n log n) O(n log n)
S5 O(n log n) Open O(n log n)
S6 NPC NP-hard NP-hard

The necessary condition (8) does not depend on the
sequence, and can therefore be easily checked. In what
follows we assume that all parts satisfy (8). Hence,
F(S5) consists of �nding a sequencing � such that
condition (9) is satis�ed for all k = 1; : : : ; n.
Consider an auxiliary instance of no-wait ow shop

with n jobs and two machines, in which the processing
times on the two machines are, respectively, p′

h1 =
ph1−d12 (which is nonnegative due to (8)) and p′

h2=
c23 +ph3 + c34 + d41. We recall that the no-wait ow
shop problem with two machines is a special case of
the TSP problem in which the cost for going from city
r to city s is given by max{0; p′

r2 − p′
s1}.

Theorem 3. A feasible sequence for F(S5) exists
if and only if the optimal solution of the auxiliary
no-wait ow shop problem has value 0.

Proof. Let �̃ be an optimal cycle in the auxiliary TSP
instance. If its value is 0, then p′

�̃(k);2 − p′
�̃(k+1);160

for all k = 1; : : : ; n. From the de�nition of the pro-
cessing times in the auxiliary problem, it follows that
�̃ satis�es condition (9). On the other hand, if the
value of an optimal cycle is strictly positive, for any
sequence � there is always at least on k for which
p′
�(k);2−p′

�(k+1);1¿ 0, hence violating condition (9).

As a consequence of the above theorem, F(S5) can
be solved in O(n log n) by the algorithm by Gilmore
and Gomory [4].
Finally, for what concerns F(S3), it is straightfor-

ward to show that this problem is symmetrical to
F(S5). In fact, if we turn upside down the Gantt chart
of a feasible schedule for S5, we get a feasible sched-
ule for S3. For instance, Fig. 7 shows the schedule
obtained in this way from the one in Fig. 6.

4. Conclusions

We presented some new results for part sequencing
in three-machine no-wait robotic cells, when the robot
move cycle is �xed. There are six possible robot cy-
cles. Table 1 summarizes the state of the art for the
problems analyzed in this paper, as well as for the cor-
responding problems in bu�erless robotic cells (see
[5]). Recall that no feasibility problem arises in bu�er-
less robotic cells, since all sequences are feasible for
any robot cycle.
Problem O(S3) and O(S5) are special cases of TSP

(Section 3.5) displaying di�erent features from other
TSP problems arising, e.g., in three-machine bu�er-
less cells or in no-wait ow shop. (For instance, in
O(S3) triangle inequality does not hold, since the robot
cycle forbids certain parts to be processed consecu-
tively.) Future research will address the complexity
of such open problem, as well as possible extensions
of the results presented here to general m-machine
cells.

References

[1] A. Agnetis, Scheduling no-wait robotic cells with two and three
machines, European J. Oper. Res. 123 (2) (2000) 303–314.

[2] Y. Crama, J. van de Klundert, Cyclic scheduling of identical
parts in a robotic cell, Oper. Res. 45 (6) (1997) 952–965.

[3] M.R. Garey, D.S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness, Freeman and co.,
New York, 1979.

[4] P.C. Gilmore, R.E. Gomory, Sequencing a one-state variable
machine: a solvable case of the traveling salesman problem,
Oper. Res. 9 (1964) 849–859.

[5] N.G. Hall, H. Kamoun, C. Sriskandarajah, Scheduling in
robotic cells: classi�cation, two and three machines, Oper. Res.
45 (3) (1997) 421–439.



192 A. Agnetis, D. Pacciarelli / Operations Research Letters 27 (2000) 185–192

[6] V.B. Kats, E. Levner, A strongly polynomial algorithm for
no-wait cyclic robotic owshop scheduling, Oper. Res. Lett.
21 (1997) 171–179.

[7] E. Levner, V.B. Kats, V.E. Levit, An improved algorithm for
a cyclic robotic scheduling problem, European J. Oper. Res.
97 (1997) 500–508.

[8] H. R�ock, The three-machine no-wait ow shop is NP-complete,
J. ACM 31 (2) (1984) 336–345.

[9] S.P. Sethi, C. Sriskandarajah, G. Sorger, J. Blazewicz, W.
Kubiak, Sequencing of parts and robot moves in a robotic
cell, Internat. J. Flexible Manufacturing Systems 4 (1992)
331–358.


