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We consider a robotic flowshop in which one type of product is to be repeatedly produced, and where transportation of the parts 
between the machines is performed by a robot. The identical parts cyclic scheduling problem is then to find a shortest cyclic schedule 
for the robot; i.e., a sequence of robot moves that can be infinitely repeated and that has minimum cycle time. This problem has been 
solved by Sethi et al. (1992) when m < 3. In this paper, we generalize their results by proving that the identical parts cyclic 
scheduling problem can be solved in time polynomial in m, where m denotes the number of. machines in the shop. In particular, we 
present a dynamic programming approach that allows us to solve the problem in 0(m3) time. Our analysis relies heavily on the 
concept of pyramidal permutation, a concept previously investigated in connection with the traveling salesman problem. 

Recently, scheduling problems arising in flexible man- 
ufacturing cells, flexible flowlines, and similar auto- 

mated production systems have received much attention in 
the literature. In such environments, transportation of the 
parts between the machines is usually performed by an 
automated material handling system, be it a conveyor, a 
pool of automatically guided vehicles (AGVs), or a robot. 
Much of the scheduling literature, however, has ignored 
the constraints placed by material handling devices on the 
efficiency of the productive system, either because these 
devices were not regarded as bottlenecks, or more prag- 
matically, for reasons of modeling simplicity. Only recently 
has material handling been paid special attention and been 
incorporated explicitly in scheduling models (see e.g. 
Blazewicz et al. 1991; Hall et al. 1994a, 1995; Hall et al. 
1994b; Jeng et al. 1993; King et al. 1993; Kise 1991; Kise et 
al. 1991; Sethi et al. 1992). 

In this paper, we investigate a cyclic scheduling problem 
for a robotic flowshop whose throughput rate is highly 
dependent on the interaction between the material han- 
dling system (namely, the robot) and the machines. More 
precisely, we consider a robotic flowshop consisting of m 
machines, an input device, an output device, and a robot. 
(See Figures 1 and 2.) There are no buffers in the flowshop 
(a similar problem with buffers is considered in King et al.). 
Transportation of the parts between the machines is done 
by the robot, which can only handle one part at a time. In 
the most general setting of the problem, a so-called Mini- 
mal Part Set (MPS) is to be repeatedly produced, where 
the MPS consists of parts of different types in propor- 
tion to a certain target production mix (see e.g. Stecke 
1983). The objective of the scheduling problem is then 
to determine the part input sequence (i.e., the order in 
which the parts in the MPS should be processed) and the 

corresponding sequence of robot moves to maximize the 
long-run throughput rate, or to minimize the long-run cy- 
cle time of the system. 

This problem (and closely related ones) has been con- 
sidered by several authors (Sethi et al. and Hall et al. 1997 
provide references). Sethi et al. showed that, when there are 
only two machines (and under some restrictions on the move 
sequences that the robot is allowed to perform), the prob- 
lem can be solved in polynomial time. The same result was 
obtained by Kise et al. for a makespan minimization 
objective. On the other hand, Hall et al. (1995) proved that 
the problem is already strongly NP-hard for a three- 
machine robotic flowshop. As a matter of fact, these au- 
thors established that computing the optimal part input 
sequence in a three-machine flowshop is strongly NP-hard, 
even when the robot move sequence is given. A further 
classification of the complexity of special cases in which 
the robot move sequence is fixed can be found in Sriskan- 
darajah et al. (1995). 

In our work, by contrast, we restrict ourselves to the 
special case of the problem where the number of machines 
is arbitrary, but all parts are of the same type. In this 
framework, the part input sequencing problem vanishes 
altogether, and the term cyclical, that usually indicates in 
the literature that the part input sequence repeats identi- 
cally for each and every MPS (see e.g. Agnetis et al. (1993), 
Karabati and Kouvelis (1996), McCormick et al. (1989)), 
applies here only to the sequence of moves performed by 
the robot. 

The resulting identical parts cyclic scheduling problem has 
been investigated by Sethi et al. and Hall et al. (1997). 
More precisely, in the classification scheme of Hall et al. 
(1997), we are interested in the problem RCmlk = 1,1- 
unitICt, meaning that the robotic cell contains m machines, 

Subject classifications: Manufacturing, automated systems: materials handling in robotic cells. Production/scheduling, sequencing: flow shop, cycle time minimization. 
Dynamic programming, deterministic: traveling salesman, pyramidal permutations. 

Area of review. MANUFACTURING, PRODUCTION AND SCHEDULING. 

Operations Research 0030-364X/97/4506-0952 $05.00 
Vol. 45, No. 6, November-December 1997 952 ? 1997 INFORMS 



CRAMA AND VAN DE KLUNDERT / 953 

Robot Track 

Figure 1. A three-machine robotic cell (line layout). 

that there is exactly one part type, and that the objective is 
to minimize the cycle time C, under the restriction that 
one unit be produced in each cycle. In particular, Sethi et 
al. described a simple decision rule that computes the op- 
timal robot move sequence when there are only three ma- 
chines in the flowshop. In this paper, we considerably 
extend their analysis by proving that the identical parts 
cyclic scheduling problem can be solved in time polynomial 
in m, where m denotes the number of machines in the 
shop. 

In Section 1 we give a more precise definition of the 
identical parts cyclic scheduling problem, and we describe 
a one-to-one correspondence (discovered by Sethi et al.) 
between its feasible solutions and the permutations of the 
set {1, ..., m}. In Section 2, we derive upper and lower 
bounds on the optimal cycle time. We also present in this 
section the key result of our paper, namely that the set of 
pyramidal permutations necessarily contains an optimal 
solution of the problem. (Pyramidal permutations have 
been previously introduced in the framework of the travel- 
ing salesman problem; see e.g., Gilmore et al. 1985.) In 
Section 3 we give an efficient algorithm to compute the 
cycle time of a schedule described by a pyramidal permu- 
tation. Relying on this result, we present in Section 4 a 
dynamic programming approach that allows us to solve the 
recognition version of the identical parts cyclic scheduling 
problem in O(m2) time, and its optimization version in 
O(m3) time. Finally, we discuss in Section 5 some direc- 
tions for further research. 

1. CYCLES, PERMUTATIONS, AND SCHEDULES 

In this section we discuss the input parameters of the prob- 
lem and its objective. A solution for the problem is defined 
as a sequence of robot moves that maximizes the long-run 
throughput rate. The problem is shown to be a permuta- 
tion problem. Furthermore, the objective of the problem is 

restated in terms of schedules and cycle times, rather than 
throughput rates. 

Let us first define the notation we use for the entities 
that play a role in the problem. The m machines of the 
robotic cell are denoted by Ml ... M,2. The input device is 
denoted by I or M(. The output device is denoted by 0 or 
Ml?+ Each part is initially available at the input device 
and must be processed successively by M1, M2, ..., An 
until it is unloaded at the output device. Each machine can 
only process one part at a time, and there are no buffers 
for intermediary storage at the machines. We denote the 
processing time of the part on machine Mi by pi, i = 
1 . . . m. We call the segment of the robot track between 
two adjacent machines a trajectory, and we denote by 6i 
the time the robot needs to travel from machine Mi to 
Mi+ , or from Mi+1 to Mi, i = 0,..., m. Loading a part 
onto Mi, i = 1, . . ., m + 1, or unloading a part from Mi, 
i = 0, .. ., m, takes time Ei. Hence the input of the prob- 
lem consists of: 

* processing times p, I * p,Pn 
* travel times 5(, . . , 5n2 
* (un)loading times E(, . .. ., E+11 

For reasons of clarity we usually assume 6i = 6, i = 

0,..., m, Ei = E, i = 0, ..., m + 1. However, all results 
presented go through for trajectory and machine- 
dependent travel and (un)loading times. 

Let us now describe the type of robot moves that we 
want to consider. From a practical viewpoint it is not de- 
sirable to specify all moves the robot has to perform until a 
complete batch is processed, since the batch size may be 
fairly large (we assume it to be infinite). Hence we will be 
interested in more compact sequences that the robot can 
execute a number of times. More precisely, we will be 
interested in sequences with the property that exactly one 
part is taken from the input device (and one part is 
dropped at the output device) in each execution of the 
sequence. Such sequences of robot moves are called 1-unit 
cycles. 

Definition 1. A 1-unit cycle is a sequence of robot moves in 
which each machine is loaded and unloaded exactly once. 

Observe that a 1-unit cycle returns the cell in its original 
state; hence it can be infinitely repeated. Sethi et al. con- 
jecture that the maximum throughput rate that can be 
achieved by executing a 1-unit cycle equals the maximum 
throughput rate over all sequences of robot moves. A weak 
form of this conjecture has been proved by Hall et al. 
(1997) for the identical parts 3-machine cyclic scheduling 
problem. The conjecture provides further motivation for 
restricting our attention to 1-unit cycles. 

Sethi et al. have the following theorem on the number of 
possible 1-unit cycles in a robotic cell with m-machines: 

Theorem 1. (Sethi et al.) In a robotic cell with m ma- 
chines, there are exactly m! 1-unit cycles. 

0 

1? 

Figure 2. A three-machine robotic cell (circle layout). 
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The following definition is helpful to understand Theo- 
rem 1. 

Definition 2. For all i, i = O..., m, activity Ai consists of 
the following sequence of robot moves: 

1. unload Mi; 
2. travel from Mi to Mi,1; 
3. load Mi,1. 

Without loss of generality, it may be assumed that every 
1-unit cycle starts with the robot moves as specified by AO. 
The proof of Theorem 1 establishes that every 1-unit cycle 
defines a permutation of the activities starting with AO and, 
conversely, that every permutation of the activities starting 
with AO corresponds to a 1-unit cycle. Thus, computing an 
optimal 1-unit cycle is equivalent to computing an optimal 
permutation of the activities. In the sequel, we will use the 
names "1-unit cycle" and "permutation of the activities" 
interchangeably. 

Let us now concentrate on the objective function of our 
problem. Informally speaking, we want to maximize the 
long-run average throughput rate of the system, or equiv- 
alently, we want to minimize its long-run average cycle 
time. To make this concept more precise, consider the 
following definitions. 

Definition 3. A schedule is a function S(Ai, t) that assigns 
a starting time to the tth execution of activity Ai (i = 0, . . .. 
m, t E M). The long-run average cycle time of S is equal to 

lmS(AM9 t) 

t-??00 t 

assuming that the limit exists. 

Definition 4. A schedule S is called a steady state schedule 
if there exists a constant L (called the cycle time of S) such 
that for every Ai, i 0, ... m, and for every t E N, S(Ai, 
t + 1) - S(Ai, t) = L. 

Definition 5. Given a permutation of the activities, say lr 
=(Ai Ail *... * Aim), and a schedule S(Ai, t), we say that 

S is a schedule for ,T if the sequence of activities defined by 
S is consistent with ir; i.e., S(Aij, t) < S(Aik, t) for all j, k E 

{0,...,m} withj <kandforallt E N. 

Clearly, for a steady-state schedule, the long-run aver- 
age cycle time coincides with the cycle time. Van de Klun- 
dert (1996) proves that, for each 1-unit cycle, there exists a 
steady-state schedule S that minimizes the long-run aver- 
age cycle time over all schedules. (This conclusion could 
also be drawn from an analysis of the periodical behavior 
of the cell, viewed as a discrete system; see, e.g., Cohen et 
al. 1985, Sethi et al.) 

Definition 6. Let ,T be a permutation of the activities. The 
cycle time of ir, denoted L(ir), is the minimum cycle time 
achievable by a steady-state schedule for Tr. 

We observe here that the computation of the cycle time 
of a fixed permutation of the activities can be formulated 

as the solution of a linear programming model similar to 
the one used in critical path methods (see Van de Klun- 
dert for details). Some of the proofs to come (e.g., Lemma 
2 and Theorem 4) could be recast entirely in this LP 
framework. 

With these definitions at hand, we can formulate as fol- 
lows the identical parts cyclic scheduling problem: given pro- 
cessing times P1, p-, pm travel times 80,..., 6m, and 
(un)loading times E0, . . ., Em?,+ find a permutation of the 
activities with minimum cycle time. 

2. PYRAMIDAL PERMUTATIONS 

In this section we first give a lower bound on the cycle time 
of the optimal permutation, and we describe a permuta- 
tion whose cycle time never exceeds twice the lower 
bound. These results and their derivation may help the 
reader gain some intuition for the problem, and will also 
play a role in the analysis presented in Sections 3 and 4. In 
the second part of the section, we introduce pyramidal 
permutations and show that the set of pyramidal permuta- 
tions necessarily contains an optimal 1-unit cycle. 

Lemma 1. The cycle time L(nT) of every permutation 7T 

satisfies: 

LQrT) - max{2(m + 1)(8 + E), maxp1 + 4(8 + E)}. 

Proof. Consider a permutation lr of the activities and as- 
sume without loss of generality that lr starts with AO. Since 
the next cycle starts again with AO, in any cycle the robot 
must at least travel from I to 0 and back to I, which 
induces a travel time of at least 28(m + 1). Also, in any 
cycle, every machine must be loaded and unloaded, the 
input must be unloaded, and the output must be loaded; 
hence, the total time the robot spends loading and unload- 
ing machines is at least 2E(m + 1). Thus we have that 
L(nr) : 2(m + 1)(8 + E). 

To prove that L(nr) D maxi pi + 4(8 + E), fix i E 

{1, ... , m}, and consider an optimal steady-state schedule 
for 7T, say S. Then, L(QT) = S(Ai, t + 1) - S(Ai, t), i.e., the 
cycle time equals the time between two consecutive un- 
loading operations of machine Mi. Now, consider the point 
in time T between S(Aj, t) and S(Ai, t + 1) at which Mi 
starts processing. Between S(Ai, t) and , the robot must at 
least have performed Ai and Ai-1; hence, we have T > 

S(Ai, t) + 48 + 4E. Furthermore, the unloading operation 
starting at S(Ai, t + 1) cannot be performed before ma- 
chine Mi has finished processing the part, i.e., S(Ai, t + 1) 
: T + pi. From these two inequalities we deduce L(n-) ? 

pi + 48 + 4E, which concludes the proof. D 

If the robot is relatively slow, its travel time is likely to 
be the bottleneck of the system. In this case, the permuta- 
tion AO, A1, ... , Am, to be called rrug might well be the 
optimal permutation since it has minimum travel time. On 
the other hand, if the robot is relatively fast, the permuta- 
tionA0, Am, Ami1, . .. ,A1, to be called 1T@D' appears to be 
a good alternative, since it allows each machine as much 
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time for processing as possible. We now derive an expres- 
sion for L(1TD): 

Lemma 2. L(nTD) = max{4m6 + 2(m + 1)E, -maxi pi + 
4(8 + E)}. 

Proof. The total travel time and load/unload time for rD is 
equal to 4m6 + 2(m + 1)E and is a lowerbound for L(nT-D). 
By Lemma 1 we know that L(nT-D) - maxi pi + 48 + 4E. 

Thus the maximum over these two is a lowerbound for 
L(nr-D). Let C equal this maximum. We give a schedule for 
TrD with cycle time C and prove its feasibility by induction. 
Observe that a schedule is feasible if the robot can indeed 
reach every machine in time, and never unloads a machine 
before it has finished processing. For notational conve- 
nience, we shift rD and write TD = (Am, Am-, ... * AO). 

Let S(Ai, t) = (t - 1)C + (m - i)(2E + 38), for i = 

09 ... ., m and t E N%. 
We are now going to complete the proof of the lemma 

by showing that S(Ai, t) is a feasible schedule. We proceed 
by forward induction on t, and backward induction on i = 
m, m - 1, ... , 0. Assume that at the start of the first cycle 
all machines are loaded and have finished processing their 
part (this is without loss of generality, since we are only 
interested in the long-run behavior of the system). For t = 
1 and i = m, S(Am, 1) = 0. For t = 1 and i < m, S(Ai, 1) 
= (m - i)(2E + 38), which is precisely the time required 
for the robot to perform Am, ... , Ai+1, and to reach Mi. 

Fix t > 1 and i = m; by induction, the robot arrives at 

Mm at time 

S(A0, t - 1) + E + 6 + E + (m -1)6 

- (t - 2)C + m(2E + 38) + 2E + m6 

S (t - 2)C + C 

-(t- 1)C 

- S(Am, t). 

Thus the robot can reach Mm in time to perform Am in the 
tth cycle. In the previous cycle, the robot finished loading 
machine Mm at time 

l(m, t - 1) = S(Am-1, t - 1) + E + 6 + E. 

We have: 

S(Am, t) - l(m, t - 1) = C - 2E-- 38- 6- E 

= C - 4E - 48 ? Pm- 

Thus machine Mm has finished processing the part at time 
S(Am, t) and can be unloaded. 

Now, for t > 1, i < m: by induction, the robot starts 
unloading machine Mi+, at time S(Ai+1, t). It then arrives 
at machine Mi at time S(Ai+1, t) + E + 8 + E + 28 = 

S(Ai, t). In the previous cycle, it finished loading machine 
Mi at time l(i, t - 1) = S(Ai1, t - 1) + E + 6 + E. This 
yields that 

S(Ai, t) - l(i, t - 1) = C - 2E - 36 - E - 6 - E 

= C - 4E - 46 DP 

Thus machine Mi has indeed finished processing at time 
S(Ai, t), and the robot may start unloading. D- 

Theorem 2. The optimal permutation i- is such that: 

max{2(m + 1)(8 + E), maxpi + 4(8 + E)} - L(X) 

S max{4m6 + 2(m + 1)E, maxpi + 4(8 + E)}. 

Proof. The bounds follow from Lemmas 1 and 2. D] 

Incidentally, Theorem 2 implies that the cycle time of 
,TD is always smaller than twice the optimal cycle time. In 
other words, the algorithm that outputs ,TD' independently 
of the values of the input parameters, is a 2-approximation 
algorithm for the identical parts cyclic sch'eduling problem! 
(We will not make use of this observation, but we find it 
interesting in its own right.) Moreover, r is optimal when 
L(1TD) = maxi pi + 4(6 + E). This provides an important 
proviso for the (unmotivated) claim made by Asfahl (1985, 
p. 274) that the permutation ,TD "must be held regardless 
of the relationship between the machine cycle'times, the 
time required for the robot to move from station to sta- 
tion, and the load/unload times." (The author calls "ma- 
chine cycle time" what we call "processing time.") 

Definition 7. A set of permutations H is dominating if, for 
every choice of the processing times, there exists Tr E H 
such that L(1T) - L( T') for all ,T' 5- H. 

We are now going to introduce a class of permutations, 
of which ,Tu and r are just two special representatives, 
and we are going to show that this class is dominating. 

Let ir = (Ao, Ai, . .., Aik Aik+l * ... , Aim). 

Definition 8. lr is pyramidal if 1 < ..<* < i = m and 
m > ik+1l > ... > im :': 1. 

In particular, the permutations rru and rDare pyrami- 
dal. The meaning of the adjective pyramidal should be- 
come clear from Figure 3. It is probably worth noticing 
that the concept of pyramidal permutations is not new; it 
has been introduced earlier, and has been extensively stud- 
ied in the literature on the traveling salesman problem. 
(See Gilmore et al. for a thorough account, as well as 
Section 4 below.) For an arbitrary, not necessarily pyrami- 
dal, permutation we also define: 

Definition 9. Activity Aik is uphill pyramidal if there is an 
index lin {k,...,m} such that ik <ij forallk<j <] 1, 
and ik > ijfor allj < k and allj > 1. 

In other words: all activities between Aik and Ail bear on 
machines located after Mik in the flowshop, while all activ- 
ities before Aik or afterAil bear on machines located before 

Z{k 

Definition 10. Activity Aik is downhill pyramidal if there is 
an index I in {O, . . ., k} such that i- > ik for all I j < k 
and i1 < ikforalll < l and all] > k. 
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Figure 3. The pyramidal permutation AO, A2, A5, A7, A6, 
A4, A3, A1. 

In other words: all activities between Ai, and Aik occur 
on machines located after Mik in the flowshop, while all 
activities before Ai, or after Aik occur on machines located 
before Mik 

Remark 1. AO and Am are uphill pyramidal, and Am is 
downhill pyramidal in all permutations. 

Remark 2. A permutation is pyramidal if and only if each 
activity is pyramidal (i.e., either uphill or downhill pyrami- 
dal) in this permutation. 

Remark 3. The reader should convince himself that Aik is 
uphill pyramidal if and only if the trajectory [Mik, Mik?l] is 
travelled exactly twice by the robot in each cycle: once 
when performing Aik and once after performing Ai,. 

Remark 4. Similarly, except for ik = m, Ai k is downhill 
pyramidal if and only if the trajectory [Mik, Mik? ] is trav- 
elled exactly four times in each cycle: once just before Ai, 
once just before Aik, once during Aik, and once just after 
Ak. 

The following theorem justifies our interest in pyramidal 
permutations. It will be the cornerstone for all subsequent 
results, and can therefore be viewed as the main result in 
this paper. 

Theorem 3. The set of pyramidal permutations is 
dominating. 

Proof. For reasons of clarity, and to stress that the theo- 
rem holds under very general conditions, we present the 
proof for the case where the machines are not necessarily 
equidistant, and loading/unloading times are machine de- 
pendent. We first introduce the following notations: for all 
i,j = O...,Iml 

i _J k=i ]k if i j, 
i he ti=j kt if j o p 

The time the robot takes to perfo'rm Ai is denoted by Ai: 

Ai = Ei + 6i + Ei+j. 

Similarly to 5ij, we define Aij as: 

_ E'k-=i Ak if i j, 

l k-j Ak if j j . 

Let rr be a nonpyramidal permutation. Let Aq be a non- 
pyramidal activity, let Ai = Ab be the uphill pyramidal 
activity defined by b = maxfj{ j < q and Aj is uphill 
pyramidal}, and let Ai = Ae be the uphill pyramidal activ- 
ity defined by e = min{j Ij > q and Aj is uphill pyramidal}. 

Since Ai and Ai are uphill pyramidal, there exist indices 
il (associated with-Ai as in Definition 9) and ik- 1 (associ- 
ated with Ai as in Definition 9) such that lr can be rewrit- 
ten in the form: 

Tr = (Aog ... ., Air, Aj,+1, * . . . Ais-i 

AiS, * . Ajil, Aji+, * . * .Ai k -l, 9Ak 9 .. *, Ai,, )q 

and: 

* all activities in ,Tj = (Ao, . . ., Ai,) bear on machines 
with index at most b + 1, i.e., ij < ir = b for all Ai in 7T 
(since Ar is uphill pyramidal), 

* for allAi in Tr2= (A 
r+,I 

* . . . Ai, i) i,r = b < ij < iS = e 
(since Ai is uphill pyramidal), 

* for all Ai in T3 = (Ai,, . . . , Ai), ij si, = e (by defini- 
tion of i1), 

* for allA1 in 7T4= (Ai,+, .. ,Aikl) ir b < i, < is e 
(by definition of il and 1k), and 

* for allA i in v5 = (Aik,* . .. Ai.), ij < b (by definition of 
ik). 

Notice that ,Tj and T3 can never be empty since AO and 
Am are uphill pyramidal by definition. Since there exists a 
nonpyramidal activity Aq, r2 U rr4 cannot be empty, al- 
though one of 1 or IT4 can. Finally, notice that 1T5 can be 
empty. 

We claim that Tr is dominated by the new permutation 

IT -71 73, Ae-1, Ae-2, * A+1 7T5, 

i.e., 

L (7T') -- L(v) . 

Before proving this claim, notice that the status (pyramidal 
or nonpyramidal) of all activities contained in rl, 7T3, IT5 is 
the same in ir' as in ir, and that all activities contained in 
w2 U IT4, i.e., Ae1, * * * Ab+l are downhill pyramidal in T' 

(Figure 4 gives a sketchy representation of the permuta- 
tion T' where thick lines indicate the segments r1, w3, 1 T5 

that ir' inherits from 7T). Thus, the claim implies that, in at 
most m iterations, ir can be transformed into a pyramidal 
permutation whose cycle time is no larger than that of ir, 
which establishes Theorem 3. 

Let a steady-state schedule with minimum cycle time for 
IT be given by S(Ai, t). Denote by l(i, t) the time at which 
the robot ends loading Mf in the tth execution of the 1-unit 
cycle, for all t > 1, when it performs schedule S. We give 
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Figure 4. Graphical representation of the permutation T'. 

now a steady-state schedule T(Ai, t) for 7' such that T(AO, 
t) = S(A0, t), thereby showing that the cycle time of T' is 
at most L(,r). We denote by A(i, t) the time at which the 
robot ends loading Mi in the tth execution of the 1-unit 
cycle, for all t - 1, when it performs schedule T. 

For all t 3 1, we let 

T(Aj, t) = S(Aj, t) if 0 sj S b. (1) 

Next, for all t - 1 we define T(Ab+l, t) by 

T(Ab+l, t) = T(Aik , t)- Ab+1 - (b?+)ik if 95 0 0, (2) 

= T(A0, t + 1) - Ab+1 - 6(b+1)O otherwise, 

(3) 

and, recursively on j: 

T(Aj, t) = T(Aj-1, t) - j- 6j(j-1) if b + 1 < 1 < e. 

(4) 

Finally, we let 

T(Ai,, t) = T(Ae-1, t) - i -6i1(e-l), (5) 

and 

T(Aj, t) = S(Aj, t) + T(Ai,, t) - S(A1, t) 

if e sKj<m. (6) 

Notice that the definition is complete, i.e., T(Aj, t) is de- 
fined for all t - 1 and for all j E {0, . . ., m}. In particu- 
lar, (1) applies to 7T and T5, (2)-(4) apply to 7T2 and 7T4, 
and (5)-(6) apply to 7T3. One also checks easily that sched- 
ule T is steady state, with cycle time L = L(QT). 

To prove that (1)-(6) define a feasible schedule for T', 
we need to check that: 

1. the robot can reach Mj before T(Aj, t) in cycle t, 
2. machine Mj has finished processing a part at time T(Aj, 

t) in cycle t. 

We first prove that the robot can reach all machines in 
time in every cycle. Consider any activity Aj, and let Al be 
the activity preceding Aj in T'. If the start-time of Al is 
defined by one of (2)-(5) (i.e., if j E {b + 1, ..., e - 1} 
U {ikl), then T(Aj, t) - T(Al, t) is exactly the time re- 
quired for the robot to perform Al (viz. A1) and to subse- 
quently move from Ml+1 to Mj (viz. 6k). Thus, the robot 

can get to Mj at time T(Aj, t) if it can get to Ml at time 
T(A1, t). 

The latter conclusion also applies if 0 -] j b, j = ik, in 
view of (2), and if e < j - m, in view of (6) (since the 
schedule S is feasible). 

This reasoning leaves only open the question whether 
the robot can reach Me at time T(Ae, t), given that it starts 
with Ab (the activity preceding Ae in T') at time T(Ab, t). 
Thus we have to check that: 

T(Ab, t) + Ab + 6(b+1)(e-1) 
- T(Ae, t). 

From the fact that in a schedule for XT every trajectory [Mj, 
M1?l], b < j < e, is travelled at least four times, we can 
derive that (see Figure 4): 

S(Ab, t + 1) - S(Ab, t) - S(Ab, t + 1) - S(Aik, t) 

+ S(Ail, t) - S(Ae, t) + 5bik + 5ize + Ail 

+ 35(b+1)(e-1) + A(b+1)(e-1) + Ab. 

Combining this with (1) and (6) gives 

T(Ab, t + 1) - T(Ab, t) - T(Ab, t + 1) - T(Aik, t) 

+ T(Ail, t) - T(Ae, t) + 5bik + bile + Ail 

+ 35(b+1)(e-1) + A(b+1)(e-1) + Ab- 

Rewriting this inequality, we get: 

T(Ae, t) ? T(Ab, t) - T(Aik, t) + T(A i, t) + 6(b+1)ik 

+ Sie + Ail + 36(b+1)(e-1) + A(b+1)(e-1) + Ab- 

Combining this with (2) and (4) leads to: 

T(Ae, t) ? T(Ab, t) - T(Ae-i, t) + T(Ai1, t) 

+ 5i1(e-1) + Ail + 5(b+1)(e-1) + Ab, 

and thus by (5): 

T(Ae, t) 3 T(Ab, t) + 6(b+1)(e-1) + Ab, 

as required. 

Remark 5. Notice that we used A ik' which may not exist if 
T5 is empty. In this case, the result can be obtained simi- 

larly using S(AO, t + 1) instead of S(Aik, t). 

We now prove that machine Mj has indeed finished pro- 
cessing at time T(Aj, t). By (1), all machines Mj with Aj in 
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i1 or T5 are ready at time T(Aj, t). Consider now machine 
Mb,l. Observe that the start of activity Ab?l in schedule T 
occurs as late as possible under the constraint that S(Aik, t) 
= T(Aik, t). (See (1)-(3) and Figure 4.) Thus, one derives 
that 

S(Ab,+l, t) T(Ab+l, t), 

and 

T(Ab+l, t)- T(Ab, t) > S(Ab+l, t) - S(Ab, t). 

Since S(Ab+I, t) is feasible, we have that: 

T(A b + I, t) - T(Ah, t) 

S(Ab+l, t) 
- S(Ah, t) > Pb+l + Ah, 

as required. 

A straightforward extension of the argument used in 
Lemma 1 shows that 

pi + 4 + A-1i + 6j + 611--- L, for allj E {0, ... I,m}. 

Thus, for all b + I < j<e, 

A(j, t) = T(Aj11, t) + Aj-1 

-T(Aj, t) + Aj + 5j + ?j_j + Aj-1 (by(4)) 
= T(Aj, t + 1) + Aj + Sj + Sj-l + Aj-1 - L, 

and thus 

T(Aj, t + 1) - A(j, t) 

- L - (Aj + 5j + j- i + Aj1) PI j 

This is the required inequality: since Ai is a downhill activ- 
ity, T(Aj, t + 1) - A(j, t) represents the time elapsed 
between loading of a part in cycle t and its unloading in 
cycle t + 1. 

In view of (6), the machines Aj with j > e create no 
problem. Finally, we have to check that Me has finished 
processing in time: 

T(Ac, t) - A(e, t - 1) 
= T(Ae, t) (T(Ae-1, t- 1) + Ae-A) 
= T(Ae, t) -(T(Ail, t- 1) 

+ A + 8i,(e-1) + Ae-1) (by(5)) 
= S(Ae, t) -(S(A i, t- 1) 

+ Ai/ + 6i(e--1) + Ae-i) (by (6)) 

Now, there are two cases. 

1. If Ae precedes A,1 in ii (and thus the part loaded onto 
Me in each execution of Ir is unloaded in the next exe- 
cution): 

S(Ae, t) - (S(Ai,, t - 1) + Ai/ + 50e-l) + Ae-1) 

> S(Ae, t)- (S(Ae-i t - 1) ? A\e-i) 

and hence the feasibility of T(Ae, t~) follows from the 
feasibility of S(Ae, t). 

2. If Ae 1 precedes Ae in XT (and thus the part loaded onto 
Me in each execution of 7r is unloaded in the same 
execution), it is not hard to see, by just checking the 
travel time, that 

S(Ae--1, t) ? S(Ai,, t - 1) + Ai, + Si,(e-l). 

Hence 

T(Ae, t) - A(e, t - 1) 

> S(Ae, t) -(S(Ae-I , t) + Ae-I) 

= S(Ae, t) - 1(e, t), 

and again the feasibility of T(Ae, t) follows from the 
feasibility of S(Ae, t). D 
We remark that, when m = 3, there are exactly four 

pyramidal permutations, which have been proved by Sethi 
et al. to be dominating. Theorem 3 generalizes this result 
for arbitrary values of m. 

3. AN ALGORITHM FOR COMPUTING THE CYCLE 
TIME OF A PYRAMIDAL PERMUTATION 

In this section we present an algorithm that computes a 
shortest steady-state schedule for a pyramidal permutation 
in 0(m) time. This time complexity improves on the time 
complexity of the algorithm using the max-algebra ap- 
proach (Cohen et al., Karp 1978), and on a related, but 
faster, algorithm based on the analysis in Van de Klundert, 
and Karp (of course, the scope of our algorithm is also 
narrower). 

While proving the correctness of the algorithm, we de- 
rive some structural properties of a shortest steady-state 
schedule for a pyramidal permutation that will turn out to 
be useful in the next section. 

Let 7r = (AO, Ail, . . ., Ai ) be a pyramidal permutation 
of the activities, and let U (resp. D) denote the index set of 
the uphill (resp. downhill) activities in IT (with m E U n 
D). A formal statement of our algorithm is given in Figure 
5. We now discuss it more informally. 

The algorithm computes a start time S(Ai) for each 
activity Ai as well as a cycle time Ls. The schedule S is 
then implicitly defined by the relation: 

S(Ai, t) = S(Ai) + t X Ls 

for i = O, ..., m and t E N. (7) 
The algorithm proceeds backwards by decreasing activ- 

ity index, starting with A,,,. It schedules all downhill activi- 
ties without waiting time, giving the robot just enough time 
to travel from machine to machine between two activities. 
That is, if i C D and Ai is the downhill activity precedingAi 
in IT, then: 

S(Ai)=S(Aj) + (j + 1-i)6 + 5 + 2E. (8) 

Next, suppose that we are about to schedule an uphill 
activity Ai such that Ai+I is also uphill. Then, for every 
feasible schedule T, and for all t E C 

T(A,, t) S T(Ai+1, t) - 8- 2E Pi+i, (9) 
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Input: P1iP2, ,Pm, 6, E,T = (Ao, Ail,-, Aim) 

1. Set S(Am) = 0. Set i = m - 1. 

2. (Schedule Ai :) 

if i E D and Aj is the downhill activity preceding Ai in 7r then 

S(A-) = S(Aj) + (j + 1 - i)6 + 6 + 2E 

if i e U and i + 1 E U then 

S(Ai) = S(Ail+) - 6 - 26 - Pi+, 

if i E U and i + 1 E D and Aj is the uphill activity following Ai in ir then 

S(Ai) = min{S(Aj) - (j - i)6 - 2E, S(Ai+?) - 6 - - Pi+1} 

3. If i >0 set i -*i- 1 and goto 2, else goto 4. 

4. (Compute cycle time) 

Li - S(Aim) + (im + 2)6 + 2E S(Ao). 

L2 - maxpi + 4(6 +c) 

L3 max S(Ai-1) + 6 + 2E + Pi - S(Ai) iEU,i-IlED 

Ls= max{LI, L2, L3}I 

Output: {S,Ls} 

Figure 5. Algorithm for computing the cycle time of a pyramidal permutation. 

and the algorithm simply sets 

S(Ai) = S(Ai) - )-8- 2E -Pi+j* (10) 

Next, consider an uphill activity Ai such that Ai,, is down- 
hill. Again, in every feasible schedule T, and for all t E NI, 

T(Aj, t) T(Ai+,, t) - 5 - 2E - Pi+j. (1 1) 

On the other hand, if Aj denotes the uphill activity follow- 
ing Ai in ir, then we have in every feasible schedule T, 

T(Ai, t) - T(Aj, t) - (j - i)8 - 2E. (12) 

The algorithm takes (11) and (12) into account and sets 

S(Aj) - min{S(Aj) - (j - i)8 - 2E, S(Ai+l) (13) 
- - 2E -Pi+1}. 

Observe that, if S(Ai) is determined by the second term in 
the latter expression, then the difference S(Aj) - S(Ai) is 
larger than the travel time required between Ai and A1; in 
other words, the robot will have to incur some idle time 
before the execution of Aj. 

In this way, a starting time is determined for each activ- 
ity. The cycle time Ls of the schedule, however, is still not 
determined. It can be seen that Ls must satisfy: 

S(A0) + Ls > S(A i,n ) + (im + 2)8 + 2E, (14) 

since otherwise the robot cannot reach MO in time to start 
the (next) execution of Ao after executing A. Moreover, 
by Lemma 1, we know that 

Ls : maxpi + 4(6 + E). (15) 

Finally, consider any uphill activity Ai such that Ai1 is 
downhill. The part loaded on Mi in the tth execution of 
Ai-1 is unloaded from Mi in the (t + 1)-st execution of Ai. 
Hence, 

S(Aj) + LS : S(Ai-1) + 8 + 2E +pi. (16) 

In the algorithm, Ls is set to the minimum value that 
satisfies all three inequalities (14)-(16). 

The algorithm can easily be implemented in 0(m) time. 
We now establish its correctness. 

Theorem 4. For every pyramidal permutation wr, the sched- 
ule defined by the algorithm in Figure 5 is feasible and has 
minimum cycle time among all schedules for IT. 

Proof. Feasibility of the schedule (7) can be checked by 
induction on i and t. In particular, for all t E NJ, S(AO, t + 
1) is feasible if S(Ai, t) is feasible because of (14). More- 
over, if Ai starts at time S(Aij, t), then the robot can reach 
machine Mi before S(A1j, t) (in time to perform A1), 
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because of (8), (10), and (13). Finally, at time S(Aj, t), 
machine Mi has finished processing and can be unloaded. 
This is true because of (10) if i E U and i - 1 E U; 
because of (16) if i E U and i - 1 E D; because of (11) if 
i E D and i - 1 E U; and because of (8) and (15) if i E D 
and i - 1 E D. Thus the schedule defined by (7) is 
feasible. 

It remains to show that the schedule defined by the 
algorithm shown in Figure 5 has minimum cycle time 
among all schedules for wn. The following relation (17) is 
crucial for an intuitive understanding of the algorithm: it 
expresses that the time elapsed between the execution of 
an uphill activityA, and a downhill activityAd is at least as 
short in S as in any other schedule. 

We now claim the schedule S to have the following 
property: for every feasible schedule T, for all t E N, for 
all u E U, and for all d E D, such that either u - d or {u, 
u + 1, . . ., d -1} C U, 

T(Ad, t) - T(AU, t) > S(Ad) - S(Au). (17) 

We prove this by backward induction on u, for each fixed 
value of d. The claim holds for u = m, as follows easily 
from (8). Now, suppose that it holds for u = j, and let Ai 
be the uphill activity immediately preceding A, in w-. If j = 
i + 1, then (17) follows from (9), (10), and the induction 
hypothesis. If ] > i + 1, thenAj+1 is downhill and S(Ai) is 
given by (13). Now if, 

S(Ai) = S(Aj) - (j - i)5 - 2E9 

then (17) follows from (12) and the induction hypothesis. 
On the other hand, if 

S(A ) = S(Ai+1) - 2E -Pi+1, 

then, in view of (11), 

T(Aj+1, t) - T(Aj, t) > S(Ai+1) -S(Ai), 

for all t E Ni. Furthermore, since i + 1 E D, equation (8) 
implies 

T(Ad, t) - T(Ai+1, t) > S(Ad) -S(Ai+), 

and (17) follows from the latter two inequalities. This com- 
pletes the proof of the claim. 

Now let T be any feasible schedule for v. Letting u = 0 
and d = im in the claim, we have in particular: 

T(A i, t) - T(A0, t) : S(A) )-S(A ), 

for all t E Ni. Therefore, 

T(A0, t + 1) - T(A0, t) 

> T(Ai, t) + (im + 2)6 + 2E - T(A 0 t) 

S(Ai, ) + (im + 2)6 + 2E- S(A0) 

= Ll. (18) 

Next, consider an index i E U such that i - 1 E D and 

L3-S(Ai_1) + 8 + 2E +p p- S(Ai). 

Letting u = i and d -i - 1 in the claim, we obtain for all 
t E i: 

T(Ai-1, t) - T(Ai, t) > S(Ai-l - S(Ai). 

Since T is feasible, the same reasoning that lead to (16) 
also establishes 

T(Ai, t + 1) - T(Ai-1, t) + 5 + 2E +pi. 

The previous inequalities together imply: 

T(Ai, t + 1)- T(Ai, t) - L3. (19) 

From (18), (19), and Lemma 1, we now conclude that the 
long-run average cycle time of T is at least Ls = max{L1, 
L2, L3}. This completes the proof of Theorem 4. [ 

4. POLYNOMIAL ALGORITHMS FOR THE 
IDENTICAL PARTS CYCLIC SCHEDULING 
PROBLEM 

Theorems 3 and 4 together imply that, for fixed m, the 
identical parts cyclic scheduling problem can be solved in 
constant time by enumerating all pyramidal permutations 
and subsequently computing their cycle time. However, 
since there are 2m-1 pyramidal permutations, the resulting 
algorithm has exponential complexity when m is consid- 
ered to be part of the input. In this section, we will present 
more efficient algorithms, whose complexity grows only 
polynomially with m. 

In the framework of the traveling salesman problem, a 
pyramidal tour of minimum length can be found by dy- 
namic programming in 0(n2) time, where n denotes the 
number of cities (see e.g., Gilmore et al.). In terms of the 
identical parts cyclic scheduling problem, a shortest Ham- 
iltonian tour would correspond to a permutation with min- 
imum cycle time. Similarly, a shortest Hamiltonian path 
would correspond to a schedule in which S(d) - S(O) is 
minimum, where d is the downhill activity with minimum 
index, i.e., the last activity in the permutation. 

The first difficulty here stems from the fact that, in the 
traveling salesman problem, the distance between two cit- 
ies is given explicitly in the distance matrix, whereas in the 
identical parts cyclic scheduling problem, the "distance" 
S(Ai) - S(A,1) between two consecutive activities is not 
a priori known, since the waiting time of the robot de- 
pends on the permutation. For the type of schedules con- 
structed by the algorithm in the previous section, however, 
we will be able to show that these distances can somehow 
be computed online. 

In this section, we first give a dynamic programming 
algorithm for the identical parts cyclic scheduling problem 
which computes, for every possible value of d, a pyramidal 
schedule S such that S(d) - S(O) is minimum over all 
pyramidal schedules in which Ad is the downhill activity 
with minimum index. This dynamic programming algo- 
rithm is similar to the one computing a shortest path for 
the traveling salesman problem, but it does not necessarily 
output an optimal schedule (i.e., a tour) for the identical 
parts cyclic scheduling problem. This is the second diff- 
culty encountered in our problem, in comparison with the 
traveling salesman problem. However, we show that, based 
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on the dynamic programming formulation, an optimal 
schedule can be obtained in polynomial time. 

We now define the following sets of permutations. 

Definition 11. For all u E {O, ..., m} and d E 1, ... 
m} with u * d, fu,d is the set of pyramidal permutations 
such that: 

1. Au is uphill, 
2. Ad is downhill, 
3. if u < d, then Ai is uphill for all i E {u, u+ 1, ... 

d - 1}, 

4. if d < u, then Ai is downhill for all i E {d, d + 1,..., 
u - 1}. 

For the sake of simplicity, when S(Ai, t) is a steady-state 
schedule, we use the shorthand S(Ai) instead of S(Ai, 0) 
(i= 1=...M). 

Now we define a function L(u, d) by: 

Definition 12. For all u E {, ..., m} and d GE 
m} with u # d, 

L(u, d) = min{S (Ad) - S (A )u G E u,d 

and S.X is a steady-state schedule for T} . 

Theorem 5. For all u E {O, . . ., m} anddE {1, . . ., m} 
with u # d, the value of L(u, d) can be computed in O(m2) 

time by the following dynamic programming formulation: 

L(m - 1, m) = 5 + 2E +pM, 

L(m, m - 1) = 2E+ 3S, 

and, for all {u, d} # {m - 1, m}, 

L(u, d) 

(L(u, d + 1) + 35 + 2E if u > d + 1, 

minj>u{L(u,j) + (j - d + 2)5 + 2E} if u = d + 1, 
L(u + 1,d) + 5 + 2E +PU+1 ifu <d - 1, 
minj>d{max{L(j, d) + 2E + (j - u), 5 + 2E +Pd}} 

if u =d - 1. 

Proof. The expressions for L(m - 1, m) and L(m, m - 1) 
are easily checked to be correct (see (8) and (10)). For all 
other values of (u, d), the recursive equations are based on 
the algorithm given in the previous section (Figure 5). 
Their validity can be checked by induction. For example, 
assume that the value of L(u, j) is correctly computed by 
these equations for all > u, and consider next L(u, u - 
1) (i.e., u = d + 1). We must find a pyramidal permuta- 
tion iT and a corresponding schedule S that minimizes 
S(Au1) - S(Au). For any given permutation iT, let Aj be 
the downhill activity immediately preceding AU-1 in 7r. 
From Equation (8), we know that 

S(AU_1) = S(A1) + (j]- u + 3)8 + 2E. 

Moreover, relying on the dynamic programming principle 
of optimality, we can assume that S(A1) - S(AU) is as 

small as possible under the previous restrictions, i.e., S(Aj) 
- S(AU) = L(u, j). It follows now that: 

S(AU_1) - S(Au) = L(u, j) + (j - u + 3)6 + 2E 

= L(u, j) + (j - d + 2)6 + 2E. 

Thus, L(u, u - 1) is attained by a permutation ir which 
minimizes the previous expression, as is asserted in the state- 
ment of the theorem. The other cases are left to the 
reader. 

As for the complexity of the formulation, notice that the 
value of each L(u, d) with Iu - dl - 2 can be computed in 
constant time. The computation of each L(u, d) with |u - 
dl = 1 requires O(m) time, but there are only 2m pairs (u, 
d) such that Iu - dl = 1. Thus all values L(u, d) can be 
obtained in O(m2) time. D 

The dynamic programming formulation in Theorem 5 
allows us to compute in O(m2) time, for every possible last 
activityAd, d = 1,...,m: 

* the value of L(O, d), 
* a permutation 7rd E rOd, 

* a schedule S .d for ud, such that S,.d(Ad) - S,.d(AO) = 

L(O, d). 

The schedule S,rd is the same schedule that would have 
been output by the algorithm in Figure 5 had it taken ud as 
input. It follows then that the cycle time of the permuta- 
tion ud produced by the dynamic programming algorithm 
can be computed as in Step 4 of the algorithm in Figure 5. 
But again, we emphasize here that the permutation 'rd 

output by the dynamic programming algorithm does not 
necessarily have minimum cycle time. In the remainder of 
this section, we explain how the dynamic programming 
formulation can be used to solve the identical parts cyclic 
scheduling problem to optimality. 

Let us first focus on the recognition version of the prob- 
lem, which may be stated as: 

Input: pi, i = 1, . .. , m, S, E, C. 

Question: Is there a steady-state schedule with cycle time 
at most C? 

This problem can be solved by a slight adaptation of the 
dynamic programming algorithm. Informally, the dynamic 
programming algorithm will be modified so that when it 
finds a permutation, the cycle time of the permutation is 
less than or equal to C, and when it does not find a per- 
mutation, then such a permutation does not exist. 

To start with, let us assume from now on that maxi pi + 
4(5 + E) - C, since otherwise Theorem 2 provides a 
negative answer to the recognition problem. Next, consider 
the following definition, motivated by the computation of 
the bound L3 in Figure 5: 

Definition 13. For all u E {O, ..., m} and d E {1, .... 
m} with u # d: 
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Lc(u, d) = min S,(Ad) - S(Au) 

s.t. 7r E ?Ju,dX 

S, is a steady-state schedule for ir, 

max {Sff(Ai_j)+ +2E+p 
iG U,i_uji-1lED,i -l ad 

- ,7(Ai)l S C. 

We let Lc(u, d) = +oo if there is no feasible solution to 
the optimization problem in Definition 13. Notice that 
Lc(O, d) < +oo for all d C {1, . . ., m}, since the permu- 
tation (AO, A1, ..., Ad-,, Am, Am,, ..., Ad) admits a 
schedule that satisfies all constraints in the definition of 
Lc(O, d). It can be checked as in Theorem 5 that the 
values Lc(u, d) can be computed in O(m2) time by the 
following recursion (where, for the sake of compactness, 
we denote by K(u, d) the quantity minj,u{Lc(u, j) + (j - 
d + 2) + 2E}): 

Lc(m - 1, m) = 6 + 2E +pm, 

Lc(m, m - 1) = 2E + 36, 

and, for all {u, d} # {m - 1, m}: 

Lc(u, d) 

Lc(u, d + 1) + 36 + 2E if u > d + 1, 
K(u, d) if u = d + 1 and K(u, d) + 5 + 2E 

+Pu A C, 
- +o ifu= d+1andK(u,d)+5+2E+pu >C, 

LC(u+1,d)+5+2E+pU+j ifu<d-1, 
minj>d{max{LC(j, d) + 2E + (j - u)5, 5 + 2E 

+Pd}} ifu=d-1. 

Theorem 6. The recognition version of the identical parts 
cyclic scheduling problem can be solved in 0(m2) time. 

Proof. We can compute in O(m2), for each d C {1, ... 
m}1: 

* the value of Lc(O, d), 
* a permutation 7rd E HO,d, and 
* a schedule S .d for wd such that S,d(Ad) - S,.d(AO) 

L(O, d) and S .d satisfies the third constraint in Defini- 
tion 13. 

We claim that the answer to the recognition problem is 
affirmative if and only if there exists d E { 1, . . ., m} such 
that 

Lc(0, d) + (d + 2)5 + 2E C. (20) 

Indeed, if (20) holds for some d, then the cycle time of 7rd 

is at most C (see Step 4 in Figure 5), and we are done. 
Conversely, assume that there exists a pyramidal permuta- 
tion, say T, whose cycle time is at most C. Let Ad be the 
last downhill activity in 7r, and let S,. be the schedule 
computed for IT by the algorithm in Figure 5. By Definition 
13, Lc(O, d) < S~(Ad) - S.(A0). Moreover, in view of 
Step 4 in Figure 5, S.(Ad) - S.(A0) + (d + 2)6 + 2E > 

C. Thus we conclude that (20) holds, which concludes the 
proof. D 

Of course, the optimization version of the problem can 
be solved by repeatedly solving the recognition version, 
while applying binary search between the lowerbound and 
the upperbound given in Theorem 3. 

Corollary 1. For integral values of pi, i = 1,..., m, 5, ', 

the optimization version of the identical parts m-machine 
cyclic scheduling problem can be solved in 0(m2 log(m )) 
time. 

In the last part of this section, we now describe a 
strongly polynomial algorithm to solve the optimization 
version of the identical parts m-machine cyclic scheduling 
problem. We first need yet another modification of Defini- 
tion 12, in which some activities are "forced" to be down- 
hill (the motivation for this definition should become clear 
very shortly). 

Definition 14. For all F C {1, .. ., m}, u E {O, .. ., m}\F 
and d E {,.. , m} with u V0 d: 

LF(U, d) min S,(Ad) -S(Au), 

s.t. 7r E I u,d, 

S X is a steady-state schedule for ir, 

Ai is downhill in IT, for all i E F. 

For any F C { 1, . . ., m}, a straightforward adaptation 
of our previous dynamic programming algorithm, which 
simply "skips" all pairs (u, d) such that u E F, allows to 
compute in O(m2) time, for each d E {1, . . ., m}: 

* the value of LF(O, d), 
* a permutation 7TFd such that Ai is downhill in '7F,d for 

all i E F, and 
* a schedule SF,d for '7F,d such that SF,d(Ad) - SF,d(AO) 

LF(O, d). 

The cycle time of rF,d (as computed by the algorithm 
shown in Figure 5) is denoted by L(7nFd). Suppose now 
that LQn"Fd) = L3. We call activityAi an obstruction of TFd 

if Ai is uphill in '7F,d, Ai-1 is downhill in '7F,d and L(7nFd) 
= SF,d(Ai-1) + 5 + 2, + pi- SF,d(Ai). Roughly speaking, 
the intuition behind the algorithm that we are about to 
present is that, if a current schedule is not optimal, then it 
must contain an obstruction A', and Ai should be downhill 
in any optimal schedule. This property is stated more pre- 
cisely in the following two lemmas. 

Lemma 3. For all F C {1, . . , m} and d C {1, . , m}, if 
there is no obstruction in iFd, then there is no pyramidal 
permutation with cycle time less than L(lrFd) in which all 
activities in F are downhill and Ad is the last downhill 
activity. 

Proof If L(1rF,d) = maxl i<m Pi + 4( + E), then IFd iS 
optimal by Theorem 2. If this is not the case, and there is 
no obstruction in rF,d, then by definition of the bound L1 
in Figure 5: 
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Input P1,1P2, Pm)6) e 

1. F 0, opt-- +oo 

2. Call the dynamic programming algorithm and compute L(lrF,d), -FFrd, SF,d for d = 1,... , m. 

3. Select d such that 

SF,d(Ad) - SF,d(AO) + (d + 2)6 + 2c = min{SFj(Aj) - SF,j(Ao) + (j + 2)6 + 2c} 

opt min(opt, L(lrFd))- 

4. If opt = maxipi + 4(6 + e), return 7rF,d and stop. 

5. (Lemma 5.1.) If there are no obstructions in lrF,d, return a permutation with cycle time 
equal to opt, and stop. 

6. (Lemma 5.2.) Let I be the set of obstructions in lrF,d. Set F -- F U I and goto 2. 

Output: (optimal permutation and its cycle time) {7r*, L* }l 

Figure 6. Algorithm for computing a permutation with minimum cycle time and its cycle time. 

T(A0, t + 1) - T(Ad, t) 

? SF,d(Ao, t + 1) - SF,d(Ad, t), 

for every feasible schedule T. Combined with the defini- 
tion of LF(O, d), this proves the lemma. EI 

Lemma 4. For all F C {1, ..., m} and d E {1, . .., m}, if 
Ai is any obstruction in 7rFd, then there is no pyramidal 
permutation with cycle time less than L(QFd) in which all 
activities in F are downhill and Ai is uphill. 

Proof. Let iT be any pyramidal permutation in which all 
activities in F are downhill and Ai is uphill, and let T be a 
shortest steady-state schedule for wr. Suppose first that 
Ai-, is downhill in 7T. Notice that, by definition 

LF(i, i - 1) = SF,d(Ai-1) - SF,d(Ai) 

T(Ai-1, t) -T(Ai, t). 

On the other hand, 5 + 2E + pi is a lowerbound on T(Ai, 
t + 1) - T(Ai, t). Thus 

L(TF,d) = SF,d(Ai-1) + 5 + 2E +Pi - SF,d(Ai) 

S T(Ai, t + 1) - T(A , t), 

as required. 

Next, suppose that both Ai and Ai-, are uphill in 7T. 

Then, 

T(Ai, t + 1) - T(Ai_1, t + 1) 

6 + 2E +Pi = SF,d(Ai, t + 1) - SF,d(Ai-,, t). 

Now consider the first point after T(Ai, t), say , at which 
the robot reaches Mi-1 after travelling trajectory (Mi, 
Mi-1). By definition of LF(i, i - 1), 

T- T(A , t) SF,d(Ai1, t) - SF,d(Ai, t), 

because the permutation ir', obtained by switching the sta- 
tus of Ai-' from uphill to downhill in iT, admits a shortest 
schedule T', such that T'(Ai, t) = T(Ai, t) and T'(Ai-1, t) 
= T, as implied by the algorithm shown in Figure 5. Com- 
bining the latter inequalities one derives that 

L(7r) = T(A , t + 1) - T(A1, t) 

> T(A1, t + 1) - T(Ai-1, t + 1) + T- T(A , t) 

> SF,d(Ai, t + 1) - SF,d(Ai-1, t) + SF,d(Ai-1, t) 

- SF,d(A , t) 

-L(7rF,d), 

as required. D- 

Combining Lemmas 3 and 4, we obtain the following 
result: 

Theorem 7. The optimization version of the identical parts 
m-machine cyclic scheduling problem can be solved in 
0(m3) time. 

Proof. We claim that the algorithm shown in Figure 6 
correctly solves the problem. 

Observe that the complexity of the algorithm shown in 
Figure 6 is indeed O(m3), since |F| - m, and hence the 
dynamic programming algorithm cannot be called more 
than m times. 

To see that the algorithm is correct, assume first that the 
following property (P) holds before some iteration of Step 
2: (P) if there is a permutation, say ir, with cycle time 
smaller than opt, then all activities in F are downhill in ir 
(notice that property (P) certainly holds before the first 
iteration of Step 2). Under this assumption we are going to 
prove that property (P) is an invariant of the algorithm, 
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i.e., if property (P) holds before some iteration of Step 2, 
then either the algorithm returns an optimal value in the 
subsequent execution of Steps 4-5, or property (P) holds 
again before the next iteration of Step 2. 

Indeed, if the algorithm stops in Step 4, then TFd iS 

optimal by Lemma 1. Suppose now that it stops in Step 5, 
and (by contradiction) that there exists a permutation g- 

with cycle time L(XT) < opt. Let S, be any schedule for iT, 

and let Aj be the last downhill activity in wT. In view of 
property (P), all activities in F are downhill in wr. Hence, by 
Definition 14 and by definition of SF]j: 

Sr(Aj) - Su(A0) SF,J (A) - SF,j (A O). 

Moreover, 

L(rT) - S,(Aj)-SSr(Ao) + (j + 2)6 + 2E, 

and thus 

L(X) > SFJ(Aj) - SF,J (A0) + (j + 2)6 + 2E. 

Step 3 of the algorithm implies now: 

L(X) > SF,d(Aj) - SF,d(Ao) + (d + 2)6 + 2E. 

Since WF,d has no obstruction, the previous inequality boils 
down to 

L (w[) >_ L (WF,d ), 

which contradicts L(IT) < opt. 

Finally, if the algorithm does not stop in either Step 4 or 
5, then 1TF,d must contain a set of obstructions, denoted by 
I. Setting F -> F U I, property (P) is now directly implied 
by Lemma 4. 

Thus, property (P) is indeed an invariant of the algo- 
rithm, and we conclude that the algorithm is correct (since 
it is finite). L 

5. SUMMARY AND DIRECTIONS FOR FUTURE 
RESEARCH 

Planning and scheduling in modern production environ- 
ments, such as robotic cells, gives rise to a variety of chal- 
lenging decision problems that do not fit well into classical 
models. In this paper, we have studied a throughput rate 
maximization problem in a flowshop-like robotic cell in 
which the material handling system consists of a single 
robot or robot arm. The throughput rate of the cell is 
highly dependent on the interaction between the material 
handling system and the machines processing the parts. 
We have shown that, when there is only one type of parts 
to be produced, the problem can be solved in (strongly) 
polynomial time, even if the number of machines is viewed 
as an input parameter of the problem. This generalizes 
previous results established by Sethi et al. for the three- 
machine case. Interestingly, our analysis makes heavy use 
of seemingly unrelated concepts and techniques investi- 
gated by various authors in connection with the traveling 
salesman problem (although, it should be observed, we 
never actually obtain a TSP formulation of our problem). 

Many interesting related problems are still open. The 
first open problem we mention is the conjecture of Sethi et 
al. that 1-unit cycles are optimal among all possible robot 
move sequences, in the case where there is only one part- 
type to be produced. Other interesting open problems con- 
cern the case where there is more than one part-type. The 
applicability'of the concept of pyramidal permutations to 
such situations seems to be limited for a number of. rea- 
sons. First, there exist problem instances with multiple part 
types in which 1-unit cycles can be shown to be dominated 
(see Hall et al. 1997). Second, even if we restrict the anal- 
ysis to 1-unit cycles, it is not clear whether there always 
exists an optimal permutation that is pyramidal. Finally, an 
NP-hardness result of Hall et al. (1995) (mentioned in the 
introduction) establishes that computing the optimal part 
input sequence in a three machine robotic cell is NP-hard 
for the downhill permutation, and thus for pyramidal per- 
mutations in general. We also notice that the complexity of 
the multiple parts problem remains open if either the 
number of parts or the number of part types is fixed. This 
question is briefly addressed in Hall et al. (1995). As a 
matter of fact, to the best of our knowledge, the question 
appears to be open, even for ordinary three-machine flow- 
shops (without robots). Related issues have been recently 
investigated by Agnetis (1989), Hochbaum and Shamir 
(1991), Granot et al. (1993), etc. 

ACKNOWLEDGMENTS 

The authors have benefited from helpful discussions with 
Jaap Geerdink and Olaf Flippo. They are also grateful to 
the Associate Editor and the reviewers of this paper for 
their helpful comments. The first author was partially sup- 
ported in the course of this research by AFOSR (grant 
F49620-93-1-0041) and ONR (grants N00014-92-J1375 and 
N00014-92-4083). 

REFERENCES 

AGNETIS, A. 1989. No-Wait Flow Shop Scheduling With Large 
Lot Size. Rap. 16.89. Universita Degli Studi di Roma La 
Sapienza, Italy. 

AGNETIS, A., M. LUCERTINI, AND F. NICOLO. 1993. Flow Man- 
agement in Flexible Manufacturing Cells With Pipeline 
Operations. Mgmt. Sci. 39, 3, 294-306. 

ASFAHL, C. R. 1985. Robots and Manufacturing Automation. 
John Wiley & Sons, New York, NY. 

BLAZEWICZ, J., H. A. EISELT, G. FINKE, G. LAPORTE, AND J. 
WEGLARZ. 1991. Scheduling Tasks and Vehicles in a Flex- 
ible Manufacturing System. International J. Flexible Man- 
ufacturing Systems, 4, 5-16. 

COHEN, G., D. DUBOIS, J. P. QUADRAT, AND M. VIoT. 1985. A 
Linear System Theoretic Review of Discrete-event Pro- 
cesses and Its Use for Performance Evaluation in Manu- 
facturing. IEEE Trans. Automat. Control, AC 30, 3, 
210-220. 

GILMORE, P. C., E. L. LAWLER, AND D. B. SHMOYS. 1985. Well 
Solved Special Cases. In The Traveling Salesman Problem: 
A Guided Tour of Combinatorial Optimization. Lawler, 



CRAMA AND VAN DE KLUNDERT / 965 

Lenstra, Rinnooy Kan, and Shmoys (eds.), Wiley- 
Interscience Series in Discrete Mathematics. John Wiley & 
Sons, Chichester, New York, Brisbane, Toronto, Singapore. 

GRANOT, F., J. SKORIN-KAPov, AND A. TAMIR. 1993. Using 
Quadratic Programming to Solve High Multiplicity Schedul- 
ing Problems on Parallel Machines. Working Paper. 

HALL, N. G., H. KAMOUN, AND C. SRISKANDARAJAH. 1997. 
Scheduling in Robotic Cells: Classification, Two and 
Three Machine Cells. Opns. Res. 45, 3, 421-439. 

HALL, N. G., H. KAMOUN, AND C. SRISKANDARAJAH. 1995. 
Scheduling in Robotic Cells: Complexity and Steady 
State Analysis. Working Paper, College of Business, The 
Ohio State University. 

HALL, N. G., C. N. PoTIS, AND C. SRISKANDARAJAH. 1994. 
Parallel Machine Scheduling with a Common Server. 
Working Paper, College of Business, The Ohio State 
University. 

HOCHBAUM, D. S. AND R. SHAMIR. 1991. Strongly Polynomial 
Algorithms for the High Multiplicity Scheduling Prob- 
lem. Opns. Res. 39, 4, 648-653. 

JENG, W. D., J. T. LIN, AND U. P. WEN. 1993. Algorithms for 
Sequencing Robot Activities in a Robot-Centered 
Parallel-processor Workcell. Comput. Oper. Res. 20, 2, 
185-197. 

KARABATI, S. AND P. KoUVELIS. 1996. Cyclic Scheduling in 
Flow Lines: Modeling Observations, Effective Heuristics 
and a Cycle Time Minimization Procedure. Naval Re- 
search Logistics 43, 211-231. 

KARP, R. M. 1978. A Characterization of the Minimum Cycle 
Mean in a Digraph. Discrete Math. 23, 309-311. 

KING, R. E., T. J. HODGSON, AND F. W. CHAFEE. 1993. Robot 
Task Scheduling in a Flexible Manufacturing Cell. IIE 
Trans. 25, 2, 80-87. 

KISE, H. 1991. On an Automated Two-Machine Flowshop 
Scheduling Problem With Infinite Buffer. J. Opns. Res. 
Soc. Japan, 34, 3, 354-361. 

KISE, H., T. SHIOYAMA, AND T. IBARAKI. 1991. Automated Two 
Machine Flowshop Scheduling: A Solvable Case. IIE 
Trans. 23, 1, 10-16. 

MCCORMICK, S. T., M. L. PINEDO, S. SHENKER, AND B. WOLF. 

1989. Sequencing in an Assembly Line with Blocking to 
Minimize Cycle Time. Opns. Res. 37, 6, 925-935. 

SETHI, S. P., C. SRISKANDARAJAH, G. SORGER, J. BLAZEWICZ, 

AND W. KUBIAK. 1992. Sequencing of Parts and Robot 
Moves in a Robotic Cell. Intemat. J. Flexible Manufactur- 
ing Systems, 4, 331-358. 

SRISKANDARAJAH, C., N. G. HALL, H. KAMOUN, AND H. WAN. 
1995. Scheduling Large Robotic Cells. University of To- 
ronto. Working Paper. 

STECKE, K. E. 1983. Formulation and Solution of Nonlinear 
Integer Production Planning Problems for Flexible Man- 
ufacturing Systems. Mgmt. Sci. 29, 3, 273-288. 

VAN DE KLUNDERT, J. J. 1996. Scheduling Problems in Auto- 
mated Manufacturing. Ph.D. Thesis, Maastricht Univer- 
sity, The Netherlands. 


	Article Contents
	p. 952
	p. 953
	p. 954
	p. 955
	p. 956
	p. 957
	p. 958
	p. 959
	p. 960
	p. 961
	p. 962
	p. 963
	p. 964
	p. 965

	Issue Table of Contents
	Operations Research, Vol. 45, No. 6 (Nov. - Dec., 1997), pp. 789-999
	Volume Information [pp. 990-999]
	Front Matter
	In This Issue
	OR Practice
	A Tire Production Scheduling System for Bridgestone/Firestone Off-The-Road [pp. 789-796]

	OR Chronicle
	Modeling in Performance-Enhancing Processes [pp. 797-804]

	Improved Fashion Buying with Bayesian Updates [pp. 805-819]
	Balancing Retailer Inventories [pp. 820-830]
	A Branch-And-Price Algorithm for the Generalized Assignment Problem [pp. 831-841]
	A New and Fast Approach to Very Large Scale Integrated Sequential Circuit Test Generation [pp. 842-856]
	Designing a Zoned Automated Guided Vehicle System with Multiple Vehicles and Multiple Load Capacity [pp. 857-873]
	Scheduling Semiconductor Burn-In Operations to Minimize Total Flowtime [pp. 874-885]
	A Differential Game Theoretic Model for Duopolistic Competition on Design Quality [pp. 886-893]
	Cyclic Scheduling in a Stochastic Environment [pp. 894-903]
	An Inventory Problem with Two Randomly Available Suppliers [pp. 904-918]
	Dynamic Scheduling Rules for a Multiproduct Make-To-Stock Queue [pp. 919-930]
	Optimality of (s, S) Policies in Inventory Models with Markovian Demand [pp. 931-939]
	98%-Effective Lot-Sizing for Assembly Inventory Systems with Backlogging [pp. 940-951]
	Cyclic Scheduling of Identical Parts in a Robotic Cell [pp. 952-965]
	Equilibrium Threshold Strategies: The Case of Queues with Priorities [pp. 966-973]
	Lot Sizing with Randomly Graded Yields [pp. 974-986]
	Back Matter [pp. 987-989]





