

Robotic flowshop scheduling is strongly NP-complete

Citation for published version (APA):

Crama, Y., & van de Klundert, J. (1997). Robotic flowshop scheduling is strongly NP-complete. (METEOR
research memorandum; No. 019). Maastricht: METEOR, Maastricht University School of Business and
Economics.

Document status and date:
Published: 01/01/1997

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:

www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 04 Dec. 2019

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Maastricht University Research Portal

https://core.ac.uk/display/231370538?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://cris.maastrichtuniversity.nl/portal/en/publications/robotic-flowshop-scheduling-is-strongly-npcomplete(49b1a71b-947d-4b93-982d-f052aa7abdf6).html

Robotic
owshop scheduling

is strongly NP-complete

Yves Crama
1

Joris van de Klundert
2

1Ecole d'Administration des A�aires, Universit�e de Li�ege, 4000 Li�ege, Belgium. Email:

Y.Crama@ulg.ac.be
2Department of Quantitative Economics, Faculty of Economics and Business Ad-

ministration, Maastricht University, 6200 MD Maastricht, The Netherlands. Email:

J.vandeKlundert@ke.unimaas.nl

Abstract

We consider a robotic
owshop model in which a single robot is responsible for the trans-

portation of parts between machines and the amount of time that a part spends on a

machine must be comprised in some prede�ned interval. The objective is to �nd a fea-

sible schedule with minimal cycle time. Many researchers have proposed nonpolynomial

solution methods for a variety of closely related robotic
owshop scheduling problems.

This paper provides a proof that a basic version of this problem is strongly NP-Complete.

1 Introduction

One of the o�springs of the Just In Time production philosophy was the introduction of

so called One-Worker Multiple-Machine lines, in which several machines are encircling a

single operator. Typically, in the highly repetitive manufacturing environments of Just

In Time implementors, all products, or parts, enter the line at an input or input/output

station, and require processing on every machine in a prescribed order that is identical

for all parts. Finally, the parts are delivered at the output (or input/output) station.

The Just In Time emphasis on eliminating inventory demanded that in such a production

cell, inventory may only be kept at the input/output station(s). As the automation of

production advanced, the operator in the center of the cell, who performed materials

handling activities, machine setups and quality inspection, has often been replaced by a

single robot. The resulting production cell, is often referred as robotic
owshop (see Figure

1). Scheduling problems in such cells have become known as robotic
owshop scheduling

R
o

b
o

t
a

r
m

M2

M1 M
3

I O

Figure 1: A 3-machine robotic
owshop

problems, robotic cell scheduling problems, and crane or hoist scheduling problems.

Such a robotic
owshop can be viewed as a small fully automated, and therefore un-

manned, manufacturing system, moreover such small production systems are the building

blocks of larger automated manfacturing systems. As such, an understanding of the prob-

lems arising when planning, scheduling and controling the activities in a robotic
owshop

are a prerequisite for e�ciently operating many large and expensive automated manu-

facturing systems. The volumes required to earn back the high purchasing costs of such

automated manufacturing systems can often only be achieved when producing for a world

wide market, such as the automobile industry or consumer electronics. Typically, these

markets are characterized by heavy cost based competition, which poses high demands

on production e�ciency.

1

The automation of manufacturing in general has led to a variety of problems in which

not only the scheduling of di�erent subsystems (e.g. materials handling systems, tool han-

dling systems,
exible machines), but also the interactions of these subsystems with other

subsystems are crucial for the overall production e�ciency. Scheduling problems in which

the coordination between several automated systems is important have therefore received

considerable attention lately in the operations research and, more speci�cally, scheduling

literature. The recently widely investigated robotic
owshop scheduling problems (see

Asfahl [1985], Crama and Van de Klundert [1994], Hall et al [1994], Sethi et al [1992],

Levner et al [1996], Lei and Wang [1994] and the references therein) form a family of such

scheduling problems, in which the interaction between the materials handling system and

the machines processing the parts determines the production e�ciency.

In the next section we describe a basic scheduling problem that has been widely inves-

tigated and contains many related problems as a special case. Further we brie
y review

in section 2, the literature on this problem. In Section 3 we show that the problem is

strongly NP-Complete, which provides justi�cation for the nonpolynomial and/or approx-

imate solution methods proposed by several authors.

2 Robotic
owshop Scheduling Models

To formalize and make precise our description of robotic
owshops, we introduce �rst some

notation. We consider robotic
owshops in which there is an input station I or M0 and

a separate output station O or Mm+1. Further, there are m machines M1; : : : ;Mm. All

machinesM1; : : : ;Mm can contain only one part at a time, and hence when a machine has

�nished processing a part, the robot must unload it before the machines starts processing

the next one. The robot can only carry one part at a time. Every part becomes available

at M0, and requires processing on every machine Mi; i = 1; : : : ; m, in increasing order

of the the indices of the machines. Finally, each part must be delivered at the output

device Mm+1. There are no bu�ers in the
owshop, which yields that each part that is

between the input and output stations is either at some machine or being carried by the

robot. The robot performs four types of operations. As already mentioned, it unloads

parts from machines. When a part is unloaded, it is carried to the next machine, and

subsequently loaded there. Finally, the robot will be repositioned to be ready to unload

another machine et cetera.

Since we are interested in establishing a NP-Completeness proof, we consider a problem

that is general enough to contain several widely investigated problems as a special case, but

at the same time contains the properties that are widely considered to be characteristic for

robotic
owshop scheduling problems. Further we are of course interested in identifying

the `easiest' problem variation that is already strongly NP-Complete.

As a �rst step, we therefore restrict the analysis to the case where all parts are identical,

i.e. have the same processing requirements. Notice that this eliminates entirely the

part sequencing decisions that constitute a classical
owshop scheduling problem. The

resulting complexity is in the robot sequencing, and its interaction with the machines.

2

A second restriction concerns the robot and the sequence of operations that it executes.

From the problem description given above, it should be clear that the robot executes

subsequences of operations unload machine Mi, carry the part to machine Mi+1, load

Mi+1. After such a subsequence the robot is repositioned to start such a subsequence

again et cetera. This leads to the following de�nition:

De�nition 1 The sequence of robot moves

1. Unload Mi,

2. Travel (with the just unloaded part) from Mi to Mi+1,

3. Load Mi+1

is called (robot) activity Ai for i = 0; : : : ; m.

It is not hard to see that not every sequence of activities constitutes a feasible se-

quence of operations for the robot to execute. For example, the robot cannot perform Ai

immediately after completing Ai, since machine Mi is still empty.

De�nition 2 An in�nite sequence � of activities A0; : : : ; Am is called a feasible robot

move sequence if,

1. the robot never has to unload any empty machine,

2. the robot never has to load any loaded machine.

Since production e�ciency in repetitive manufacturing environments is usually mea-

sured in terms of cycle times or (equivalently) throughput rates, we choose as objective

to minimize cycle time. This yields that we are interested in the performance of the

owshop in a steady state, long run, situation. For practical purposes, it is not feasible to

specify explicitly all the operations that the robot must perform in the long run. Instead,

it is customary to prescribe some `short' sequence of robot moves that the robot executes

repeatedly, and we consequently restrict the analysis to cycle times that can be achieved

when repeatedly executing certain classes of short sequences. In fact, all research pre-

sented in the open literature restricts the analysis to repetitively executing a �nite robot

move sequence. Since each machine must be loaded and unloaded when the
owshop is

in operation, a short robot move sequence that is to be repeatedly executed must contain

each activity at least once. Sequences in which each activity is executed exactly once

form the simplest repeatable sequences:

De�nition 3 A 1-unit cycle is a sequence of activities A0; : : : ; Am in which each activity

occurs exactly once and which constitutes a feasible robot move sequence when executed

repeatedly.

3

Thus, each 1-unit cycle is a permutation of the activities A0; A1; : : : ; Am. Interestingly,

the converse statement is, in general, also true, i.e.

Theorem 1 (Lieberman and Turksen [1981], Sethi et al. [1992]) Every permutation of

the activities A0; A1; : : : ; Am is a 1-unit cycle.

Since we are interested in the long run behavior of the
owshop, we assume in the

remainder that we are free to specify the initial loaded/unloaded state of the machines.

This yields speci�cally that we do not have to assume that the
owshop is initially empty.

To complete the problem statement, we continue the description of the
owshop. We

require that the travel distances for the robot between machines Mi;Mj are given by

means of a symmetric distance matrix D, whose elements �ij satisfy the triangle equality:

�ij + �jk = �ik; for 0 � i < j < k � m+ 1:

This equality models that the robot travels (or rotates) at constant speed along a tra-

jectory. Further, there is a loading and unloading time �i for each machine Mi; i =

0; : : : ; m+ 1.

The processing requirements of the (identical) parts on machine Mi; i = 1; : : : ; m are

given by means of processing windows [Li; Ui]: these requirements mean that each part

must spend at least Li time units and at most Ui time units on machine Mi. Such

processing requirements naturally arise for instance in a manufacturing situation where

the parts have to undergo some chemical treatment that may last neither too short nor

too long (see e.g. Philips and Unger [1988], Lei [1993]). Further, the more common

situation where a part may reside at a machine arbitrary long after it has been processed

can be modelled by setting Ui = 1; i = 1; : : : ; m. (Hall et al [1994], Sethi et al [1992],

Crama and Van de Klundert [1994]). Finally, yet another special case arises when the

parts are required to be unloaded as soon as they �nish processing, see e.g. Levner et al.

[1996]. This can be modelled by setting Li = Ui; i = 1; : : : ; m.

A general problem description is now as follows:

De�nition 4 Robotic Flowshop Scheduling Problem (RFSP):

INPUT : D; �i; [Li; Ui] (i = 0; : : : ; m+ 1), integer Z.

QUESTION : Is there a 1-unit cycle which when repeatedly executed yields a cycle time

of at most Z.

In the remainder of the paper we will show the RFSP to be strongly NP-complete.

Notice that proving NP-completeness for the identical parts case implies NP-completeness

for the case were parts may have di�erent processing requirements. To our knowledge, this

4

is the �rst NP-completeness proof that incorporates a realistic distance matrix. An earlier

completeness proof of Lei and Wang [1989] assumed for example non-zero travel time

between Mi and Mi. That the modelling of the distance matrix is of major importance,

can be concluded from results of Crama and Van de Klundert [1994] and Levner et al.

[1996] who provide polynomial algorithms for the cases where Ui = +1, and Li = Ui

resp., that exploit the triangle equality property of the robot travel times.

To formalize the cycle time minization objective, we de�ne

De�nition 5 A schedule S is de�ned as a speci�cation of starting times for each load and

unload operation. More speci�cally, we denote by S(l; i; t) (S(u; i; t)) the time at which

the t-th loading (unloading) of machine Mi starts in schedule S (i = 0; : : : ; m; t 2 lN):

The reader should notice that it not trivial to �nd a feasible schedule once the order

in which the activities are to be executed is known, since the schedule has to respect the

lower- and upperbounds of the processing windows. Notice also that this yields that not

every 1-unit cycle is feasible for every problem instance. In addition, it is far from trivial

to �nd a schedule with minimum cycle time once the 1-unit cycle is known. For this

reason, researchers have commonly restricted the analysis to the special case where the

robot executes a cyclic schedule, namely a so called 1-periodic schedule.

De�nition 6 A schedule S is 1-periodic if there exists a constant CS such that S(l; i; t+

1)� S(l; i; t) = CS and S(u; i; t+ 1)� S(u; i; t) = CS for all i = 0; : : : ; m+ 1; t 2 lN.

Obviously the cycle time of a 1-periodic schedule S equals CS. Notice that the execution of

a 1-periodic schedule forces the robot to repeat a 1-unit cycle, to be called �(S). Without

loss of generality, assume that the 1-unit cycle start with activity A0. Then, S is feasible

if the following relations are satis�ed (Lei [1993]):

If Ai�1 precedes Ai in �(S), then

S(u; i; t)� S(l; i; t)� �i � Li; (1)

S(u; i; t)� S(l; i; t)� �i � Ui: (2)

On the other hand, if Ai precedes Ai�1 in �(S), then

S(u; i; t) + CS � S(l; i; t)� �i � Li; (3)

S(u; i; t) + CS � S(l; i; t)� �i � Ui: (4)

5

The robot must be allowed enough time to perform each activity:

S(u; i; t) + �i + �i;i+1 � S(l; i+ 1; t): (5)

Furthermore, if Ak is the activity succeeding Aj in �(S) then

S(l; j + 1; t) + �j+1 + �j+1;k � S(u; k; t); (6)

and, if Aj is the last activity in �(S), and Ak the �rst,

S(l; j + 1; t) + �j+1 + �j+1;k � S(u; k; t) + CS: (7)

As Lei [1993] observed, the optimal cycle time can be computed in polynomial time

once � is known, since minimizing CS subject to (1) � (7) yields a linear programming

problem. Now, for each �0, let C�0 be the minimum long run cycle time attainable by a

schedule S satisfying (1)�(7) such that �(S) = �0. Then, RFSP boils down to determining

whether there is a 1-unit cycle � for which C� � Z.

We �nish this section by reviewing the literature in which this problem and closely

related ones are addressed. The problem was introduced by Philips and Unger [1976].

They formulate the problem as an integer linear program, and solve some instances using

standard software. Lieberman and Turksen [1981] formulate several related problems,

e.g. problems in which there is more than one robot or problems in which the cell is not

restricted to be a
owshop. Song et al. [1993] propose heuristics to �nd the optimal k-unit

feasible robot move sequence for the no-wait version of this problem. In Lei [1993], the

problem of minimizing the cycle time for a given permutation of the activities is shown to

be solvable in O(m2 logm logB), where B depends linearly on the input parameters. Lei

and Wang [1994], Armstrong, Lei and Gu [1994] and Hanen and Munier [1994] discuss

branch & bound procedures for RFSI and alike. In Lei, Armstrong and Gu [1993], and in

Lei and Wang [1991], heuristic procedures for a similar problem with multiple robots are

given. For a more general overview of materials handling related scheduling problems in

robotic cells we refer to Crama [1995] and van de Klundert [1996].

3 The NP-Completeness proof

Theorem 2 RFSP is strongly NP-Complete.

Proof. Membership in NP follows from (1) � (7) (see e.g. Lei [1993]). We show its

completeness by giving a reduction from the Bin Packing Problem to RFSP.

6

Bin Packing :

INPUT : Finite set V = fv1; : : : ; vqg of items, a size s(vi) 2 ZZ
+ for each vi; i = 1; : : : ; q,

positive integer K � q and a positive integer B.

QUESTION : Is there a partition of V into disjoint sets V1; : : : ; VK such that the sum of

the sizes of the items in each Vi is B or less?

Consider an instance of the Bin Packing problem and assume without loss of generality

that s(vi) � B for i = 1; : : : ; q. We construct an instance of RFSP as follows. There are

m = 2q + 1 + 2K machines. The processing windows of the machines M1; : : : ;MK and

machines M2q+K+2; : : : ;M2q+2K are [(4q + 2K + 3)B; (4q + 2K + 3)B]. The processing

window of M2q+2K+1 is [(4q + 2K + 2)B; (4q + 2K + 2)B]: The windows of the machines

MK+2i+1; i = 0; : : : ; q are [0;+1]: Finally the windows of the machinesMK+2i; i = 1; : : : ; q

are [s(vi); s(vi)]: The loading and unloading times �i are all equal to 0. The travel time

between two adjacent machines equals B.

The following claim will be useful in the remainder of the proof :

Claim 1 For all 0 � i < K, if Ai precedes Ai+1 then activities Aj; j � 2q + K + i + 2

cannot be performed between the execution of Ai and Ai+1.

Proof. The processing window of machine Mi+1 is [(4q+2K+3)B; (4q+2K+3)B], and

hence (4q+2K+3)B time units after loading the machine it must be unloaded. To perform

an activity with index at least 2q+K+ i+2 the robot must travel to machines with index

at least 2q+K + i+3. Travelling to machine with index at least 2q+K + i+3 and back

between the execution of Ai and Ai+1, requires at least 2�(2q+K+2)B > (4q+2K+3)B

time, causing the schedule to be infeasible.

Claim 2 There is a 1-periodic schedule with cycle time (4q+2K+4)KB+(4q+3K+4)B

if and only if the bin packing instance is a yes instance.

Proof. To prove the claim, we �rst show that the activities

A0; : : : ; AK; A2q+K+2; : : : ; A2q+2K+1

must be in some speci�c order in every permutation that denotes a solution with the

desired cycle time. Without loss of generality we may assume A0 to be the �rst activity

in the permutation. We claim activities A0 to AK are in order of their index in every

feasible solution. Suppose not: let i 2 f1; : : : ; K � 1g be the smallest index for which

Ai+1 precedes Ai (notice that i 6= 0). We consider two cases :

7

1. A2q+2K+1 is scheduled before Ai. Let Aj; j � i be the activity such that A2q+2K+1

takes place between Aj�1 and Aj. It follows from the Claim 1 that the schedule is

infeasible.

2. A2q+2K+1 is scheduled after Ai. This implies that between the execution of Ai in

some iteration of the schedule and the execution of Ai+1 in the next execution of the

schedule the robot must perform A2q+2K+1 and A0 in that order. It follows again

that the total travel time between Ai and Ai+1 causes the schedule to be infeasible.

Thus activities A0; : : : ; AK must indeed be in increasing order of their index. It is also

straightforward to check that A2q+K+1; A2q+K+2; : : : ; A2q+2K+1 must occur in this order in

any feasible schedule (if A2q+K+i+1 is performed before A2q+K+i, then the travel time from

the machine M2q+K+i+1 to M0 and back exceeds the processing window of M2q+2K+i+1).

Let A0 start at time 0. Considering the processing windows of machines M1; : : : ;MK

we can derive that the robot cannot start performing activity Ai; i = 1; : : : ; K before time

(4q+2K+3)iB+iB. More speci�cally, AK cannot be started before (4q+2K+3)KB+KB.

It can also be concluded from Claim 1 that A2q+2K+1 cannot take place before AK since

otherwise the schedule would be infeasible. Combining these two observations leads to

the conclusion that the total cycle time must be at least (4q+2K +3)KB+KB+ (2q+

K + 1)B + B + (2q + 2K + 2)B = (4q + 2K + 4)KB + (4q + 3K + 4)B: Thus we have

proved that this quantity (see Claim 2) is a lowerbound on the cycle time.

Claim 1 implies that A2q+K+1+i cannot precede Ai in any solution, for i = 1; : : : ; K.

We are now going to show that A2q+2K must precede AK in every schedule having the

desired cycle time. First of all, observe that A2q+2K+1 cannot precede AK . Hence if

A2q+2K is scheduled after AK , it is either scheduled between AK and A2q+2K+1 or after

A2q+2K+1. In the latter case, the schedule was shown above to be infeasible. Thus A2q+2K

is scheduled between AK and A2q+2K+1. Now the total cycle time is at least the sum of

the following time periods :

1. The interval from A0 to the start of AK, execution of AK and travel time to machine

M2q+2K : taking time (4q + 2K + 4)KB +B + (2q + 2K �K)B,

2. perform A2q+2K , and wait or do something else until machineM2q+2K+1 has �nished

processing : B + (4q + 2K + 2)B,

3. Unload M2q+2K+1, bring the part to the output device and travel back to the input

device to start the next execution of A0 : B + (2q + 2K + 3)B.

This would result in a total cycle time of at least (4q+2K +4)KB +B +(2q+2K �

K)B+B+(4q+2K+2)B+B+(2q+2K+3)B > (4q+2K+4)KB+(4q+3K+4)B: Now,

since Claim 1 implies that A2q+2K cannot precede AK�1, we know that activities AK�1; AK

and A2q+2K are in the order AK�1; A2q+2K; AK . It is easy to check that A2q+2K�1 cannot

be scheduled between AK�1 and AK too. Moreover, since A2q+2K�1 cannot be scheduled

before AK�2, as results from Claim 1, and cannot be scheduled after A2q+2K , it must

be scheduled between AK�2 and AK�1. An inductive argument then establishes that

8

A2q+2K�i takes place between AK�i�1 and AK�i. Hence we conclude that in any schedule

that achieves the desired cycle time, the activities A0; : : : ; AK; A2q+2K+1; : : : ; A2q+2K+1

must be performed in the order

A0; A2q+K+1; A1; A2q+K+2; : : : ; AK ; A2q+2K+1:

The remainder of the proof is now to show how the other activities must be plugged

in, so that a schedule with the desired cycle time is obtained if one exists, and that such

a schedule exists if and only if the bin packing instance is a yes instance.

We make three observations :

1. AK+2i�1 and AK+2i; i = 1; : : : ; q must always occur consecutively in every feasible

permutation, since s(vi) � B.

2. All the trajectories traveled between the end of Ai and the start of Ai+1; i =

0; : : : ; K � 1, can be traveled only twice, since otherwise the processing window

of Mi+1 is violated. This implies that we cannot schedule any activities between

A2q+K+i and Ai for i = 1; : : : ; K.

3. None of the activities Ai with index K + 1 � i � K + 2q can be scheduled after

A2q+2K+1 since otherwise the cycle time will be too large.

Together, these three observations imply that we must schedule K + 1 sets of pairs

of consecutive activities between Ai and AK+2q+i+1, for i = 0; : : : ; K: The total travel

time between loading Mi+1 in Ai and unloading Mi+1 in Ai+1; i = 0; : : : ; K � 1 amounts

(4q + 2K + 2)B. In view of the processing windows, this leaves us B time to perform

pairs of activities AK+2i+1; AK+2i+2. Between any such pair of activities the robot must

wait s(vi+1) time. Furthermore, we cannot schedule any activities after the execution of

AK, because of the processing window of M2q+2K+1. Thus, a 1-periodic schedule with the

desired cycle time exists if and only if the numbers s(vi) can be partitioned into K sets

each having weight no more than B. This proves Claim 2.

Instead of focusing directly on schedules, we have in this paper attempted to make

clear the distinction between 1-unit cycles and 1-periodic schedules. Notice now that, in

the instances created in the reduction, only 1-periodic schedules can lead to cycle times

equal to the lowerbound speci�ed in Claim 2, which is a requirement for a yes-instance.

We conclude that not only the problem of �nding the optimal 1-periodic schedule, but

even our more general statement of RFSP is strongly NP-complete.

In conclusion, it is worth mentioning that the minimum cycle time attainable by a

1-unit cycle can be strictly larger than the minimum cycle time attainable by any robot

move sequence (Lei [1995]). Very little is known however about the cycle times of non

1-unit cycles, and the reduction in cycle time that can be attained through executing

9

more complex robot move sequences.

Acknowledgements. The �rst author gratefully acknowledges partial support by the

O�ce of Naval Research (grants N00014-92-J1375 and N00014-92-J4083) and by NATO

(grant CRG 931531).

10

References

C.R. Asfahl, Robots and Manufacturing Automation, John Wiley and Sons, New York,

1985.

Y. Crama, Combinatorial models for production scheduling in automated manufacturing

systems, 14th European Conference on Operational Research, Semi-plenary Papers (1995)

237-259. To appear in European Journal of Operational Research.

Y. Crama and J. van de Klundert, Cyclic scheduling of identical parts in a robotic cell,

1994, to appear in Operations Research.

N.G. Hall, H. Kamoun and C. Sriskandarajah, Scheduling in robotic cells: Classi�cation,

two and three machine cells, 1993, to appear in Operations Research.

J. van de Klundert, Scheduling Problems in Automated Manufacturing, Doctoral Disser-

tation, Maastricht University, 1996.

L. Lei, Determining the optimal starting times in a cyclic schedule with a given route,

Computers and Operations Research, Vol. 20, No. 8, (1993) 807-816.

L. Lei, 1995, private communication.

L. Lei and T.J. Wang, A proof : The cyclic hoist scheduling problem is NP-Complete.

Working Paper 89-16, Graduate School of Management, Rutgers University, 1989.

L. Lei and T.J. Wang, Determining optimal cyclic hoist schedules in a single-hoist elec-

troplating line, IIE Transactions Vol. 26, No. 2 (1994) 25-33.

E. Levner, V.B. Kats, and V.E. Levit, An improved algorithm for a cyclic robotic schedul-

ing problem. Proceedings of the international workshop on intelligent scheduling of robots

and
exible manufacturing systems, Center for Technological Education Holon, Israel,

(1996) 129-141.

R.W. Lieberman and I.B. Turksen, Crane scheduling problems, AIIE Transactions 13

(1981) 304-311.

L.W. Philips and P.S. Unger, Mathematical programming solution of a hoist scheduling

program, AIIE Transactions, Vol. 8, No. 2, (1976) pp. 219-225.

S.P. Sethi, C. Sriskandarajah, G. Sorger, J. Blazewicz and W. Kubiak, Sequencing of parts

and robot moves in a robotic cell, The International Journal of Flexible Manufacturing

Systems 4 (1992) 331-358.

11

12

