9,237 research outputs found

    Observable Graphs

    Full text link
    An edge-colored directed graph is \emph{observable} if an agent that moves along its edges is able to determine his position in the graph after a sufficiently long observation of the edge colors. When the agent is able to determine his position only from time to time, the graph is said to be \emph{partly observable}. Observability in graphs is desirable in situations where autonomous agents are moving on a network and one wants to localize them (or the agent wants to localize himself) with limited information. In this paper, we completely characterize observable and partly observable graphs and show how these concepts relate to observable discrete event systems and to local automata. Based on these characterizations, we provide polynomial time algorithms to decide observability, to decide partial observability, and to compute the minimal number of observations necessary for finding the position of an agent. In particular we prove that in the worst case this minimal number of observations increases quadratically with the number of nodes in the graph. From this it follows that it may be necessary for an agent to pass through the same node several times before he is finally able to determine his position in the graph. We then consider the more difficult question of assigning colors to a graph so as to make it observable and we prove that two different versions of this problem are NP-complete.Comment: 15 pages, 8 figure

    Fractional colorings of cubic graphs with large girth

    Get PDF
    We show that every (sub)cubic n-vertex graph with sufficiently large girth has fractional chromatic number at most 2.2978 which implies that it contains an independent set of size at least 0.4352n. Our bound on the independence number is valid to random cubic graphs as well as it improves existing lower bounds on the maximum cut in cubic graphs with large girth

    Mixing Times of Markov Chains on Degree Constrained Orientations of Planar Graphs

    Full text link
    We study Markov chains for α\alpha-orientations of plane graphs, these are orientations where the outdegree of each vertex is prescribed by the value of a given function α\alpha. The set of α\alpha-orientations of a plane graph has a natural distributive lattice structure. The moves of the up-down Markov chain on this distributive lattice corresponds to reversals of directed facial cycles in the α\alpha-orientation. We have a positive and several negative results regarding the mixing time of such Markov chains. A 2-orientation of a plane quadrangulation is an orientation where every inner vertex has outdegree 2. We show that there is a class of plane quadrangulations such that the up-down Markov chain on the 2-orientations of these quadrangulations is slowly mixing. On the other hand the chain is rapidly mixing on 2-orientations of quadrangulations with maximum degree at most 4. Regarding examples for slow mixing we also revisit the case of 3-orientations of triangulations which has been studied before by Miracle et al.. Our examples for slow mixing are simpler and have a smaller maximum degree, Finally we present the first example of a function α\alpha and a class of plane triangulations of constant maximum degree such that the up-down Markov chain on the α\alpha-orientations of these graphs is slowly mixing

    Proper Hamiltonian Cycles in Edge-Colored Multigraphs

    Get PDF
    A cc-edge-colored multigraph has each edge colored with one of the cc available colors and no two parallel edges have the same color. A proper Hamiltonian cycle is a cycle containing all the vertices of the multigraph such that no two adjacent edges have the same color. In this work we establish sufficient conditions for a multigraph to have a proper Hamiltonian cycle, depending on several parameters such as the number of edges and the rainbow degree.Comment: 13 page

    Long rainbow cycles in proper edge-colorings of complete graphs

    Get PDF
    We show that any properly edge-colored Kn contains a rainbow cycle with at least (4=7 − o(1))n edges. This improves the lower bound of n=2 − 1 proved in [1]

    Graphs Identified by Logics with Counting

    Full text link
    We classify graphs and, more generally, finite relational structures that are identified by C2, that is, two-variable first-order logic with counting. Using this classification, we show that it can be decided in almost linear time whether a structure is identified by C2. Our classification implies that for every graph identified by this logic, all vertex-colored versions of it are also identified. A similar statement is true for finite relational structures. We provide constructions that solve the inversion problem for finite structures in linear time. This problem has previously been shown to be polynomial time solvable by Martin Otto. For graphs, we conclude that every C2-equivalence class contains a graph whose orbits are exactly the classes of the C2-partition of its vertex set and which has a single automorphism witnessing this fact. For general k, we show that such statements are not true by providing examples of graphs of size linear in k which are identified by C3 but for which the orbit partition is strictly finer than the Ck-partition. We also provide identified graphs which have vertex-colored versions that are not identified by Ck.Comment: 33 pages, 8 Figure
    corecore