Long rainbow cycles in proper edge-colorings of complete graphs *

András Gyárfás, Miklós Ruszinkó ${ }^{\dagger}$

Computer and Automation Research Institute
Hungarian Academy of Sciences
Budapest, P.O. Box 63
Budapest, Hungary, H-1518
gyarfas,ruszinko@sztaki.hu
Gábor N. Sárközy ${ }^{\ddagger}$
Computer Science Department Worcester Polytechnic Institute
Worcester, MA, USA 01609
gsarkozy@cs.wpi.edu and
Computer and Automation Research Institute
Hungarian Academy of Sciences
Budapest, P.O. Box 63
Budapest, Hungary, H-1518
Richard H. Schelp ${ }^{8}$
University of Memphis
Department of Mathematical Sciences
Memphis, TN 38152, USA
rschelp@memphis.edu
Dedicated to the memory of our colleague and friend Dick Schelp.

[^0]
Abstract

We show that any properly edge-colored K_{n} contains a rainbow cycle with at least $(4 / 7-o(1)) n$ edges. This improves the lower bound of $n / 2-1$ proved in [1].

We consider properly edge-colored complete graphs K_{n}, where two edges with the same color cannot be incident to each other, so each color class is a matching. An important and well investigated special case of proper edge-colorings is a factorization where each color class forms a perfect (if n is even) or nearly perfect (if n is odd) matching. A colored subgraph of K_{n} is called rainbow if its edges have different colors.

The size of rainbow subgraphs of maximum degree two, i.e. union of paths and cycles in proper colorings are well investigated. A consequence of Ryser's well-known conjecture ([12] stating that every Latin square has a transversal) would be that for odd n in every factorization of K_{n} there is a rainbow 2 -factor (and for even n a 2factor covering all but one vertices). Although this is not known, there were several results that made advances towards Ryser's conjecture and show the existence of a 2 -factor covering $n-o(n)$ vertices, [4, 10, 13, 14]. Andersen [3] applied the method of [4] to prove that in every proper coloring of K_{n} there is a rainbow subgraph with at least $n-\sqrt{2 n}$ vertices whose components are paths.

Another line of research looked for rainbow Hamiltonian cycles from the assumption that there is an upper bound k on the number of colors in each color class. This problem is mentioned in Erdős, Nesetril and Rödl [5]. Hahn and Thomassen [9] showed that k could grow as fast as $n^{1 / 3}$ and in fact Hahn conjectured (see [9]) that the growth of k could be linear in n. After further improvements [7], Albert, Frieze and Reed [2] proved the Hahn Conjecture by showing that k could be $\lceil c n\rceil$, for any constant $c<1 / 32$ if $n \geq n_{0}(c)$. See also [6] for related results.

Although it is widely believed that in every proper coloring of K_{n} there is a rainbow path and cycle with length almost n (the obstacle to a spanning rainbow path or cycle comes from a special factorization, see [1], [9], [11]), the above mentioned results do not imply such a bound. As far as we know the best lower bounds are $2 n / 3$ for the path ([8]) and $n / 2-1$ for the cycle ([1]). The purpose of this note is the improvement of the latter result to $(1-o(1)) \frac{4 n}{7}$.

Theorem 1. For arbitrary ε, where $1 / 2>\varepsilon>0$, there exists an $n_{0}(\varepsilon)$ such that if $n \geq n_{0}(\varepsilon)$, then in any proper edge-coloring of K_{n} there is a rainbow cycle with length at least $\left(\frac{4}{7}-\varepsilon\right) n$.

Proof: The vertex-set and the edge-set of a graph G are denoted by $V(G)$ and $E(G)$. C_{l} is the cycle with l vertices and P_{l} is the path with l vertices.

Fix ε, such that $1 / 2>\varepsilon>0$ and choose constants $d=d(\varepsilon)$ and $n_{0}=n_{0}(\varepsilon)$ in the following way:

$$
\begin{equation*}
d=d(\varepsilon)=\left(\frac{48}{7 \varepsilon}\right)^{2}, n_{0}=n_{0}(\varepsilon)=\frac{8(d+1)}{\varepsilon} \tag{1}
\end{equation*}
$$

Assume that $n \geq n_{0}$. Let us take an arbitrary proper edge-coloring of K_{n} and let $C_{t}=\left\{v_{1}, \ldots, v_{t}\right\}$ be a rainbow cycle with t edges such that t is maximum. We will show that

$$
t \geq\left(\frac{4}{7}-\varepsilon\right) n
$$

During the proof we will try to increase the length of C_{t} using rainbow "detours". More precisely a segment of the cycle C_{t} will be deleted and replaced by a new part. If the vertices added to the cycle are greater in number than those removed, a longer rainbow cycle is obtained contradicting the fact that C_{t} has maximum length. The colors already used on C_{t} will be called old colors and the set containing them will be denoted by $O L D$. The colors not used yet are called new colors and the set containing them will be denoted by $N E W$, i.e., we start with $O L D=\left\{\right.$ colors used along $\left.C_{t}\right\}$ and $N E W$ consists of the remaining colors. These sets of colors, however, may vary during the proof according to the detours along which we will try to enlarge C_{t}. For $x \in V, R \subseteq V$ we denote by $\operatorname{deg}_{N E W}(x, R)$ the number of edges adjacent to x and $u \in R$ having color from $N E W$.

To make the presentation more transparent, we avoid using floors and ceilings. Since the obtained result is probably far from the best possible these "inaccuracies" do not have any impact.

Case 1: There exists a pair of vertices y_{1} and y_{2} in C_{t} which are within distance d along the cycle and which are adjacent to two different vertices, say x_{1} and x_{2}, in two different new colors in the remaining part of the vertex set $R=V \backslash V\left(C_{t}\right)$. Here we will try to delete this short segment of C_{t} between y_{1} and y_{2} and replace it with a longer rainbow path, as outlined above. Move the two new colors used on the edges $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ from $N E W$ to $O L D$. Notice, that no vertex $x \in R$ is connected to two consecutive v_{i}, v_{i+1} vertices along C_{t} in new colors, since otherwise we obtain a longer cycle by substituting the edge $\left(v_{i}, v_{i+1}\right)$ by the path $P=\left\{v_{i}, x, v_{i+1}\right\}$. Therefore, for an arbitrary vertex $x \in R$

$$
\begin{equation*}
\operatorname{deg}_{N E W}(x, R) \geq n-t-1-t / 2-2=n-3 t / 2-3 . \tag{2}
\end{equation*}
$$

Next we find a rainbow path P_{d} with d vertices in R in new colors starting at x_{1} and avoiding x_{2}. This is always possible assuming

$$
\operatorname{deg}_{N E W}(x, R)-2 d \geq n-3 t / 2-3-2 d \geq 0, \quad \text { i.e., } \quad t \leq 2 n / 3-4 d / 3-2 .
$$

Let x_{1}^{\prime} be the other endpoint of P_{d} and set $R^{\prime}=R \backslash\left(V\left(P_{d}\right) \backslash x_{1}^{\prime}\right)$. Move the colors along the path P_{d} from $N E W$ to $O L D$, i.e.,

$$
|N E W| \geq n-t-2-d
$$

Similar to (2), for an arbitrary vertex $x \in R^{\prime}$

$$
\begin{equation*}
\operatorname{deg}_{N E W}\left(x, R^{\prime}\right) \geq n-3 t / 2-3-(2 d-1)=n-3 t / 2-2 d-2, \tag{3}
\end{equation*}
$$

where we have to subtract $d-1$ colors used in P_{d} and d other colors (possibly) going to vertices in P_{d}. Let $N_{N E W}\left(x, R^{\prime}\right)$ be the set of those vertices in R^{\prime} which are adjacent to x in new colors. Set

$$
\Gamma_{1}=N_{N E W}\left(x_{1}^{\prime}, R^{\prime}\right), \Gamma_{2}=N_{N E W}\left(x_{2}, R^{\prime}\right) .
$$

If there exists an $z \in \Gamma_{1} \cap \Gamma_{2}$, then we could substitute the path $\left\{y_{1}, \ldots, y_{2}\right\}$ of length $\leq d$ along the cycle by the path $\left\{y_{1}, x_{1}, P_{d}, x_{1}^{\prime}, z, x_{2}, y_{2}\right\}$ of length $>d$ and obtain a longer rainbow cycle, a contradiction. So assume $\Gamma_{1} \cap \Gamma_{2}=\emptyset$. Then, since $\left|R^{\prime}\right|=n-t-d+1$, for

$$
S=R^{\prime} \backslash\left(\Gamma_{1} \cup \Gamma_{2}\right),
$$

by (3) we have

$$
|S| \leq n-t-d+1-2(n-3 t / 2-2-2 d)=2 t-n+3 d+5 .
$$

Without loss of generality we may assume that $\left|\Gamma_{1}\right| \geq\left|\Gamma_{2}\right|$ and then, clearly,

$$
\frac{n-t-d+1}{2} \leq \frac{\left|R^{\prime}\right|}{2} \leq\left|\Gamma_{1} \cup S\right|,
$$

and by (3)
$\left|\Gamma_{1} \cup S\right| \leq\left|R^{\prime}\right|-(n-3 t / 2-2-2 d)=n-t-d+1-(n-3 t / 2-2-2 d)=\frac{t}{2}+d+3$.
Notice, that if $x \in \Gamma_{1}$ is adjacent to a vertex $z \in \Gamma_{2}$ in a new color then $\left(x_{1}^{\prime}, x\right)$ and $\left(x_{2}, z\right)$ must have the same color. Otherwise we could substitute the path of length $\leq d\left\{y_{1}, \ldots, y_{2}\right\}$ in the cycle by the path $\left\{y_{1}, x_{1}, P_{d}, x_{1}^{\prime}, x, z, x_{2}, y_{2}\right\}$ of length $>d$ and obtain a longer rainbow cycle, a contradiction. And since the coloring is proper, every $x \in \Gamma_{1}$ is adjacent to at most one vertex $z \in \Gamma_{2}$ in a new color. Therefore, every vertex $x \in \Gamma_{1}$ has all but at most one of its neighbors in new colors in $\Gamma_{1} \cup S$, i.e., by (3) for every $x \in \Gamma_{1}$

$$
d e g_{N E W}\left(x, \Gamma_{1} \cup S\right) \geq n-3 t / 2-2 d-3
$$

If twice this degree is greater than $\left|\Gamma_{1} \cup S\right|+3$, i.e.,

$$
\begin{equation*}
2(n-3 t / 2-2 d-3) \geq \frac{t}{2}+d+6 \geq\left|\Gamma_{1} \cup S\right|+3 \tag{4}
\end{equation*}
$$

then two arbitrary vertices in Γ_{1} can be joined by 3 different paths of length two in new colors. If (4) does not hold, then we have

$$
\begin{equation*}
t>\frac{4 n}{7}-\frac{10 d+24}{7} \tag{5}
\end{equation*}
$$

i.e., the original cycle is sufficiently large. Therefore, we will assume that two arbitrary vertices in Γ_{1} can be joined by three paths of length two in new colors.

To finish this case we will try to find two vertices of distance 1,2 or 3 , say v_{i} and $v_{j},|j-i| \leq 3$, along the cycle such that they are adjacent to two different vertices $x_{i}, x_{j} \in \Gamma_{1}$ in two different new colors. If such two edges exist, then one of the 3 existing paths, say P, of length 2 between x_{i} and x_{j} in new colors contains neither the color of the edge $\left(v_{i}, x_{i}\right)$, nor the color of the edge $\left(v_{j}, x_{j}\right)$. Replacing the path of length $\leq 3\left\{v_{i}, \ldots, v_{j}\right\}$ by the path $\left\{v_{i}, x_{i}, P, x_{j}, v_{j}\right\}$ of length four we obtain a longer rainbow cycle, a contradiction.

Notice that every $x \in \Gamma_{1}$ satisfies

$$
\begin{align*}
\operatorname{deg}_{N E W}\left(x, C_{t}\right) & \geq|N E W|-\left|P_{d}\right|-\left(\left|\Gamma_{1} \cup S\right|-1\right)-1 \geq n-t-2 d-4-\left(\left|\Gamma_{1} \cup S\right|-1\right) \geq \\
& \geq n-t-2 d-\left(\frac{t}{2}+d+3\right)-3=n-\frac{3 t}{2}-3 d-6 \tag{6}
\end{align*}
$$

and therefore, for the number of edges in new colors $\left|E_{N E W}\left[\Gamma_{1}, C_{t}\right]\right|$ in the bipartite graph with parts C_{t} and Γ_{1} by (3) and (6) we have

$$
\begin{equation*}
\left|E_{N E W}\left[\Gamma_{1}, C_{t}\right]\right| \geq \operatorname{deg}_{N E W}\left(x_{1}^{\prime}, R^{\prime}\right) \cdot\left(n-\frac{3 t}{2}-3 d-6\right) \tag{7}
\end{equation*}
$$

Next we get an upper bound for the number of these edges with respect to the degrees of the vertices in C_{t}. In order to have this, partition the vertices along C_{t} into consecutive quadruples $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\},\left\{v_{5}, v_{6}, v_{7}, v_{8}\right\}, \ldots$. (If 4 does not divide t then let the last part contain one, two or three vertices.)

Claim 2. If for some i and for some quadruple $\left\{v_{4 i+1}, v_{4 i+2}, v_{4 i+3}, v_{4 i+4}\right\}$ the sum of the degrees

$$
\begin{equation*}
s_{i}=\sum_{j=1}^{4} \operatorname{deg}_{N E W}\left(v_{4 i+j}, \Gamma_{1}\right) \geq\left|\Gamma_{1}\right|+3 \tag{8}
\end{equation*}
$$

then there exist $v_{4 i+k}$ and $v_{4 i+\ell}, 1 \leq k<l \leq 4$, such that they are adjacent to two different vertices x_{i} and x_{j} in Γ_{1} in two different new colors.

Proof. Indeed, if (8) holds then there have to be vertices in Γ_{1} which are covered 2 or 3 times by the four sets in

$$
T_{i}=\bigcup_{j=1}^{4} N_{N E W}\left(v_{4 i+j}, \Gamma_{1}\right)
$$

If $\exists x \in \Gamma_{1}$ which is covered 3 times, then x is connected to 3 vertices out of four consecutive ones in C_{t}. Out of these three vertices two have to be consecutive, contradicting the maximality of C_{t}. If $\nexists x \in \Gamma_{1}$ which is covered 3 times, then there must be (at least) three vertices, say, $x_{1}, x_{2}, x_{3} \in \Gamma_{1}$ which are covered twice by $\cup_{j=1}^{4} N_{N E W}\left(v_{4 i+j}, \Gamma_{1}\right)$. Consider the bipartite graph G_{i} with parts $A_{i}=\left\{v_{4 i+j}: j=1, \ldots, 4\right\}$ and $B=\left\{x_{1}, x_{2}, x_{3}\right\}$ with the edges defined by T_{i}. All vertices in B are of degree 2. A trivial case analysis shows that there always exists a rainbow matching formed by two edges of G_{i}.

So we may assume that for each i, inequality (8) does not hold. But then for the number of new edges $\left|E_{\text {new }}\left[\Gamma_{1}, C_{t}\right]\right|$ between Γ_{1} and C_{t} by Claim 2

$$
\begin{equation*}
\left|E_{\text {new }}\left[\Gamma_{1}, C_{t}\right]\right| \leq \frac{t}{4}\left(\operatorname{deg}_{N E W}\left(x_{1}^{\prime}, R^{\prime}\right)+2\right) \tag{9}
\end{equation*}
$$

holds. Combining estimates $(7,9)$ we get

$$
d e g_{N E W}\left(x_{1}^{\prime}, R^{\prime}\right) \cdot\left(n-\frac{3 t}{2}-3 d-6\right) \leq \frac{t}{4}\left(d e g_{N E W}\left(x_{1}^{\prime}, R^{\prime}\right)+2\right)
$$

which implies (dividing by $\operatorname{deg}_{N E W}\left(x_{1}^{\prime}, R^{\prime}\right)$ and using (3))

$$
\begin{equation*}
t \geq \frac{4 n}{7}-\frac{12 d+24}{7}-\frac{2 t}{7\left(n-\frac{3 t}{2}-2 d-2\right)} \tag{10}
\end{equation*}
$$

Here for the last term we have

$$
\begin{equation*}
\frac{2 t}{7\left(n-\frac{3 t}{2}-2 d-2\right)} \leq \frac{8}{7} \tag{11}
\end{equation*}
$$

Indeed, if (11) does not hold, then we have

$$
\begin{equation*}
t>\frac{4 n}{7}-\frac{8 d+8}{7} \tag{12}
\end{equation*}
$$

i.e. again we have a lower bound similar to (5). Thus otherwise from (10) we get

$$
\begin{equation*}
t \geq \frac{4 n}{7}-\frac{12 d+32}{7} \tag{13}
\end{equation*}
$$

Case 2: Assume that no pair of vertices y_{1}, y_{2} exists within distance d along the cycle that are adjacent in two different new colors to two different vertices, say $x_{1}, x_{2} \in R$. This implies easily that in each interval of length d along the cycle there is at most one vertex x with $\operatorname{deg}_{N E W}(x, R) \geq 3$. Therefore, the number of edges in new colors between C_{t} and R is at most

$$
\frac{t}{d}|R|+2 t \leq \frac{2 t}{d}|R|
$$

since $2 d \leq n / 4 \leq|R|(u \operatorname{sing}(1))$.
Thus, if we denote by B the set of those bad vertices $x \in R$ for which

$$
\operatorname{deg}_{N E W}\left(x, C_{t}\right) \geq \frac{2 t}{\sqrt{d}},
$$

then we have

$$
|B| \frac{2 t}{\sqrt{d}} \leq \frac{2 t}{d}|R| \quad \text { i.e., } \quad|B| \leq \frac{|R|}{\sqrt{d}}
$$

Set $R^{*}=R \backslash B$. We have $\left|R^{*}\right| \geq\left(1-\frac{1}{\sqrt{d}}\right)|R|$. Moreover, R^{*} is almost complete in new colors. For every $x \in R^{*}$ we have:

$$
\begin{gather*}
\operatorname{deg}_{N E W}\left(x, R^{*}\right) \geq|R|-1-\frac{2 t}{\sqrt{d}}-\frac{|R|}{\sqrt{d}} \geq|R|-\frac{3 t}{\sqrt{d}}-\frac{|R|}{\sqrt{d}} \geq \\
\geq|R|\left(1-\frac{10}{\sqrt{d}}\right) \geq\left|R^{*}\right|\left(1-\frac{10}{\sqrt{d}}\right) \tag{14}
\end{gather*}
$$

where the third inequality is equivalent (through $|R|+t=n$) to $t \leq 3 n / 4$. We can assume this, otherwise we have nothing to prove.

Lemma 1. Suppose k, l are given integers with $l<k / 2$ and G is a properly edge colored k-vertex graph with minimum degree at least $k / 2+l$. Then an arbitrary pair of vertices $x_{1}, x_{2} \in V(G)$ can be joined by a rainbow path of length at least $\frac{2 l}{3}$.

Proof. Starting at x_{1}, build a greedy path by extending the current endpoint $y \neq x_{1}$ with an edge $y z$ such that $z \neq x_{2}$ and $y z$ has a color not used on the current path. Assume that at a certain point we have $P=\left\{x_{1}, \ldots, y\right\}$. Call a color new, if it does not appear on P. Set $Q=V(G) \backslash\left(V(P) \cup\left\{x_{2}\right\}\right)$ and $m=k / 2+l-2|P|$. Observe that $\operatorname{deg}_{N E W}(y, Q) \geq m$ and $\operatorname{deg}_{N E W}\left(x_{2}, Q\right) \geq m$. Thus, if

$$
2 m=k+2 l-4|P|>|Q|=k-|P|-1,
$$

i.e., if equivalently $\frac{2 l+1}{3}>|P|$, then $M=N_{\text {new }}(y, Q) \cap N_{\text {new }}\left(x_{2}, Q\right) \neq \emptyset$. Thus with $w \in M$, the path $P^{+}=P w x_{2}$ is a rainbow path from x_{1} to x_{2} so there exists a path P^{*} such that

$$
\left|P^{*}\right|=\left\lfloor\frac{2 l+1}{3}\right\rfloor-1+2 \geq \frac{2 l}{3},
$$

as desired.
Choose G as the subgraph induced by the edges with new colors in R^{*}, set $k=\left|R^{*}\right|$ and notice that using Lemma 1 and (14) we can join an arbitrary pair of vertices in R^{*} by a rainbow path in all new colors of length at least

$$
\left|R^{*}\right|\left(\frac{1}{3}-\frac{20}{3 \sqrt{d}}\right) \geq|R|\left(1-\frac{1}{\sqrt{d}}\right)\left(\frac{1}{3}-\frac{20}{3 \sqrt{d}}\right) \geq|R|\left(\frac{1}{3}-\frac{7}{\sqrt{d}}\right) .
$$

For some ℓ, move the colors of the edges of the path v_{1}, \ldots, v_{l+1} along the cycle from $O L D$ to $N E W$, now $|N E W| \geq n-t-1+\ell$. If

$$
\begin{gather*}
n-t-1+\ell \geq t+|B|+3 \geq t+\frac{|R|}{\sqrt{d}}+3 \text { i.e., } \\
\ell \geq 2 t-n+\frac{|R|}{\sqrt{d}}+4 \tag{15}
\end{gather*}
$$

then v_{1} and v_{l+1} both send at least 3 new colors to R^{*} out of which we can find a rainbow matching of two edges, say, $\left(v_{1}, x_{1}\right),\left(v_{l+1}, x_{2}\right)$, where $x_{1}, x_{2} \in R^{*}$. But if in addition

$$
\begin{equation*}
\ell \leq|R|\left(\frac{1}{3}-\frac{7}{\sqrt{d}}\right) \tag{16}
\end{equation*}
$$

then we could substitute the path $\left\{v_{1}, \ldots, v_{l+1}\right\}$ by the path $\left\{v_{1}, x_{1}, P, x_{2}, v_{l+1}\right\}$ of length $\ell+2$, where P is a path of length ℓ joining x_{1} and x_{2} which must exist by Claim 1, a contradiction. Therefore no ℓ satisfies both (15) and (16), so we may assume

$$
|R|\left(\frac{1}{3}-\frac{7}{\sqrt{d}}\right)<2 t-n+\frac{|R|}{\sqrt{d}}+4
$$

and substituting $|R|$ by $(n-t)$ we conclude that

$$
\begin{gather*}
7 t>4 n+\frac{24 t}{\sqrt{d}}-\frac{24 n}{\sqrt{d}}-12>4 n-\frac{24 n}{\sqrt{d}}-12, \quad \text { i.e., } \\
t>\frac{4 n}{7}-\frac{24 n}{7 \sqrt{d}}-\frac{12}{7} \tag{17}
\end{gather*}
$$

We finish the proof by observing that with our choice of d and n_{0} (see (1)) all the obtained lower bounds on t (namely (5), (12), (13) and (17)) are at least $(4 / 7-\varepsilon) n$.

References

[1] S. Akbari, O. Etesami, H. Manini, M. Mahmoody, On rainbow cycles in edge colored complete graphs, Australasian Journal of Combinatorics, 37 (2007), 3342.
[2] M. Albert, A. Frieze, B. Reed, Multicoloured Hamilton cycles, Electronic Journal of Combinatorics, 2 (1995), \#R10.
[3] L.D. Andersen, Hamilton circuits with many colours in properly edge-colored complete graphs, Math. Scand., 64 (1989), 5-14.
[4] A.E. Brouwer, A.J. de Vries, R.M.A. Wieringa, A lower bound for the length of partial transversals in a Latin square, Nieuw Arch. Wisk., (3) 24 (1978), 330-332.
[5] P. Erdős, J. Nesetril, V. Rödl, Some problems related to partitions of edges of a graph, in Graphs and Other Combinatorial Topics, Teubner, Leipzig (1983), 54-63.
[6] A. Frieze, M. Krivelevich, On rainbow trees and cycles, Electronic Journal of Combinatorics, 15(1) (2008), \#R59.
[7] A. Frieze, B. Reed, Polychromatic Hamilton cycles, Discrete Mathematics, 118 (1993), 69-74.
[8] A. Gyárfás, M. Mhalla, Rainbow and orthogonal paths in factorizations of K_{n}, Journal of Combinatorial Designs, 18(3) (2010), 167-176.
[9] G. Hahn, C. Thomassen, Path and cycle sub-Ramsey numbers and an edgecolouring conjecture, Discrete Mathematics, 62 (1986), 29-33.
[10] P. Hatami, P.W. Shor, A lower bound for the length of a partial transversal in a Latin square, Journal of Combinatorial Theory, Series A, 115 (2008), 1103-1113.
[11] M. Maamoun, H. Meyniel, On a problem of G. Hahn about coloured Hamiltonian paths in $K_{2 n}$, Discrete Mathematics, 51 (1984), 213-214.
[12] H.J. Ryser, Neuere Probleme der Kombinatorik, in: Vorträge über Kombinatorik, pp. 69-91, a collection of papers presented at the Matematischen Forschungsinstitute, Oberwolfach, July 24-29, 1967.
[13] P.W. Shor, A lower bound for the length of a partial transversal in a Latin square, Journal of Combinatorial Theory, Series A, 33 (1982), 1-8.
[14] D.E. Woolbright, An $n \times n$ Latin square has a transversal with at least $n-\sqrt{n}$ distinct symbols, Journal of Combinatorial Theory, Series A, 24 (1978), 235-237.

[^0]: *2000 Mathematics Subject Classification: 05C70, 05C38, 05C15.
 ${ }^{\dagger}$ Research supported in part by OTKA Grant No. K68322.
 ${ }^{\ddagger}$ Research supported in part by OTKA Grant No. K68322, by NSF Grant DMS-0968699 and by a Janos Bolyai Research Scholarship.
 ${ }^{\S}$ Research supported by the FIST (Finite Structures) project, in the framework of the European Community's "Structuring the European Research Area programme".

