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Abstract

We show that any properly edge-colored Kn contains a rainbow cycle with
at least (4/7− o(1))n edges. This improves the lower bound of n/2− 1 proved
in [1].

We consider properly edge-colored complete graphs Kn, where two edges with the
same color cannot be incident to each other, so each color class is a matching. An
important and well investigated special case of proper edge-colorings is a factorization
where each color class forms a perfect (if n is even) or nearly perfect (if n is odd)
matching. A colored subgraph ofKn is called rainbow if its edges have different colors.

The size of rainbow subgraphs of maximum degree two, i.e. union of paths and
cycles in proper colorings are well investigated. A consequence of Ryser’s well-known
conjecture ([12] stating that every Latin square has a transversal) would be that for
odd n in every factorization of Kn there is a rainbow 2-factor (and for even n a 2-
factor covering all but one vertices). Although this is not known, there were several
results that made advances towards Ryser’s conjecture and show the existence of a
2-factor covering n − o(n) vertices, [4, 10, 13, 14]. Andersen [3] applied the method
of [4] to prove that in every proper coloring of Kn there is a rainbow subgraph with
at least n−

√
2n vertices whose components are paths.

Another line of research looked for rainbow Hamiltonian cycles from the assump-
tion that there is an upper bound k on the number of colors in each color class.
This problem is mentioned in Erdős, Nesetril and Rödl [5]. Hahn and Thomassen [9]
showed that k could grow as fast as n1/3 and in fact Hahn conjectured (see [9]) that
the growth of k could be linear in n. After further improvements [7], Albert, Frieze
and Reed [2] proved the Hahn Conjecture by showing that k could be ⌈cn⌉, for any
constant c < 1/32 if n ≥ n0(c). See also [6] for related results.

Although it is widely believed that in every proper coloring ofKn there is a rainbow
path and cycle with length almost n (the obstacle to a spanning rainbow path or cycle
comes from a special factorization, see [1], [9], [11]), the above mentioned results do
not imply such a bound. As far as we know the best lower bounds are 2n/3 for the
path ([8]) and n/2−1 for the cycle ([1]). The purpose of this note is the improvement
of the latter result to (1− o(1))4n

7
.

Theorem 1. For arbitrary ε, where 1/2 > ε > 0, there exists an n0(ε) such that if
n ≥ n0(ε), then in any proper edge-coloring of Kn there is a rainbow cycle with length
at least

(
4
7
− ε

)
n.

Proof: The vertex-set and the edge-set of a graph G are denoted by V (G) and E(G).
Cl is the cycle with l vertices and Pl is the path with l vertices.
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Fix ε, such that 1/2 > ε > 0 and choose constants d = d(ε) and n0 = n0(ε) in the
following way:

d = d(ε) =

(
48

7ε

)2

, n0 = n0(ε) =
8(d+ 1)

ε
. (1)

Assume that n ≥ n0. Let us take an arbitrary proper edge-coloring of Kn and let
Ct = {v1, . . . , vt} be a rainbow cycle with t edges such that t is maximum. We will
show that

t ≥
(
4

7
− ε

)
n.

During the proof we will try to increase the length of Ct using rainbow “detours”.
More precisely a segment of the cycle Ct will be deleted and replaced by a new part.
If the vertices added to the cycle are greater in number than those removed, a longer
rainbow cycle is obtained contradicting the fact that Ct has maximum length. The
colors already used on Ct will be called old colors and the set containing them will be
denoted by OLD. The colors not used yet are called new colors and the set containing
them will be denoted by NEW , i.e., we start with OLD = {colors used along Ct}
and NEW consists of the remaining colors. These sets of colors, however, may vary
during the proof according to the detours along which we will try to enlarge Ct. For
x ∈ V , R ⊆ V we denote by degNEW (x,R) the number of edges adjacent to x and
u ∈ R having color from NEW .

To make the presentation more transparent, we avoid using floors and ceilings.
Since the obtained result is probably far from the best possible these “inaccuracies”
do not have any impact.

Case 1: There exists a pair of vertices y1 and y2 in Ct which are within distance d
along the cycle and which are adjacent to two different vertices, say x1 and x2, in two
different new colors in the remaining part of the vertex set R = V \V (Ct). Here we will
try to delete this short segment of Ct between y1 and y2 and replace it with a longer
rainbow path, as outlined above. Move the two new colors used on the edges (x1, y1)
and (x2, y2) from NEW to OLD. Notice, that no vertex x ∈ R is connected to two
consecutive vi, vi+1 vertices along Ct in new colors, since otherwise we obtain a longer
cycle by substituting the edge (vi, vi+1) by the path P = {vi, x, vi+1}. Therefore, for
an arbitrary vertex x ∈ R

degNEW (x,R) ≥ n− t− 1− t/2− 2 = n− 3t/2− 3. (2)

Next we find a rainbow path Pd with d vertices in R in new colors starting at x1 and
avoiding x2. This is always possible assuming

degNEW (x,R)− 2d ≥ n− 3t/2− 3− 2d ≥ 0, i.e., t ≤ 2n/3− 4d/3− 2.
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Let x′
1 be the other endpoint of Pd and set R′ = R \ (V (Pd) \ x′

1). Move the colors
along the path Pd from NEW to OLD, i.e.,

|NEW | ≥ n− t− 2− d.

Similar to (2), for an arbitrary vertex x ∈ R′

degNEW (x,R′) ≥ n− 3t/2− 3− (2d− 1) = n− 3t/2− 2d− 2, (3)

where we have to subtract d−1 colors used in Pd and d other colors (possibly) going to
vertices in Pd. Let NNEW (x,R′) be the set of those vertices in R′ which are adjacent
to x in new colors. Set

Γ1 = NNEW (x′
1, R

′),Γ2 = NNEW (x2, R
′).

If there exists an z ∈ Γ1 ∩ Γ2, then we could substitute the path {y1, . . . , y2} of
length ≤ d along the cycle by the path {y1, x1, Pd, x

′
1, z, x2, y2} of length > d and

obtain a longer rainbow cycle, a contradiction. So assume Γ1 ∩ Γ2 = ∅. Then, since
|R′| = n− t− d+ 1, for

S = R′ \ (Γ1 ∪ Γ2) ,

by (3) we have

|S| ≤ n− t− d+ 1− 2 (n− 3t/2− 2− 2d) = 2t− n+ 3d+ 5.

Without loss of generality we may assume that |Γ1| ≥ |Γ2| and then, clearly,

n− t− d+ 1

2
≤ |R′|

2
≤ |Γ1 ∪ S|,

and by (3)

|Γ1∪S| ≤ |R′|−(n− 3t/2− 2− 2d) = n− t−d+1−(n− 3t/2− 2− 2d) =
t

2
+d+3.

Notice, that if x ∈ Γ1 is adjacent to a vertex z ∈ Γ2 in a new color then (x′
1, x) and

(x2, z) must have the same color. Otherwise we could substitute the path of length
≤ d {y1, . . . , y2} in the cycle by the path {y1, x1, Pd, x

′
1, x, z, x2, y2} of length > d and

obtain a longer rainbow cycle, a contradiction. And since the coloring is proper, every
x ∈ Γ1 is adjacent to at most one vertex z ∈ Γ2 in a new color. Therefore, every
vertex x ∈ Γ1 has all but at most one of its neighbors in new colors in Γ1 ∪S, i.e., by
(3) for every x ∈ Γ1

degNEW (x,Γ1 ∪ S) ≥ n− 3t/2− 2d− 3.
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If twice this degree is greater than |Γ1 ∪ S|+ 3, i.e.,

2(n− 3t/2− 2d− 3) ≥ t

2
+ d+ 6 ≥ |Γ1 ∪ S|+ 3, (4)

then two arbitrary vertices in Γ1 can be joined by 3 different paths of length two in
new colors. If (4) does not hold, then we have

t >
4n

7
− 10d+ 24

7
, (5)

i.e., the original cycle is sufficiently large. Therefore, we will assume that two arbitrary
vertices in Γ1 can be joined by three paths of length two in new colors.

To finish this case we will try to find two vertices of distance 1, 2 or 3, say vi and
vj, |j − i| ≤ 3, along the cycle such that they are adjacent to two different vertices
xi, xj ∈ Γ1 in two different new colors. If such two edges exist, then one of the 3
existing paths, say P , of length 2 between xi and xj in new colors contains neither
the color of the edge (vi, xi), nor the color of the edge (vj, xj). Replacing the path of
length ≤ 3 {vi, . . . , vj} by the path {vi, xi, P, xj, vj} of length four we obtain a longer
rainbow cycle, a contradiction.

Notice that every x ∈ Γ1 satisfies

degNEW (x,Ct) ≥ |NEW |− |Pd|− (|Γ1∪S|−1)−1 ≥ n− t−2d−4− (|Γ1∪S|−1) ≥

≥ n− t− 2d−
(
t

2
+ d+ 3

)
− 3 = n− 3t

2
− 3d− 6, (6)

and therefore, for the number of edges in new colors |ENEW [Γ1, Ct]| in the bipartite
graph with parts Ct and Γ1 by (3) and (6) we have

|ENEW [Γ1, Ct]| ≥ degNEW (x′
1, R

′) · (n− 3t

2
− 3d− 6). (7)

Next we get an upper bound for the number of these edges with respect to the
degrees of the vertices in Ct. In order to have this, partition the vertices along Ct

into consecutive quadruples {v1, v2, v3, v4}, {v5, v6, v7, v8}, . . . . (If 4 does not divide
t then let the last part contain one, two or three vertices.)

Claim 2. If for some i and for some quadruple {v4i+1, v4i+2, v4i+3, v4i+4} the sum of
the degrees

si =
4∑

j=1

degNEW (v4i+j,Γ1) ≥ |Γ1|+ 3, (8)

then there exist v4i+k and v4i+ℓ, 1 ≤ k < l ≤ 4, such that they are adjacent to two
different vertices xi and xj in Γ1 in two different new colors.
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Proof. Indeed, if (8) holds then there have to be vertices in Γ1 which are covered 2
or 3 times by the four sets in

Ti =
4∪

j=1

NNEW (v4i+j,Γ1).

If ∃x ∈ Γ1 which is covered 3 times, then x is connected to 3 vertices out of
four consecutive ones in Ct. Out of these three vertices two have to be consecu-
tive, contradicting the maximality of Ct. If ̸ ∃x ∈ Γ1 which is covered 3 times,
then there must be (at least) three vertices, say, x1, x2, x3 ∈ Γ1 which are cov-
ered twice by ∪4

j=1NNEW (v4i+j,Γ1). Consider the bipartite graph Gi with parts
Ai = {v4i+j : j = 1, . . . , 4} and B = {x1, x2, x3} with the edges defined by Ti.
All vertices in B are of degree 2. A trivial case analysis shows that there always
exists a rainbow matching formed by two edges of Gi. �

So we may assume that for each i, inequality (8) does not hold. But then for the
number of new edges |Enew[Γ1, Ct]| between Γ1 and Ct by Claim 2

|Enew[Γ1, Ct]| ≤
t

4
(degNEW (x′

1, R
′) + 2) (9)

holds. Combining estimates (7, 9) we get

degNEW (x′
1, R

′) · (n− 3t

2
− 3d− 6) ≤ t

4
(degNEW (x′

1, R
′) + 2),

which implies (dividing by degNEW (x′
1, R

′) and using (3))

t ≥ 4n

7
− 12d+ 24

7
− 2t

7(n− 3t
2
− 2d− 2)

. (10)

Here for the last term we have

2t

7(n− 3t
2
− 2d− 2)

≤ 8

7
. (11)

Indeed, if (11) does not hold, then we have

t >
4n

7
− 8d+ 8

7
, (12)

i.e. again we have a lower bound similar to (5). Thus otherwise from (10) we get

t ≥ 4n

7
− 12d+ 32

7
. (13)
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Case 2: Assume that no pair of vertices y1, y2 exists within distance d along
the cycle that are adjacent in two different new colors to two different vertices, say
x1, x2 ∈ R. This implies easily that in each interval of length d along the cycle there
is at most one vertex x with degNEW (x,R) ≥ 3. Therefore, the number of edges in
new colors between Ct and R is at most

t

d
|R|+ 2t ≤ 2t

d
|R|,

since 2d ≤ n/4 ≤ |R| (using (1)).
Thus, if we denote by B the set of those bad vertices x ∈ R for which

degNEW (x,Ct) ≥
2t√
d
,

then we have

|B| 2t√
d
≤ 2t

d
|R| i.e., |B| ≤ |R|√

d
.

Set R∗ = R \ B. We have |R∗| ≥ (1 − 1√
d
)|R|. Moreover, R∗ is almost complete in

new colors. For every x ∈ R∗ we have:

degNEW (x,R∗) ≥ |R| − 1− 2t√
d
− |R|√

d
≥ |R| − 3t√

d
− |R|√

d
≥

≥ |R|
(
1− 10√

d

)
≥ |R∗|

(
1− 10√

d

)
, (14)

where the third inequality is equivalent (through |R| + t = n) to t ≤ 3n/4. We can
assume this, otherwise we have nothing to prove.

Lemma 1. Suppose k, l are given integers with l < k/2 and G is a properly edge
colored k-vertex graph with minimum degree at least k/2 + l. Then an arbitrary pair
of vertices x1, x2 ∈ V (G) can be joined by a rainbow path of length at least 2l

3
.

Proof. Starting at x1, build a greedy path by extending the current endpoint
y ̸= x1 with an edge yz such that z ̸= x2 and yz has a color not used on the current
path. Assume that at a certain point we have P = {x1, . . . , y}. Call a color new, if
it does not appear on P . Set Q = V (G) \ (V (P ) ∪ {x2}) and m = k/2 + l − 2|P |.
Observe that degNEW (y,Q) ≥ m and degNEW (x2, Q) ≥ m. Thus, if

2m = k + 2l − 4|P | > |Q| = k − |P | − 1,
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i.e., if equivalently 2l+1
3

> |P |, then M = Nnew(y,Q) ∩ Nnew(x2, Q) ̸= ∅. Thus with
w ∈ M , the path P+ = Pwx2 is a rainbow path from x1 to x2 so there exists a path
P ∗ such that

|P ∗| =
⌊
2l + 1

3

⌋
− 1 + 2 ≥ 2l

3
,

as desired. �
Choose G as the subgraph induced by the edges with new colors in R∗, set k = |R∗|

and notice that using Lemma 1 and (14) we can join an arbitrary pair of vertices in
R∗ by a rainbow path in all new colors of length at least

|R∗|
(
1

3
− 20

3
√
d

)
≥ |R|

(
1− 1√

d

)(
1

3
− 20

3
√
d

)
≥ |R|

(
1

3
− 7√

d

)
.

For some ℓ, move the colors of the edges of the path v1, . . . , vl+1 along the cycle
from OLD to NEW , now |NEW | ≥ n− t− 1 + ℓ. If

n− t− 1 + ℓ ≥ t+ |B|+ 3 ≥ t+
|R|√
d
+ 3 i.e.,

ℓ ≥ 2t− n+
|R|√
d
+ 4, (15)

then v1 and vl+1 both send at least 3 new colors to R∗ out of which we can find a
rainbow matching of two edges, say, (v1, x1), (vl+1, x2), where x1, x2 ∈ R∗. But if in
addition

ℓ ≤ |R|
(
1

3
− 7√

d

)
, (16)

then we could substitute the path {v1, . . . , vl+1} by the path {v1, x1, P, x2, vl+1} of
length ℓ + 2, where P is a path of length ℓ joining x1 and x2 which must exist by
Claim 1, a contradiction. Therefore no ℓ satisfies both (15) and (16), so we may
assume

|R|
(
1

3
− 7√

d

)
< 2t− n+

|R|√
d
+ 4,

and substituting |R| by (n− t) we conclude that

7t > 4n+
24t√
d
− 24n√

d
− 12 > 4n− 24n√

d
− 12, i.e.,

t >
4n

7
− 24n

7
√
d
− 12

7
. (17)

We finish the proof by observing that with our choice of d and n0 (see (1)) all the
obtained lower bounds on t (namely (5), (12), (13) and (17)) are at least (4/7−ε)n. �
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