11,637 research outputs found

    Cyber Switching Attacks on Smart Grids

    Get PDF
    As we live in smart grid revolution, the conventional power systems turn into a fast pace toward smart grids, this transition creates new and significant challenges on the electrical network security level; In addition to the important features of the smart grids, cyber security transpire to be a serious issue due to connecting all the loads, generation units, renewable resources, substations and switches via communication network. Cyber-physical attacks are classified as the major threatening of smart grids security, this attacks may lead to a many severe repercussions in the smart grid such as large blackout and destruction of infrastructures. Switching attack is one of the most serious cyber-physical attacks on smart grids because it is direct, fast, and effective in destabilizing the grids. We start the thesis by introducing a state-of-the-art on cyber attacks from the power layer point of view i.e. the cyber attacks that affect the smart grid stability and what are the power system based solutions have been done so far to prevent or reduce the cyber attacks severity .As we focus on cyber switching attack and the method of preventing it, firstly a study on the attack principles and effects is introduced, we construct the attack on a single machine connected to an infinite bus through a transmission line. The attack on the target generator implemented by modeling the system using swing equation on Matlab platform, then we verified the result by implementing the same attack on Simulink Platform. Finally we present a novel solution to mitigate such type of attacks by using Thyristor-Controlled Braking Resistor (TCBR).The suggested solution is able to recapture the machine stability directly after the attack

    CPSA: A Cyber-Physical Security Assessment Tool for Situational Awareness in Smart Grid

    Get PDF
    It has now become critical and important to understanding the nature of cyber-attacks and their impact on the physical operation of emerging smart electricity grids. Modeling and simulation provide a cost-effective means to develop frameworks and algorithms that address cyber-physical security challenges facing the smart grid. Existing simulation tools support either the communication network or the power system, but not both together. Thus, it is difficult to explore the effects of cyber-physical attacks on power system dynamics and operations. In order to bridge this gap, a cyber-physical co-simulator is required. In this paper, we present a novel integrated cyber-physical security co-simulator tool capable of cyber-physical security assessment (CPSA), which simulates the communication network and the power system together. The tool identifies future vulnerable states and bad measurements and guides the operator at the control center on taking appropriate action to minimize disruption of the physical power system operation due to cyber-attack. The developed tool can be used in understanding of power system monitoring, analyzing the nature of cyber-attacks, detecting bad measurement data, bad command, disabled devices and understand their impact on the operation of the power system

    A comprehensive survey on enabling techniques in secure and resilient smart grids

    Get PDF
    Smart grids are a cornerstone of the transition to a decentralised, low-carbon energy system, which offer significant benefits, including increased reliability, improved energy efficiency, and seamless integration of renewable energy sources. However, ensuring the security and resilience of smart grids is paramount. Cyber attacks, physical disruptions, and other unforeseen threats pose a significant risk to the stability and functionality of the grid. This paper identifies the research gaps and technical hurdles that hinder the development of a robust and secure smart grid infrastructure. This paper addresses the critical gaps in smart grid security research, outlining the technical challenges and promising avenues for exploration by both the industry and academia. A novel framework designed to enhance the reliability and security of smart grids was proposed against cyber attacks, considering the interconnectedness of the physical and cyber components. The paper further explores future research trends and identifies the key open issues in the ongoing effort to strengthen the security and resilience of smart grids

    An Integrated Research Infrastructure for Validating Cyber-Physical Energy Systems

    Get PDF
    Renewables are key enablers in the plight to reduce greenhouse gas emissions and cope with anthropogenic global warming. The intermittent nature and limited storage capabilities of renewables culminate in new challenges that power system operators have to deal with in order to regulate power quality and ensure security of supply. At the same time, the increased availability of advanced automation and communication technologies provides new opportunities for the derivation of intelligent solutions to tackle the challenges. Previous work has shown various new methods of operating highly interconnected power grids, and their corresponding components, in a more effective way. As a consequence of these developments, the traditional power system is being transformed into a cyber-physical energy system, a smart grid. Previous and ongoing research have tended to mainly focus on how specific aspects of smart grids can be validated, but until there exists no integrated approach for the analysis and evaluation of complex cyber-physical systems configurations. This paper introduces integrated research infrastructure that provides methods and tools for validating smart grid systems in a holistic, cyber-physical manner. The corresponding concepts are currently being developed further in the European project ERIGrid.Comment: 8th International Conference on Industrial Applications of Holonic and Multi-Agent Systems (HoloMAS 2017

    Threat Assessment for Multistage Cyber Attacks in Smart Grid Communication Networks

    Get PDF
    In smart grids, managing and controlling power operations are supported by information and communication technology (ICT) and supervisory control and data acquisition (SCADA) systems. The increasing adoption of new ICT assets in smart grids is making smart grids vulnerable to cyber threats, as well as raising numerous concerns about the adequacy of current security approaches. As a single act of penetration is often not sufficient for an attacker to achieve his/her goal, multistage cyber attacks may occur. Due to the interdependence between the power grid and the communication network, a multistage cyber attack not only affects the cyber system but impacts the physical system. This thesis investigates an application-oriented stochastic game-theoretic cyber threat assessment framework, which is strongly related to the information security risk management process as standardized in ISO/IEC 27005. The proposed cyber threat assessment framework seeks to address the specific challenges (e.g., dynamic changing attack scenarios and understanding cascading effects) when performing threat assessments for multistage cyber attacks in smart grid communication networks. The thesis looks at the stochastic and dynamic nature of multistage cyber attacks in smart grid use cases and develops a stochastic game-theoretic model to capture the interactions of the attacker and the defender in multistage attack scenarios. To provide a flexible and practical payoff formulation for the designed stochastic game-theoretic model, this thesis presents a mathematical analysis of cascading failure propagation (including both interdependency cascading failure propagation and node overloading cascading failure propagation) in smart grids. In addition, the thesis quantifies the characterizations of disruptive effects of cyber attacks on physical power grids. Furthermore, this thesis discusses, in detail, the ingredients of the developed stochastic game-theoretic model and presents the implementation steps of the investigated stochastic game-theoretic cyber threat assessment framework. An application of the proposed cyber threat assessment framework for evaluating a demonstrated multistage cyber attack scenario in smart grids is shown. The cyber threat assessment framework can be integrated into an existing risk management process, such as ISO 27000, or applied as a standalone threat assessment process in smart grid use cases

    Enhancing cybersecurity in smart grids: Deep black box adversarial attacks and quantum voting ensemble models for blockchain privacy-preserving storage

    Get PDF
    Smart grids are getting important in today’s power management, so with that, smart grid technologies are increasingly important too. There have been a lot of concerns about smart grid technologies being hacked, and as a result, some deep black box adversarial attacks have been conducted and presented. We propose a new experimental methodology for benchmarking smart grid security with black box attacks. Additionally, concerning the type of smart grids, Smart Power Grids, deep black box adversarial attacks which can be crafted using virtually no knowledge about the target due to the inherent complexity of content available in cryptographic libraries like SecLib or Bouncy Castle how it affects security of cyber-physical power systems. We identify potential impacts of deep black box attacks on Smart Power Grids as implemented by the Department of Energy in 1996, we evaluate existing protection methods, and we find out the pitfalls thereof. With the aim of overcoming the aforementioned drawbacks, we initiate a study on deep black box adversarial attacks against Smart Power Grids showing that statistically significant effects against a national Smart Power Grid are achievable with absolute security. We also probe detection of cyber security attacks on Smart Power Grids. We illustrate landscape of smart grids with numerous cyber threats and demonstrate the limitations of traditional security practices. We show the importance of machine learning to detect attacks and the unlikelihood of identification of dependable and efficient detection schemes. We describe quantum voting ensemble models as one of the most powerful techniques in the detection of cyber security attacks. Finally, we propose an experimental setup and evaluation criteria to detect cyber security attacks in smart grids using quantum voting ensemble models. Then, we talk about private data storage in blockchain based smart grid infrastructure. We give an introduction of block chain and its essentiality in smart grids. We discuss privacy issues in block chain based smart grids. We acknowledge the strength of privacy safeguards, but on the same wavelength, we realize their weaknesses. Next, we propose a quantum resistant encryption technique that enhances the privacy of smart grids. We propose quantum voting ensemble models as one of the most promising techniques to address the issue of private data storage in block chains. As a result, we provide a comparison between the proposed models and traditional approaches to privacy protection in smart grids based on an experimental performance review. Then, we propose a unified strategy to improve smart grid cyber security by incorporating deep black box attacks with quantum voting ensemble models. Finally, we disclose several benefits of such integration and perform an experimental evaluation to investigate the effectiveness of the unified approach. The results of our study identify security gaps in smart grids and propose state-of-the-art mechanisms to address them. The challenges of smart grids system require the amalgamation of blockchain, quantum voting ensemble models and deep black box adversarial attacks. We achieve this objective proposing a unified strategy. The results of this study will equally be helpful for future research and smart grid cyber security implementations

    Smart grids as distributed learning control

    Get PDF
    The topic of smart grids has received a lot of attention but from a scientific point of view it is a highly imprecise concept. This paper attempts to describe what could ultimately work as a control process to fulfill the aims usually stated for such grids without throwing away some important principles established by the pioneers in power system control. In modern terms, we need distributed (or multi-agent) learning control which is suggested to work with a certain consensus mechanism which appears to leave room for achieving cyber-physical security, robustness and performance goals. © 2012 IEEE.published_or_final_versio

    Implementing Man-in-the-Middle Attack to Investigate Network Vulnerabilities in Smart Grid Test-bed

    Full text link
    The smart-grid introduces several new data-gathering, communication, and information-sharing capabilities into the electrical system, as well as additional privacy threats, vulnerabilities, and cyber-attacks. In this study, Modbus is regarded as one of the most prevalent interfaces for control systems in power plants. Modern control interfaces are vulnerable to cyber-attacks, posing a risk to the entire energy infrastructure. In order to strengthen resistance to cyber-attacks, this study introduces a test bed for cyber-physical systems that operate in real-time. To investigate the network vulnerabilities of smart power grids, Modbus protocol has been examined combining a real-time power system simulator with a communication system simulator and the effects of the system presented and analyzed. The goal is to detect the vulnerability in Modbus protocol and perform the Man-in-the-middle attack with its impact on the system. This proposed testbed can be evaluated as a research model for vulnerability assessment as well as a tool for evaluating cyber-attacks and enquire into any detection mechanism for safeguarding and defending smart grid systems from a variety of cyberattacks. We present here the preliminary findings on using the testbed to identify a particular MiTM attack and the effects on system performance. Finally, we suggest a cyber security strategy as a solution to address such network vulnerabilities and deploy appropriate countermeasures.Comment: 7 pages, 10 figures, Conference paper, Accepted in publication for 2023 IEEE World AI IoT Congress (AIIoT

    Survivability modeling for cyber-physical systems subject to data corruption

    Get PDF
    Cyber-physical critical infrastructures are created when traditional physical infrastructure is supplemented with advanced monitoring, control, computing, and communication capability. More intelligent decision support and improved efficacy, dependability, and security are expected. Quantitative models and evaluation methods are required for determining the extent to which a cyber-physical infrastructure improves on its physical predecessors. It is essential that these models reflect both cyber and physical aspects of operation and failure. In this dissertation, we propose quantitative models for dependability attributes, in particular, survivability, of cyber-physical systems. Any malfunction or security breach, whether cyber or physical, that causes the system operation to depart from specifications will affect these dependability attributes. Our focus is on data corruption, which compromises decision support -- the fundamental role played by cyber infrastructure. The first research contribution of this work is a Petri net model for information exchange in cyber-physical systems, which facilitates i) evaluation of the extent of data corruption at a given time, and ii) illuminates the service degradation caused by propagation of corrupt data through the cyber infrastructure. In the second research contribution, we propose metrics and an evaluation method for survivability, which captures the extent of functionality retained by a system after a disruptive event. We illustrate the application of our methods through case studies on smart grids, intelligent water distribution networks, and intelligent transportation systems. Data, cyber infrastructure, and intelligent control are part and parcel of nearly every critical infrastructure that underpins daily life in developed countries. Our work provides means for quantifying and predicting the service degradation caused when cyber infrastructure fails to serve its intended purpose. It can also serve as the foundation for efforts to fortify critical systems and mitigate inevitable failures --Abstract, page iii
    corecore