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Abstract
As we live in smart grid revolution, the conventional power systems turn into a fast
pace toward smart grids, this transition creates new and significant challenges on the
electrical network security level; In addition to the important features of the smart
grids, cyber security transpire to be a serious issue due to connecting all the loads,
generation units, renewable resources, substations and switches via communication
network. Cyber-physical attacks are classified as the major threatening of smart grids
security, this attacks may lead to a many severe repercussions in the smart grid such as
large blackout and destruction of infrastructures. Switching attack is one of the most
serious cyber-physical attacks on smart grids because it is direct, fast, and effective in
destabilizing the grids.

We start the thesis by introducing a state-of-the-art on cyber attacks from the power
layer point of view i.e. the cyber attacks that affect the smart grid stability, and what are
the power system based solutions have been done so far to prevent or reduce the cyber
attack severity.

As we focus on cyber switching attack and the method of preventing it, firstly a

study on the attack principles and effects is introduced, we construct the attack on a

single machine connected to an infinite bus through a transmission line. The attack

on the target generator implemented by modeling the system using swing equation

on Matlab platform, then we verified the result by implementing the same attack on

Simulink Platform. Finally we present a novel solution to mitigate such type of attacks

by using Thyristor-Controlled Braking Resistor (TCBR). The suggested solution is able

to recapture the machine stability directly after the attack.

Keywords: Cyber Switching attacks, Cyber-physical attacks, Smart grid security,

Thyristor-controlled Braking resistor, Power system stability.
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Chapter 1

Introduction

1.0.1 Overview: Cyber Threats on Smart Grids

Due to new power and energy context such as greenhouse effect and other

environmental issues, fuel depletion and electricity cost increase, new regulation and

standards [1], the electrical power systems operators as well as the governments

around the world urge the pace to upgrade their conventional power systems toward

the smart grids. The smart grid is nothing but the assemblage of the conventional

power system and information technology in five fields: smart places, smart renewable

resources, smart electricity services, smart transportation and smart power grid [2].

The implementation of smart grids achieves more effective management and control

of the grid and the integration of renewable energy resources. Information and

Communication Technologies (ICTs) have an important role to play in improving the

efficiency, and controlling the smart grid. This combination of the power grids and

ICTs create a new type of systems which is called Cyber-Physical Systems (CPSs).

Figure 1.1 shows the basic architecture of smart grid, it is clear that all physical

components of power system are linked with each other by cyber network.

Although the Integration of CPSs in the power systems achieves the implementation

of more complicated controls, the ability of connecting a different energy resources,

cooperative loads, smart homes and manufactories, more ability to observe and control

the system due to sensor networks and analytics, and many other aspects [3], it carries

the risk of increasing security vulnerabilities of the grid, and allows the hackers to

access the power system to either apply undesirable operation or steal state of the

system.
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Figure 1.1: Smart Grid Architecture

Because of the strong linkage between the electrical power layer and the internet

layer in the smart grid at all levels (Generation-Transmission-Distribution and

Consumption) and the widespread of them, the cyber attacks on smart grids have

different goals, effects and vulnerable points of access. Despite the high level of

communication security system of smart grid, the possibility of hacking the internet

layer still exists, the impact of this attacks heads a dangerous turn when the target

of attacks is such a vital infrastructure facility like electrical grid especially that type

of attacks which may lead to partial or complete blackout i.e. Cyber attacks which

affect the power system stability. In addition to the massive economic losses that

could be caused by this blackout for the electrical power production companies as

well as the electric power consumers, the causalities became possible with increasing

the dependence on electrical power in sensitive facilities like metros and Desalination

plants. According to the recent risk study [4] which proposed by Cambridge
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University and others, the expected direct and indirect economic losses due to blackout

in 15 states caused by hypothetical cyber attack might rise to more than 1 trillion USD

and the duration of this blackout could be reach to a number of weeks in some parts

of attacked network. The main vulnerable points of smart grid where the attacks may

take place are identified in [5] and [6] as follow:

• Advanced metering infrastructure (AMI).

• Electric transportation infrastructure (e.g., plug-in hybrid electric vehicle,

charging stations).

• Energy storage system.

• Supervisory control and data acquisition (SCADA) network.

• Power Station.

• Indoor Net Users.

The threat of cyber attacks on CPS is not hypothetical, there are several cyber-attacks

have been reported against CPS even before the implementation of the smart grid. The

impact, coverage, and frequency of this type of attacks are expected to increase in the

smart grids [5]. There are different types of cyber-physical attacks on the smart grid

which are different in aims and effects, the most dangerous attacks are those attacks

which affect power grid stability. This thesis introduce a novel solution for one type

of those cyber-physical attack on smart grid, it is cyber switching attacks, this attack

is very effective, stealthy and direct in destabilizing the target machines.

1.0.2 Objective

The objectives of this project are to study the properties of cyber switching attacks, to

construct this type of attack and implement it on a single machine infinite bus system,

and then to find a technical solution so that the generator targeted by the attack does

not disconnect from the network due losing its stability.

1.0.3 Structure of Thesis

This Thesis is organized as follow, in chapter 2 a survey on cyber-physical attacks

which affect the power layer stability and the new methods of attacks detection and

3



identification is presented. Chapter 3 presents the principles of constructing the cyber

switching attacks on the single machine infinite bus. We present in chapter 4 a new

dynamic solution to mitigate the cyber switching attack on SMIB system by using

Thyristor-Controlled Braking Resistor TCBR . Finally, The conclusion and future

work are presented in chapter 5.
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Chapter 2

Literature Review

In this chapter, we survey the research works have been done on cyber-physical attacks

on a smart grid which affect the power layer stability. Moreover, a review of the

researches that have been done on cyber-physical attacks detection presented in the

last part of this chapter.

2.1 A classification of Cyber-Physical attacks on smart

grids

The underlying objectives of cyber attacks on smart grids vary depending on the

vulnerable points that the hacker can access whether those points are information

points or control points and in complex attacks it may depend on the hackers

knowledge about power network connections diagram and its control process.

Generally, cyber attacks on smart grids can be divided into two categories:

• a cyber attack without causing power interruption i.e. the attack has no impact

on continuity of the power supply: as the attacks which aim to breach a power

consumers privacy like stealing the smart meters readings in order to detect the

physical activities inside the home, another type of this attacks is that kind where

the hackers aim is to collect the power consumption data in order to use this

information in another attack.

• a cyber attack which may cause power interruption: in this type of attacks the

5



power grid and its control operations are the target rather than the consumers

privacy. This attacks might be directed to implement power outage on a

specific consumer or an area of consumers; in distribution level the hacker

can subject the supplier circuit breaker by fake load shed command or open

specific breaker which feed an area of consumers [8], [9] and [10], in generation

and transmission levels this type of attack (False Data Injection (FDI)) could

take more dangerous forms by giving wrong commands to the generation and

grid control equipment such as facts, AVR, governor etc [11] [12], [13] and

[14]. Furthermore hackers might attack the power layer in an indirect way by

subjecting the cyber layer of smart grid by heavy data traffic to create failure or

delay in communication layer i.e. deny of service (DoS) attack, consequently

the control centers would be busy in processing fake data which cause a delay

in control decisions, such a delay is very critical in smart grid control.

Table 2.1: Classification of cyber attacks in smart grid [8].

Name Description

Privacy attack
It aims to learn/infer users private information by

analyzing electricity usage data.

Device attack
It aims to compromise (control) a grid device. It is

often the initial step of a sophisticated attack.

Data attack

It attempts to adversarially insert, alter or delete data

in the network traffic so as to mislead smart grid to

take wrong decisions.

Network

availability

attack

It aims to use up or overwhelm the communication

and computational resources of smart grid and to

result in delay or failure of communication.

In this chapter, we interested in surveying only the cyber attacks which affect the

power layer stability of the smart grid. Congestion attacks and cyber switching

attacks are considered as the most effective attacks can destabilize or reduce the

stability margin of the power layer.

6



2.1.1 Congestion Attacks

Congestion attacks are considered as an effective cyber-attack on

cyber-physical-systems (CPSs), which is based on undermining the communication

between the physical parts of the CPS in order to disturb the system or destabilize it.

This type of attacks attracted many researchers due to its wide impact and its ease

of application by the opponents with less knowledge about the exact details of the

physical layer of CPS (i.e. in this case the physical layer dynamics or measurements

are not required as they are in switching attacks). Congestion attacks might take

other names in researches (Jamming Attacks, Denial-of-Service (DoS) and Network

Availability Attacks). Its principle relies on flooding the communication layer of CPS

by transmitting fake data in order to delay the effective data arrival to its destination

or by overwhelming the servers by false information to delay the decision-making

which will reflect negatively on the physical layer performance and may lead to

serious damage.

The required time to transfer the network measurements (phase measurement units

PMU and wide area measurement system WAMS) to control center/s or to transfer

the control commands from control center/s to the deferent devices around the power

system significantly affect the power system stability, it decreases the area of stability,

make the stability margin smaller [15] and it may lead the whole system to be unstable

if this time delay cross a certain value [16]. This point of weakness is utilized in

congestion attack which is primarily based on obstructing the control process of

power layer in smart grid by creating time delay in control/communication processes

in order to destabilize the smart grid or at least decrease the stability margin.

The existing studies on this type of attacks on smart grids can be broadly divided

into two groups. The papers in the first category investigate the impact of congestion

attacks on different parts of power layer [17]- [19]. The work in the second category

applies different types of control algorithms of smart grid in order to decrease the

effect of congestion attacks [21]- [27].

The impact of congestion attacks on the electrical grid differs depending on the

target communication node/link, what the criticalness of this node/link and at which
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time the attacker is going to apply this attack. Congestion attack may attack critical

communication node and leads to blackout [17], an attacker can apply this type of

attack on Advanced Metering Infrastructure AMI during critical peak hours and

causes power interruptions [18]. Moreover reference [19] has shown that congestion

attack on the communication link between the voltage support devices (SVC) sensor

and its controller can decrease the stability margin of all power system and might

lead the system to be unstable On the other hand by moving to discuss the prevention

methods, as we have mentioned previously, we are not going to refer to the methods

of protecting the communications layer, but instead we will survey the solutions

on physical layer i.e. power system solutions and the control algorithms of power

network which aim to increase the smart grid immunity against this kind of attack.

Most of the proposed solutions to improve smart grid stability in light of congestion

attacks are focused on smart grid management and control mechanism of fast-acting

energy storage devices (flywheels, batteries, ultra-capacitors . . . etc.) in the

event of the disturbance. One of those control strategies of smart grid control

is flocking-based control paradigm ” [21] and [22], It is an algorithm designed to

minimize the exchange of data and control commands via the communication network

which is based in its essence on the theory flocking theory [20] where each generator

is considered as a bird and those birds are clustered based upon their physical

coherency with each other and consider this cluster as a flock of birds (generators)

which has a leader, the highest inertia generator in the cluster. In conventional control

algorithm all generators are fitted with fast-acting power source and are connected

through communication layer in order to take an action if any disturbance occurred,

however by applying flocking-based control paradigm only the lead generator of

each cluster are equipped with fast-acting power source and the communications are

confined to those lead generators which reduces the reliance on the communications

network as it is in conventional methods and mitigate the impact of congestion attack

associated with physical disturbance in the electrical network. Jin Wei and Deepa

Kundur in [23] proposed a fast clustering algorithm based on generators coherency.

The main disadvantage of this method is the large computational energy required and

the slow performance of this algorithm to restore the system stability, especially when

time delay in communication layer is large [24].

References [25] and [26] have proposed a new method to stabilize the smart grid

8



after being subjected to a disturbance and have taken the communication delay which

may be caused by congestion attack into account. The proposed method developed

a combined centralized-decentralized parametric feedback linearization controller

which has two modes, in destabilized mode where the controller is designed to control

the fast-acting energy storage devices to take the required actions based on parametric

feedback linearization control scheme without relying on communication network,

on the other hand, the controller is designed by using same scheme with considering

the communications between all generators. Depending on the communication

availability in the smart grid the control mode is switched between centralized mode

(in normal cases) and decentralized mode (in the case of congestion attack). Finally

Nasirian et al. have proposed a new control strategy to improve the stability of dc

microgrids by decreasing the number of communication links i.e. connecting each

dc-dc converter to its neighbors only and using cooperative distributed algorithm to

control the microgrid [27].

2.1.2 Cyber Switching Attacks

Cyber switching attacks can be classified as False Data Injection (FDI) attacks which

combine two types of attacks device and data attacks, FDI is considered as one of the

most dangerous cyber-attacks in smart grids, as it may lead on small scale to energy

steal from end users, false dispatch in the distribution process, and device breakdown

during power generation [42]. In cyber switching attacks, the opponent aims to

get the accurate information and measurement from the transferred data through the

communication network (data attack) to detect the current and exact situation of the

system and then apply the attack on the system based on the system conditions (device

attack). The corrupted device in such kind of attacks the circuit breakers, the main

target of cyber switching attacks is to destabilize specific generator or the whole

system as we will discuss in details in chapter 3.

Researches [28–34] present and analyze the methodology of construction single CSA

, in [28–30] the principles of constructing single-switch CSA based on sliding mode

control has been presented, the target generator has been simulated as single machine

infinite bus (SMIB) model and the corrupted breaker was load breaker connected

to the target generator. [29, 31] studied the possibility of constructing CSAs when
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the opponent (hacker) has a limited knowledge of target generator state or model

parameter error. In [32] same authors investigated the method of constructing single

switch CSA on a multi-machine system, the corrupted switch was line switch whereas

in previous studies it was load switch. A developed version of CSA has been

developed in [33] where the fast-acting energy storage system (ESS) has been used in

the attack. Abdullah A et.al.in [34] presented an investigation of practical limitation

of constructing CSA. The CSAs has been developed in [35, 36] where destabilizing

a generator was not the main aim but destabilizing the whole network instead, many

techniques for constructing a stealthy multi-switch CSA has been presented in these

papers, a complete blackout in studied network has been accomplished.

On the other hand, at the level of finding technical solutions and detection methods

of CSAs, and here we are talking about the power layer based solutions. [40] presents

a switching based solution of CSAs, where the smart grid operator implements a

switching signal on a specific power switch in order to oppose the attack signal and

drag the system trajectory to stable operating point through specifying a stable sliding

surface. Practically it is difficult to implement such kind of solution because CSAs are

very fast in leading the system to instability (less than 1 sec in some cases), which will

not give the operator sufficient time to take action. The distributed control strategy of

fast-acting ESS has been used in [37] to stabilize the smart grid under CSAs. A game

theory based analysis of CSA has been presented in [38], this analysis provided a

platform for developing a strategy based on game theory to control the fast-acting ESS

in order to mitigate CSAs. It is possible to apply these two solutions technically, but

the high cost of ESS is an important obstacle of applying such kind of solutions. [39]

presented a CSA detection method based on hidden mode stochastic switched linear

systems with unknown inputs, the method success in detecting the switching attack

signal during the attack process.

2.2 Detection of Cyber-Physical Attacks on Smart Grids

In order to detect and identify the cyber attacks on smart grids, different methods

are proposed. In [41] Fabio Pasqualetti et al. proposed a distributed method for

smart grid control centers to estimate the operating conditions of the power plant,

and to determine the occurrence of false data injection (FDI), this mission has
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been done by adopting the static state network estimation model,and then applying

a finite-time algorithm to detect if the measurements have been corrupted by a

malignant agent. Within the same context, Dai Wang et al. [42] proposed a method

to detect Tolerable false data injection (TFDI) based on extended distributed state

estimation. In [43] Amir-Hamed Mohsenian-Rad et al. presented multiple defense

mechanisms which may be used against Internet-based load-altering attacks, this

has been achieved by identifying a set of loads which can be vulnerable targets

for Internet-based load-altering attacks and the scenarios where the attacks can be

effective and able to cause large damage to the smart grid. Based on graph theory

Florian Dorfler, Fabio Pasqualetti, and Francesco Bullo in [44–47] proposed a unified

framework and multiple methods to detect and identify the cyber attacks as well as

to analyze the resilience of cyber-physical systems (smart grids in our case) against

attacks. In [44] and [45] the researchers describe a unified modeling framework

for cyber-physical systems and attacks, they modeled the cyber-physical system

under the attack as a descriptor system subject to unknown inputs affecting the

state and the measurements, then they have shown the fundamental limitations of

static, dynamic, and active detection and identification procedures and they provide

a graph theoretic characterization of undetectable attacks. In addition, they propose

attack detection and identification filters that are effective against both state and

output attacks against linear continuous time differential-algebraic cyber-physical

systems. In [46] the researchers proposed a new approach which called Waveform

Relaxation Approach where a distributed estimation and detection of cyber attacks

in large-scale interconnected power networks is proposed. Last but not least they

define in [47] the concept of network vulnerability, which identifies the possibility

for an opponent to affect the network dynamics without being detected through the

monitoring measurements based on graph theoretic techniques.

11



Chapter 3

Cyber Switching Attacks on SMIB

system

In this chapter we introduce the principles of constructing cyber switching attacks,

as the smart grid under cyber switching attacks is considered as hybrid system, we

discuss hybrid system stability in first section, an example of using sliding mode

control to get a stable and unstable hybrid system from multi-structure stable states

system is introduced in this section. The requirements of constructing such type of

attack on the single machine infinite bus SMIB system is introduced in the second

section of this chapter, we use Matlab to study the system dynamic under the cyber

switching attack. Finally, in the third section, we verify the attack’s ability in

destabilizing the target generator using Simulink.

3.1 Hybrid Systems Stability

3.1.1 Sliding Mode in Hybrid Systems

As the smart grid under CSA is considered as a hybrid system we introduce a brief

discussion on its stability criteria. The system which contains both continuous and

discrete states that influence the dynamic behavior is called Hybrid system or switched

system [49], such type of system has its own stability rules, where the stability of all

system continuous states is necessary condition but not sufficient to ensure that this

system is stable Let us take the hybrid system shown in figure 3.1, the system has N

12



Switching Rule

Figure 3.1: Hybrid system architecture

continuous states, where A1, ...,Ak ∈Rn×n are the states matrices, B1, ...,Bk ∈Rn×m are

the input matrices, C ∈Rp×n is the output matrix, D∈Rp×m is the feedforward matrix,

and u ∈ Rm, x ∈ Rn and y ∈ Rp are the input, state and output vectors respectively.

The switching decision is taken by switching rule block to switch to state Ψi, where

i is an integer i ∈ [1−N], based on the state vector and it might be based on output

vector. Here we have many methods of controlling the hybrid system such as finite

time switched control, time average control and sliding mode control (SMC). In this

chapter we are more interested in studying SMC because it is the control scheme

which is used to control corrupted switch in CSA. SMC is based on designing a sliding

surface S(x) force the controlled system trajectory to follow its direction reaching to

the desired operating point. To make the mission of designing S(x) easier, we choose

S(x) as a linear combination of weighted state variables which is given by:

S(x) =
N

∑
i=1

aixi (3.1)

Where ai represent sliding coefficients. SMC problem is summed up by designing

these coefficients in such that three conditions are fulfilled, the three conditions are

[50], hitting, existence and stability conditions. Hitting condition ensures that the

control action will drive the system trajectory toward sliding surface or it’s vicinity ε

regardless it’s initial condition, where ε represents the hysteresis band. the following

inequality guarantees this condition:

S
dS

dt
< 0 (3.2)

13



Existence condition ensures that the system trajectory after hitting the sliding surface

it will keep tracking its manifold. Mathematically this condition is represented by:

lim
S→0+

dS

dt
< 0 and lim

S→0−

dS

dt
> 0. (3.3)

Last but not least stability condition ensures that sliding surface not only drives system

trajectory toward the equilibrium point, but also it stop this trajectory at the vicinity

of this equilibrium point.

3.1.2 Switching Attacks

In order to explain the principles of constructing the switching attacks on smart grid,

let us take the following numerical example, suppose we have a system with two state

variables x =

x1

x2

 this system has two stable states Ψ1 and Ψ2 as follow

 Ψ1 : ẋ = A1x,

Ψ2 : ẋ = A2x
(3.4)

where A1 =

−0.3 2.3

−1 −0.4

 and A2 =

−2 −2.5

3 1

 are the states matrices and

ẋ =
dx

dt
. As both states have negative real part eigenvalues then the system in its states

is stable, and the equilibrium point for both states is (0,0). Figures 3.2a and 3.2b show

the system trajectory for both states Ψ1 and Ψ2 respectively.

In order to show that the stability of each state of hybrid system is a necessary

condition but not enough to ensure the stability of the system [48], let us apply two

different sliding surfaces as switching rules to switch between Ψ1 and Ψ2. Both

surfaces are designed to satisfy hitting 3.2 and existence 3.3 conditions, however the

stability condition is satisfied in the first example and not satisfied in the other, the

control signal will be given to the switch or the system to move from one to another

state as follow:  Switch to Ψ1 when S(x)> ε,

Switch to Ψ2 when S(x)<−ε.
(3.5)

The system dynamic under first sliding surface applied on the system S(x) = x1+x2 =

0 is shown in figure 3.2c, we can notice that the whole system is stable due to its

14
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Figure 3.2: System Dynamic. (a) System’s trajectory in State Ψ1. (b) System’s trajectory

in State Ψ2. (c) System trajectory with sliding surface S(x) = x1+x2.(d) System trajectory

with sliding surface S(x) = x1− x2.

convergence to the common equilibrium point (0,0), moreover, all stability conditions

mentioned previously are satisfied where the system is hitting the sliding surface

regardless its initial positions and then keeps tracking the vicinity of sliding surface

ε = 0.5 and finally stops at the equilibrium point. On the other hand applying another

sliding surface may leads to unstable system like the applied one on the system shown

in figure 3.2d, here we can see the system trajectory diverges from the equilibrium

point and going to the infinite space with the passage of time, the sliding surface

applied is S(x) =−x1 + x2 = 0.

From the previous example we can conclude that the possibility of destabilizing

multistructure system is exist even if all its states are stable. The destabilization

15



process can be achieved by proper designing of switching rule (in our case sliding

surface) which controls the hybrid system.

3.2 Cyber Switching Attack Construction

In this section we will try to destabilize a generator (the target generator) which is

connected to infinite bus through transmission line, an ohmic load is connected to the

target generator bus through breaker (corrupted breaker), figure 3.3 shows the SMIB

case. In this study we will assume that the hacker has a full online access to the

generator measurements, in other words rotor angle δ and angular speed ω or at least

has the online access to the generator measurements which enables him to estimate

δ and ω , moreover we assume that hacker gets the authority to control the corrupted

load breaker, these assumptions are to simplify the study and to not go toward the

data and communication security of the smart grid. It is important to mention that this

section is a reproduction of the researches [28–30] have been done by S.Liu et.al.

Let δt and ∆ωt are the deviation of the rotor angle and angular speed of the target

generator Gt respectively, Bt∞ is the susceptance of the transmission line between

the generator and the infinite bus, Dt represents the damping factor of Gt , Mt is the

moment of inertia of Gt , PL and PM are the load power at generator bus and the

mechanical power of the target generator respectively , Et and E∞ are the internal

voltage of the generator and the voltage of infinite bus respectively.

To represent the dynamics of the target generator we can write the swing equation in

G∞ Gtj Bt∞ 

PM

PL

Corrupted 
switch

Figure 3.3: Single machine infinite bus model
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form of differential equation as follow: δ̇t = ∆ωt

˙∆ωt =
1

Mt
[PM−E2

t Gtt−σPL−EtE∞Bt∞ sin(δt)−Dt∆ωt ]
(3.6)

where σ represents the situation of the breaker, σ = 1 for closed breaker and σ =

0 for opened breaker. Assuming Mt = 0.1, Dt = 0.1, PL = 0.9, PM −E2
t Gtt = 0.9,

EtE∞Bt∞ = 1 [29]. the overall system can be represented as switched system:

A1 :

 δ̇t = ∆ωt

˙∆ωt =−10sin(δt)−∆ωt
i f PL is connected

A2 :

 δ̇t = ∆ωt

˙∆ωt = 9−10sin(δt)−∆ωt
i f PL is NOT connected

(3.7)

The first step of implementing cyber switching attack is to steal the present situation

of the target generator (data attack), or in some cases steal the data which enables the

opponent to estimate the required data, in other words to get the initial condition of the

system where x = [δ ∆ω]T is the state variable vector of the studied system. Secondly

to construct the system dynamics, specify the equilibrium points and draw the phase

plan of the target generator as well as the stability boundaries (i.e. the separatrices).

The third step of the attack is to specify the sliding surface and the attack period,

G∞ Gtj Bt∞ 

PM

PL

Measure/
Estimate
[ δt ωt  ]

Specify the 
equilibrium 

points and the 
stability 

boundary 
(Separatices) for 

both ON/OFF 
states

Specify the 
sliding surface 
and switching 

time

Generate the 
switching 

attack signal 

Corrupted 
switch

Figure 3.4: Cyber switching attack steps on SMIB system
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finally to generate the switching signal and apply this signal on the corrupted breaker.

Figure 3.4 presents the diagram of single machine infinite bus with the algorithm of

switching attack.

Now we let us analyze each dynamic separately for both breaker positions (opened

and closed). When the switch is opened the dynamic of the system is A1, and the

system has two types of equilibrium points:

• stable focus @ (2kπ ,0)

• saddle points @ (2kπ +π ,0) ,where k is any integer.
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Figure 3.5: The dynamics of target generator for different initial conditions. (a)

trajectories of system A1 (switch is opened). (b) trajectories of system A2(switch is

closed). (c) overlapped trajectories.
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On the other hand when the switch is closed A2, then the system also has two types of

equilibrium points:

• stable focus @ (2kπ +1.1198,0)

• saddle points @ (2kπ +2.0218,0) ,where k is any integer.

Figure 3.5a and 3.5b show the trajectories of the system and the separatrices (boundary

of stability) in both cases (A1 & A2) for different initial conditions, both dynamic’s

trajectories are overlapped in figure 3.5c.

Moving to construct cyber switching attack on the target generator, after we assumed

that the cyber access to the target generator measurements and the corrupted breaker

control is gained by the hacker, then the remain mission is to design the switching

signal which will be applied on the corrupted breaker so that the target generator

goes out of stability. The main parameters which the switching attack is based on

are sliding surface and the period of applying the attack. Sliding surface parameters

s(x) = a1δt + a2∆ωt = 0 can be chosen such that it satisfies the hitting and existence

conditions mentioned in previous section, and ensures that this sliding surface drives

the system trajectory away from the the equilibrium point, [30] detects the sliding

surface space, we will pick out sliding space parameters from this space as follow:

s(x) = 1.25δt +∆ωt = 0, the switching rule will be:

δ̇t = ∆ωt

˙∆ωt =

 −10sin(δt)−∆ωt , s(x)> ε,

9−10sin(δt)−∆ωt , s(x)<−ε,

(3.8)

The corrupted switch status varies under the attack based on s(x) value, where it is

closed when s > 0 and opened when s < 0. The period of the switching attack can be

chosen so that the attack stops switching at the moment when the system trajectory

cross the stability boundary for a specific state and to keep the switch on the position

of the correspond boundary’s state. To include the breaker delay we will take the

hysteresis band ε = 0.2.

Figure 3.6a presents a success switching attack on the target generator Gt , the system

trajectory starts from initial point (where it is assumed that the switch was opened for

long period before initiating the attack) and goes away from the origin and going to

infinity with the passage of time, which means that the generator is destabilized and the
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Figure 3.6: Successful cyber switching attack. (a) System trajectory under cyber

switching attack. (b) Load switch status.

attack achieve its goal, practically the protection relays switch off the generator after

crossing the frequency limit. The switching signal applied on the corrupted switch

is shown in 3.6b, the switching signal is applied for 1.7 seconds and then when the

system trajectory crosses the boundary of opened switch case, the switch is opened

so that the system follows the opened switch dynamic which is out of stability due to

cross its boundary.

Applying same sliding surface and hysteresis band i.e. same switching rule,does

not necessarily lead to success attack, Figure 3.7 and 3.8 present an unsuccessful
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Figure 3.7: Unconstrained cyber switching attack. (a) System trajectory under

unconstrained cyber switching attack. (b) Load switch status.
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Figure 3.8: Unsuccessful cyber switching attack. (a) System trajectory under unsuccessful

cyber switching attack. (b) Load switch status.

switching attacks with same sliding surface applied in previous success attack. In

figure 3.7 an unconstrained switching attack with same sliding surface s(x) = 1.25δt +

∆ωt = 0 is applied on the system, the corrupted switch is left to keep switching without

time limit, this results in shifting the system equilibrium point from initial stable point

(1.1198,0) to the other one (0,0) which is corresponded to closed switch state. As

result the system still stable after the attack and the attack is does not succeed.

Finally if the attack stops switching before the system trajectory crosses the stability

boundary, then the system operating point returns back to the initial condition

(1.1198,0) as the system is asymptotically stable inside this region, figure 3.8 shows

the system trajectory as well as the corresponding switching signal applied on the

corrupted switch.

3.3 Simulation results

In order to verify the results obtained in previous section we use Matlab-Simulink

software, same SMIB system shown in figure 3.3 is implemented on Simulink

platform, the generator data has been taken from [30], and shown in table 3.1,

the target generator is connected to infinite bus through transmission line has been

modeled by inductor with 0.014 H, The generator is loaded by ohmic load, PL =

32.4MW . Figure 3.9 presents the Simulink model used to implement this attack, the
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Table 3.1: Target generator parameters Gt . Pbase = 100 MVA [30]

Parameter Rated voltage Rated power Power factor Frequency

Value 13.8 kV 36 MW 0.8 60 Hz

xd x́d xq Inertia constant ´Tdo

1.55 p.u 0.22 p.u 0.76 p.u. 0.5 sec 8.95 sec

simulation time is 6 seconds.

The simulation results of implementing cyber switching attack on target generator Gt

are shown in figure 3.10. A phase plan of target generator rotor angle δ and rotor speed

deviation ∆ω is shown in figure 3.10a. Assuming that the system was working for long

period while the switch was opened, consequently the initial conditions [1.098 0]T as

it is calculated in previous section.

We can notice how the system trajectory in fig. 4.a starts from the initial condition

[1.098 0]T following the sliding surface until it crosses the stability boundary of the

opened switch state and then going to infinity with the passage of time which means

the system becomes unstable and the protection relays will disconnect it from the

network due to crossing the frequency limit as well as the rotor angle limit. The

Figure 3.9: Simulink model of cyber switching attack on SMIB system

22



stability boundary is drawn in fig. 4.a is for an opened switch position, the boundary

for the closed position is not shown. Driving the operation point of target generator
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Figure 3.10: CSA on generator Gt , (a) phase plan, (b) switching signal, (c) rotor angle of

Gt , (d) frequency of Gt , (e) Terminal voltage of Gt .
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in very fast manner to make big difference between the input mechanical power and

the output electrical power is the main reason behind destabilizing the target generator

under CSA.

The sliding surface S = δt +0.45∆ωt is used to generate the switching signal shown in

figure 3.10b, with noticing that the switching process stops at t = 0.9sec due to cross

the boundary of stability. Figures 3.10c and 3.10d show the target generator rotor

angle and frequency respectively, it is clear from both figures that the target generator

is destabilized due to the attack applied on the corrupted switch and the protection

relays have to take action such as disconnecting the target generator from the system

where the hacker aim is achieved. The terminal voltage of target generator is shown

in figure 3.10e
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Chapter 4

Cyber Switching Attack Mitigation

Using TCBR

Thyristor-Controlled Braking Resistor (TCBR) is a member of FACTS controllers

family, this controller is usually used to stabilize the power system by absorbing the

excess acceleration electrical energy in power network. Due to its resistive nature,

TCBR is able only to consume the active power rather than supply it, this characteristic

along with TCBRs ability to take a fast action present using TCBR as a cheap, reliable,

and dynamical solution for many stability issues. TCBR is widely used to enhance the

transient stability, damp low frequency oscillations, damp subsynchronous resonance

and solve many other stability problems [54].

A single line diagram of single leg TCBR is shown in figure 4.1, a three phase TCBR

consists of three legs each one is connected to phase, and these legs are connected

to each other either in wye or delta. Each leg is formed by connecting in series a

back-to-back connected thyristor and a resistant RTCBR, practically a transformer is

used to connect TCBR to the power grid.

Controlling the consumed power from TCBR can be done by controlling the firing

angle of thyristors, the realtion between the average active power consumed by TCBR

PTCBR and firing angle α is given by:

PTCBR =
V 2 GTCBR

π
(π−α +

1
2

sin(2α)) (4.1)

Where V is the rms voltage at the point of TCBR connection, GTCBR is the conductance

of braking resistor i.e. GTCBR = 1
RTCBR

, and α has a range of variation [0,π]. The

power consumed by TCBR is at maximum value when α = 0 and then decreases with
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GTCBR

T

Figure 4.1: Single line diagram of one leg TCBR

increasing α till reaching zero at α = π .

Our proposed method of mitigating CSA is based on fixing TCBR at the target

generator terminals, the objectives of TCBR is to absorb the accelerating active power

that produced after CSA which is the main reason of destabilizing the target generator

as it is mentioned in previous chapter.

Figure 4.2a shows the proposed method, the generator frequency, mechanical input

power and electric output power are fed to the controller, the controller specifies the

appropriate firing angle based on the required energy to be absorbed by TCBR. Firing

angle α is fed to pulses generator which in turn trigger TCBR thyristors. After adding

TCBR to the system the system dynamic can be represented by:
dδ

dt
= ∆ω

M
d2δ

dt2 = Pm−Pe−Pd−PTCBR

(4.2)

The controller structure is shown in figure 4.2b the difference between the input

mechanical power Pm and the output electrical power is calculated and fed to PID

controller, which in turn produce the required conductance of TCBR Gout to absorb

the acceleration active power. where Gout is calculated as follow:

Gout =
GTCBR

π
(π−α +

1
2

sin(2α)) (4.3)

The required conductance is limited between zero and nominal conductance value

GTCBR. Equation 4.2 then is used to calculate the required firing angle which is limited
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in the range of [0,π]. TCBR controller works only when the generator accelerate and

its speed deviation cross 2% of the nominal speed, otherwise TCBR does not consume

any power i.e. α = π .

We use Matlab/Simulink to check the efficiency of proposed method in mitigating

CSA, the attack implemented in previous section is applied on the system with

simulation time 15 sec with same sliding surface S = δt + 0.45∆ωt and switching

time t = 0.9sec. The rated conductance of TCBR is GTCBR = 0.15pu with Pbase =

100MVA and Vbase = 13.8kV. The conduction and switching losses in TCBR’s

thyristors are neglected compared with the power consumed by the braking resistor.

The simulation results are presented in Figure 4.3
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Figure 4.2: Using TCBR to mitigate CSA (a) closed loop control of TCBR, (b) the

controller structure.
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Figure 4.3: Simulation results of SMIB system under CSA in the presence of TCBR. (a)

System phase plan. (b) The terminal voltage of target Generator. (c) The frequency of
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Figure 4.3a shows the phase portrait of target generator dynamic, the generator was

attacked by CSA and trajectory started to diverge away from the equilibrium point.

When the rotor speed deviation crosses the specified limit i.e. ∆ω = 2% ∗ 120π =

7.54 rad/sec, TCBR intervenes and starts to consume the excess acceleration power

specified from the difference between Pm and Pe, the consumed power by TCBR is

shown in figure 4.3e. We can notice from the phase plan that the intervention of

TCBR restore the system stability and draw the system trajectory to new equilibrium

point, the location of this equilibrium point can be specified from equation 4.2 and can

be controlled by changing the consumed power from TCBR PTCBR which can be done

by tuning the PID controller parameters.

The rotor angle ,terminal voltage, and frequency of the target generator are shown in

figures 4.3b, 4.3c, 4.3d respectively, we can notice from both rotor angle and frequency

curves that the system recaptures the stability in less than 10 seconds after the CSA.

The time of stability can be minimized by increasing the rated power of TCBR, but

practically it is not efficient action due to the increase of TCBR cost.
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Chapter 5

Conclusion And Future Work

5.1 Conclusion

A literature survey on cyber attacks on smart grids has been presented, a preface about

the importance of smart grids and the probable risks of the interconnection between

the communication layer and power network in smart grids has been introduced in

the first chapter. A literature survey on the cyber attacks which are directed to

destabilize the power layer of smart grid has been introduced in the second chapter,

this chapter surveyed also the works have been done on cyber attack detection and

identification. In third chapter a full description of cyber switching attacks on smart

grids has been presented, single-switch attacks has been discussed in details in this

part, we have simulated and discussed a case study of single machine infinite bus, a

detailed description of implementing cyber switching attack has been presented on the

case study, the result shows that successful switching attack can destabilize the target

machine in less than one second. In chapter four of the study, a new solution to save

the stability of target generator has been introduced, the suggested solution is based

on using TCBR to prevent the attack from destabilizing the target generator. Finally,

in this chapter, the thesis is concluded and future work is presented.

5.2 Future Work

• To include the turbine action of target generator in calculating the rated power

of TCBR.
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• To develop a controller that cooperate between the turbine and TCBR, so that

the rated power of TCBR can be reduced.

• To study cyber switching attack on multi-machine system, and specify the

optimal location and number of TCBR controllers to mitigate the most savior

scenario.

• To develop a new type of coordinated cyber attack which combines congestion

and switching attack.
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