479 research outputs found

    Integration of a Canine Agent in a Wireless Sensor Network for Information Gathering in Search and Rescue Missions

    Get PDF
    Search and rescue operations in the context of emergency response to human or natural disasters have the major goal of finding potential victims in the shortest possible time. Multi-agent teams, which can include specialized human respondents, robots and canine units, complement the strengths and weaknesses of each agent, like all-terrain mobility or capability to locate human beings. However, efficient coordination of heterogeneous agents requires specific means to locate the agents, and to provide them with the information they require to complete their mission. The major contribution of this work is an application of Wireless Sensor Networks (WSN) to gather information from a multi-agent team and to make it available to the rest of the agents while keeping coverage. In particular, a canine agent has been equipped with a mobile node installed on a harness, providing information about the dog’s location as well as gas levels. The configuration of the mobile node allows for flexible arrangement of the system, being able to integrate static as well as mobile nodes. The gathered information is available at an external database, so that the rest of the agents and the control center can use it in real time. The proposed scheme has been tested in realistic scenarios during search and rescue exercises

    Smart Computing and Sensing Technologies for Animal Welfare: A Systematic Review

    Get PDF
    Animals play a profoundly important and intricate role in our lives today. Dogs have been human companions for thousands of years, but they now work closely with us to assist the disabled, and in combat and search and rescue situations. Farm animals are a critical part of the global food supply chain, and there is increasing consumer interest in organically fed and humanely raised livestock, and how it impacts our health and environmental footprint. Wild animals are threatened with extinction by human induced factors, and shrinking and compromised habitat. This review sets the goal to systematically survey the existing literature in smart computing and sensing technologies for domestic, farm and wild animal welfare. We use the notion of \emph{animal welfare} in broad terms, to review the technologies for assessing whether animals are healthy, free of pain and suffering, and also positively stimulated in their environment. Also the notion of \emph{smart computing and sensing} is used in broad terms, to refer to computing and sensing systems that are not isolated but interconnected with communication networks, and capable of remote data collection, processing, exchange and analysis. We review smart technologies for domestic animals, indoor and outdoor animal farming, as well as animals in the wild and zoos. The findings of this review are expected to motivate future research and contribute to data, information and communication management as well as policy for animal welfare

    Realistic deployment of hybrid wireless sensor networks based on ZigBee and LoRa for search and rescue applications

    Get PDF
    Search and Rescue operations in emergency response to natural or human catastrophes have the main objective of locating and rescuing potential victims as fast as possible, thus quick response and accurate actions are mandatory. While standard communications may be affected, a Wireless Sensor Network can be deployed to support the rescue team. This kind of network allows data acquisition close to events and enables persistence over time, among other advantages. However, enhancements must be made to improve the adaptation to this kind of scenario. This work presents two Hybrid Wireless Sensor Networks, based on ZigBee and LoRa, developed to address some of the challenges that Search and Rescue operations pose to the use of Wireless Sensor Networks, and tested in realistic scenarios in cooperation with first responders. Likewise, several software developments that increase the performance of the networks are described. Finally, the conclusions presented, and the lessons learnt are supported by a high amount of data, gathered in realistic exercises in cooperation with civilian and military first responders.Spanish Project RTI2018-093421-B-I0

    Assessing machine learning classifiers for the detection of animals' behavior using depth-based tracking

    Full text link
    [EN] There is growing interest in the automatic detection of animals' behaviors and body postures within the field of Animal Computer Interaction, and the benefits this could bring to animal welfare, enabling remote communication, welfare assessment, detection of behavioral patterns, interactive and adaptive systems, etc. Most of the works on animals' behavior recognition rely on wearable sensors to gather information about the animals' postures and movements, which are then processed using machine learning techniques. However, non-wearable mechanisms such as depth-based tracking could also make use of machine learning techniques and classifiers for the automatic detection of animals' behavior. These systems also offer the advantage of working in set-ups in which wearable devices would be difficult to use. This paper presents a depth-based tracking system for the automatic detection of animals' postures and body parts, as well as an exhaustive evaluation on the performance of several classification algorithms based on both a supervised and a knowledge-based approach. The evaluation of the depth -based tracking system and the different classifiers shows that the system proposed is promising for advancing the research on animals' behavior recognition within and outside the field of Animal Computer Interaction. (C) 2017 Elsevier Ltd. All rights reserved.This work is funded by the European Development Regional Fund (EDRF-FEDER) and supported by Spanish MINECO with Project TIN2014-60077-R. It also received support from a postdoctoral fellowship within the VALi+d Program of the Conselleria d'Educacio, Cultura I Esport (Generalitat Valenciana) awarded to Alejandro Catala (APOSTD/2013/013). The work of Patricia Pons is supported by a national grant from the Spanish MECD (FPU13/03831). Special thanks to our cat participants and their owners, and many thanks to our feline caretakers and therapists, Olga, Asier and Julia, for their valuable collaboration and their dedication to animal wellbeing.Pons Tomás, P.; Jaén Martínez, FJ.; Catalá Bolós, A. (2017). Assessing machine learning classifiers for the detection of animals' behavior using depth-based tracking. Expert Systems with Applications. 86:235-246. https://doi.org/10.1016/j.eswa.2017.05.063S2352468

    Developing a depth-based tracking systems for interactive playful environments with animals

    Full text link
    © ACM 2015. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version of Record was published in ACM. Proceedings of the 12th International Conference on Advances in Computer Entertainment Technology (p. 59). http://dx.doi.org/10.1145/2832932.2837007.[EN] Digital games for animals within Animal Computer Interaction are usually single-device oriented, however richer interactions could be delivered by considering multimodal environments and expanding the number of technological elements involved. In these playful ecosystems, animals could be either alone or accompanied by human beings, but in both cases the system should react properly to the interactions of all the players, creating more engaging and natural games. Technologically-mediated playful scenarios for animals will therefore require contextual information about the game participants, such as their location or body posture, in order to suitably adapt the system reactions. This paper presents a depth-based tracking system for cats capable of detecting their location, body posture and field of view. The proposed system could also be extended to locate and detect human gestures and track small robots, becoming a promising component in the creation of intelligent interspecies playful environments.Work supported by the Spanish Ministry of Economy and Competitiveness and funded by the EDRF-FEDER (TIN2014-60077-R). The work of Patricia Pons has been supported by a national grant from the Spanish MECD (FPU13/03831). Alejandro Catalá also received support from a VALi+d fellowship from the GVA (APOSTD/2013/013). Special thanks to our cat participants, their owners, and our feline caretakers and therapistsPons Tomás, P.; Jaén Martínez, FJ.; Catalá Bolós, A. (2015). Developing a depth-based tracking systems for interactive playful environments with animals. ACM. https://doi.org/10.1145/2832932.2837007SJan Bednarik and David Herman. 2015. Human gesture recognition using top view depth data obtained from Kinect sensor.Excel. - Student Conf. Innov. Technol. Sci. IT, 1--8.Hrvoje Benko, Andrew D. Wilson, Federico Zannier, and Hrvoje Benko. 2014. Dyadic projected spatial augmented reality.Proc. 27th Annu. ACM Symp. User interface Softw. Technol. - UIST '14, 645--655.Alper Bozkurt, David L Roberts, Barbara L Sherman, et al. 2014. Toward Cyber-Enhanced Working Dogs for Search and Rescue.IEEE Intell. Syst. 29, 6, 32--39.Rita Brugarolas, Robert T. Loftin, Pu Yang, David L. Roberts, Barbara Sherman, and Alper Bozkurt. 2013. Behavior recognition based on machine learning algorithms for a wireless canine machine interface.2013 IEEE Int. Conf. Body Sens. Networks, 1--5.Adrian David Cheok, Roger Thomas K C Tan, R. L. Peiris, et al. 2011. Metazoa Ludens: Mixed-Reality Interaction and Play for Small Pets and Humans.IEEE Trans. Syst. Man, Cybern. - Part A Syst. Humans41, 5, 876--891.Amanda Hodgson, Natalie Kelly, and David Peel. 2013. Unmanned aerial vehicles (UAVs) for surveying Marine Fauna: A dugong case study.PLoS One8, 11, 1--15.Gang Hu, Derek Reilly, Mohammed Alnusayri, Ben Swinden, and Qigang Gao. 2014. DT-DT: Top-down Human Activity Analysis for Interactive Surface Applications.Proc. Ninth ACM Int. Conf. Interact. Tabletops Surfaces - ITS '14, 167--176.Brett R Jones, Hrvoje Benko, Eyal Ofek, and Andrew D. Wilson. 2013. IllumiRoom: Peripheral Projected Illusions for Interactive Experiences.Proc. SIGCHI Conf. Hum. Factors Comput. Syst. - CHI '13, 869--878.Brett Jones, Lior Shapira, Rajinder Sodhi, et al. 2014. RoomAlive: magical experiences enabled by scalable, adaptive projector-camera units.Proc. 27th Annu. ACM Symp. User Interface Softw. Technol. - UIST '14, 637--644.Cassim Ladha, Nils Hammerla, Emma Hughes, Patrick Olivier, and Thomas Ploetz. 2013. Dog's Life: Wearable Activity Recognition for Dogs.Proc. 2013 ACM Int. Jt. Conf. Pervasive Ubiquitous Comput. - UbiComp'13, 415.Shang Ping Lee, Adrian David Cheok, Teh Keng Soon James, et al. 2006. A mobile pet wearable computer and mixed reality system for human--poultry interaction through the internet.Pers. Ubiquitous Comput. 10, 5, 301--317.Clara Mancini, Janet van der Linden, Jon Bryan, and Andrew Stuart. 2012. Exploring interspecies sensemaking: Dog Tracking Semiotics and Multispecies Ethnography.Proc. 2012 ACM Conf. Ubiquitous Comput. - UbiComp '12, 143--152.Clara Mancini. 2011. Animal-computer interaction: a manifesto.Mag. Interact. 18, 4, 69--73.Clara Mancini. 2013. Animal-computer interaction (ACI): changing perspective on HCI, participation and sustainability.CHI '13 Ext. Abstr. Hum. Factors Comput. Syst., 2227--2236.Steve North, Carol Hall, Amanda Roshier, and Clara Mancini. 2015. HABIT: Horse Automated Behaviour Identification Tool -- A Position Paper.Proc. Br. Hum. Comput. Interact. Conf. - Anim. Comput. Interact. Work., 1--4.Mikko Paldanius, Tuula Kärkkäinen, Kaisa Väänänen-Vainio-Mattila, Oskar Juhlin, and Jonna Häkkilä. 2011. Communication technology for human-dog interaction: exploration of dog owners' experiences and expectations.Proc. SIGCHI Conf. Hum. Factors Comput. Syst., 2641--2650.Patricia Pons, Javier Jaen, and Alejandro Catala. Multimodality and Interest Grabbing: Are Cats Ready for the Game?Submitt. to Int. J. Human-Computer Stud. Spec. Issue Anim. Comput. Interact. (under Rev).Patricia Pons, Javier Jaen, and Alejandro Catala. 2014. Animal Ludens: Building Intelligent Playful Environments for Animals.Proc. 2014 Work. Adv. Comput. Entertain. Conf. - ACE '14 Work., 1--6.Patricia Pons, Javier Jaen, and Alejandro Catala. 2015. Envisioning Future Playful Interactive Environments for Animals. InMore Playful User Interfaces, Anton Nijholt (ed.). Springer, 121--150.Rui Trindade, Micaela Sousa, Cristina Hart, Nádia Vieira, Roberto Rodrigues, and João França. 2015. Purrfect Crime.Proc. 33rd Annu. ACM Conf. Ext. Abstr. Hum. Factors Comput. Syst. - CHI EA '15, 93--96.Jessica van Vonderen. 2015. Drones with heat-tracking cameras used to monitor koala population. Retrieved July 1, 2015 from http://www.abc.net.au/news/2015-02-24/drones-to-help-threatened-species-koalas-qut/6256558Alexandra Weilenmann and Oskar Juhlin. 2011. Understanding people and animals: the use of a positioning system in ordinary human-canine interaction.Proc. 2011 Annu. Conf. Hum. factors Comput. Syst. - CHI '11, 2631--2640.Chadwick A. Wingrave, J. Rose, Todd Langston, and Joseph J. Jr. LaViola. 2010. Early explorations of CAT: canine amusement and training.CHI '10 Ext. Abstr. Hum. Factors Comput. Syst., 2661--2669.Kyoko Yonezawa, Takashi Miyaki, and Jun Rekimoto. 2009. Cat@Log: sensing device attachable to pet cats for supporting human-pet interaction.Proc. Int. Conf. Adv. Comput. Enterntainment Technol. - ACE '09, 149--156.2013. ZOO Boomer balls. Retrieved July 1, 2015 from https://www.youtube.com/watch?v=Od_Lm8U5W4

    Pushing boundaries of RE:Requirement elicitation for non-human users

    Get PDF

    Ethical issues in the practice of medicine

    Get PDF
    This article does not have an abstract

    Activity Trackers for Raising Guide Dogs:Challenges and Opportunities

    Get PDF
    corecore