10 research outputs found

    Cyber Attack Challenges and Resilience for Smart Grids

    Get PDF
    Date of Acceptance: 31/08/2015Peer reviewedPostprin

    Smart Grid Security: Threats, Vulnerabilities and Solutions

    Full text link

    Dynamic Secrets and Secret Keys Based Scheme for Securing Last Mile Smart Grid Wireless Communication

    Get PDF
    An integrated and optimized smart grid cannot be achieved without a secure communication network. Due to the large-scale nature of the power system, the variety of technologies used, and limitations of communication bandwidth, supervisory applications for smart grid still use weak security in many deployments. Adversaries can potentially modify measurement values or inject bad commands over the network. In this paper, we propose a novel scheme based on dynamic secrets and encryption with secret keys. The scheme generates a series of dynamic secrets over the communication network, which are used to generate secret keys for data encryption. The generation of dynamic secret is frequent and no adversary can compromise the network for a longer period, even if he/she knows a secret key. The scheme is secure against eavesdropping, malicious communication injection, man-in-the-middle attack, replay attack, impersonation attack, and chosen-plaintext attack. The security analysis and performance evaluation show that our scheme is feasible to be used in the communication between supervisory and control nodes of various smart grid applications

    IMPLEMENTATION OF ARTIFICIAL NEURAL NETWORKS BASED AI CONCEPTS TO THE SMART GRID

    Get PDF
     ICT and energy are two economic domains that became among the most influential to the growth of modern society. These, in the same time, due to exploitation of natural resources and producing unwanted effects to the environment, represent a kind of menace to the eco system and the human future. Implementation of measures to mitigate these unwanted effects established a new paradigm of production and distribution of electrical energy named smart grid. It relies on many novelties that improve the production, distribution and consumption of electricity among which one of the most important is the ICT. Among the ICT concepts implemented in modern smart grid one recognizes the artificial intelligence and, specifically the artificial neural network. Here, after reviewing the subject and setting the case, we are reporting some of our newest results aiming at broadening the set of tools being offered by ICT to the smart grid. We will describe our result in prediction of electricity demand and characterization of new threats to the security of the ICT that may use the grid as a carrier of the attack. We will use artificial neural networks (ANNs) as a tool in both subjects

    Communication Technologies for Smart Grid: A Comprehensive Survey

    Full text link
    With the ongoing trends in the energy sector such as vehicular electrification and renewable energy, smart grid is clearly playing a more and more important role in the electric power system industry. One essential feature of the smart grid is the information flow over the high-speed, reliable and secure data communication network in order to manage the complex power systems effectively and intelligently. Smart grids utilize bidirectional communication to function where traditional power grids mainly only use one-way communication. The communication requirements and suitable technique differ depending on the specific environment and scenario. In this paper, we provide a comprehensive and up-to-date survey on the communication technologies used in the smart grid, including the communication requirements, physical layer technologies, network architectures, and research challenges. This survey aims to help the readers identify the potential research problems in the continued research on the topic of smart grid communications

    Data security and trading framework for smart grids in neighborhood area networks

    Get PDF
    Due to the drastic increase of electricity prosumers, i.e., energy consumers that are also producers, smart grids have become a key solution for electricity infrastructure. In smart grids, one of the most crucial requirements is the privacy of the final users. The vast majority of the literature addresses the privacy issue by providing ways of hiding user’s electricity consumption. However, open issues in the literature related to the privacy of the electricity producers still remain. In this paper, we propose a framework that preserves the secrecy of prosumers’ identities and provides protection against the traffic analysis attack in a competitive market for energy trade in a Neighborhood Area Network (NAN). In addition, the amount of bidders and of successful bids are hidden from malicious attackers by our framework. Due to the need for small data throughput for the bidders, the communication links of our framework are based on a proprietary communication system. Still, in terms of data security, we adopt the Advanced Encryption Standard (AES) 128bit with Exclusive-OR (XOR) keys due to their reduced computational complexity, allowing fast processing. Our framework outperforms the state-of-the-art solutions in terms of privacy protection and trading flexibility in a prosumer-to-prosumer design

    A comprehensive survey on enabling techniques in secure and resilient smart grids

    Get PDF
    Smart grids are a cornerstone of the transition to a decentralised, low-carbon energy system, which offer significant benefits, including increased reliability, improved energy efficiency, and seamless integration of renewable energy sources. However, ensuring the security and resilience of smart grids is paramount. Cyber attacks, physical disruptions, and other unforeseen threats pose a significant risk to the stability and functionality of the grid. This paper identifies the research gaps and technical hurdles that hinder the development of a robust and secure smart grid infrastructure. This paper addresses the critical gaps in smart grid security research, outlining the technical challenges and promising avenues for exploration by both the industry and academia. A novel framework designed to enhance the reliability and security of smart grids was proposed against cyber attacks, considering the interconnectedness of the physical and cyber components. The paper further explores future research trends and identifies the key open issues in the ongoing effort to strengthen the security and resilience of smart grids

    Cyber Security for Smart Grid, Cryptography, and Privacy

    Get PDF
    The invention of “smart grid” promises to improve the efficiency and reliability of the power system. As smart grid is turning out to be one of the most promising technologies, its security concerns are becoming more crucial. The grid is susceptible to different types of attacks. This paper will focus on these threats and risks especially relating to cyber security. Cyber security is a vital topic, since the smart grid uses high level of computation like the IT. We will also see cryptography and key management techniques that are required to overcome these attacks. Privacy of consumers is another important security concern that this paper will deal with
    corecore