146 research outputs found

    The security of an RSA-based cut-and-choose protocol

    Get PDF

    Proportional Allocation of Indivisible Goods up to the Least Valued Good on Average

    Get PDF
    We study the problem of fairly allocating a set of indivisible goods to multiple agents and focus on the proportionality, which is one of the classical fairness notions. Since proportional allocations do not always exist when goods are indivisible, approximate notions of proportionality have been considered in the previous work. Among them, proportionality up to the maximin good (PROPm) has been the best approximate notion of proportionality that can be achieved for all instances. In this paper, we introduce the notion of proportionality up to the least valued good on average (PROPavg), which is a stronger notion than PROPm, and show that a PROPavg allocation always exists. Our results establish PROPavg as a notable non-trivial fairness notion that can be achieved for all instances. Our proof is constructive, and based on a new technique that generalizes the cut-and-choose protocol

    Non-Exploitable Protocols for Repeated Cake Cutting

    Get PDF
    We introduce the notion of exploitability in cut-and-choose protocols for repeated cake cutting. If a cut-and-choose protocol is repeated, the cutter can possibly gain information about the chooser from her previous actions, and exploit this information for her own gain, at the expense of the chooser. We define a generalization of cut-and-choose protocols - forced-cut protocols - in which some cuts are made exogenously while others are made by the cutter, and show that there exist non-exploitable forced-cut protocols that use a small number of cuts per day: When the cake has at least as many dimensions as days, we show a protocol that uses a single cut per day. When the cake is 1-dimensional, we show an adaptive non-exploitable protocol that uses 3 cuts per day, and a non-adaptive protocol that uses n cuts per day (where n is the number of days). In contrast, we show that no non-adaptive non-exploitable forced-cut protocol can use a constant number of cuts per day. Finally, we show that if the cake is at least 2-dimensional, there is a non-adaptive non-exploitable protocol that uses 3 cuts per day

    Approximate Maximin Shares for Groups of Agents

    Full text link
    We investigate the problem of fairly allocating indivisible goods among interested agents using the concept of maximin share. Procaccia and Wang showed that while an allocation that gives every agent at least her maximin share does not necessarily exist, one that gives every agent at least 2/32/3 of her share always does. In this paper, we consider the more general setting where we allocate the goods to groups of agents. The agents in each group share the same set of goods even though they may have conflicting preferences. For two groups, we characterize the cardinality of the groups for which a constant factor approximation of the maximin share is possible regardless of the number of goods. We also show settings where an approximation is possible or impossible when there are several groups.Comment: To appear in the 10th International Symposium on Algorithmic Game Theory (SAGT), 201

    An Algorithmic Framework for Strategic Fair Division

    Full text link
    We study the paradigmatic fair division problem of allocating a divisible good among agents with heterogeneous preferences, commonly known as cake cutting. Classical cake cutting protocols are susceptible to manipulation. Do their strategic outcomes still guarantee fairness? To address this question we adopt a novel algorithmic approach, by designing a concrete computational framework for fair division---the class of Generalized Cut and Choose (GCC) protocols}---and reasoning about the game-theoretic properties of algorithms that operate in this model. The class of GCC protocols includes the most important discrete cake cutting protocols, and turns out to be compatible with the study of fair division among strategic agents. In particular, GCC protocols are guaranteed to have approximate subgame perfect Nash equilibria, or even exact equilibria if the protocol's tie-breaking rule is flexible. We further observe that the (approximate) equilibria of proportional GCC protocols---which guarantee each of the nn agents a 1/n1/n-fraction of the cake---must be (approximately) proportional. Finally, we design a protocol in this framework with the property that its Nash equilibrium allocations coincide with the set of (contiguous) envy-free allocations

    On the Complexity of Chore Division

    Full text link
    We study the proportional chore division problem where a protocol wants to divide an undesirable object, called chore, among nn different players. The goal is to find an allocation such that the cost of the chore assigned to each player be at most 1/n1/n of the total cost. This problem is the dual variant of the cake cutting problem in which we want to allocate a desirable object. Edmonds and Pruhs showed that any protocol for the proportional cake cutting must use at least Ω(nlogn)\Omega(n \log n) queries in the worst case, however, finding a lower bound for the proportional chore division remained an interesting open problem. We show that chore division and cake cutting problems are closely related to each other and provide an Ω(nlogn)\Omega(n \log n) lower bound for chore division

    Encrypted Receipts for Voter-Verified Elections Using Homomorphic Encryption

    Get PDF
    Voters are now demanding the ability to verify that their votes are cast and counted as intended. Most existing cryptographic election protocols do not treat the voter as a computationally-limited entity separate from the voting booth, and therefore do not ensure that the voting booth records the correct vote. David Chaum and Andrew Neff have proposed mixnet schemes that do provide this assurance, but little research has been done that combines voter verification with homomorphic encryption. This thesis proposes adding voter verification to an existing multi-candidate election scheme (Baudron et al.) that uses Paillier encryption. A “cut and choose” protocol provides a probabilistic guarantee of correctness. The scheme is straightforward, and could easily be extended to multi-authority elections. The feasibility of the proposed scheme is demonstrated via a simple implementation

    How to prove knowledge of small secrets

    Get PDF
    We propose a new zero-knowledge protocol applicable to additively homomorphic functions that map integer vectors to an Abelian group. The protocol demonstrates knowledge of a short preimage and achieves amortised efficiency comparable to the approach of Cramer and Damgård from Crypto 2010, but gives a much tighter bound on what we can extract from a dishonest prover. Towards achieving this result, we develop an analysis for bins-and-balls games that might be of independent interest. We also provide a general analysis of rewinding of a cut-and-choose protocol as well as a method to use Lyubachevsky\u27s rejection sampling technique efficiently in an interactive protocol when many proofs are given simultaneously. Our new protocol yields improved proofs of plaintext knowledge for (Ring-)LWE-based cryptosystems, where such general techniques were not known before. Moreover, they can be extended to prove preimages of homomorphic hash functions as well
    corecore