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Abstract
We study the problem of fairly allocating a set of indivisible goods to multiple agents and focus
on the proportionality, which is one of the classical fairness notions. Since proportional allocations
do not always exist when goods are indivisible, approximate notions of proportionality have been
considered in the previous work. Among them, proportionality up to the maximin good (PROPm)
has been the best approximate notion of proportionality that can be achieved for all instances.
In this paper, we introduce the notion of proportionality up to the least valued good on average
(PROPavg), which is a stronger notion than PROPm, and show that a PROPavg allocation always
exists. Our results establish PROPavg as a notable non-trivial fairness notion that can be achieved
for all instances. Our proof is constructive, and based on a new technique that generalizes the
cut-and-choose protocol.
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1 Introduction

1.1 Proportional Allocation of Indivisible Goods
We study the problem of fairly allocating a set of indivisible goods to multiple agents under
additive valuations. Fair division of indivisible goods is a fundamental and well-studied
problem in Economics and Computer Science. We are given a set M of m indivisible goods
and a set N of n agents with individual valuations. Under additive valuations, each agent
i ∈ N has value vi({g}) ≥ 0 for each good g and her value for a bundle S of goods is equal
to the sum of the value of each good g ∈ S, i.e., vi(S) =

∑
g∈S vi({g}). An indivisible good

can not be split among multiple agents and this causes finding a fair division to be a difficult
task.

One of the standard notions of fairness is proportionality. Let X = (X1, X2, . . . , Xn)
be an allocation, i.e., a partition of M into n bundles such that Xi is allocated to agent
i. An allocation X is said to be proportional (PROP) if vi(Xi) ≥ 1

n vi(M) holds for each
agent i. In other words, in a proportional allocation, every agent receives a set of goods
whose value is at least 1/n fraction of the value of the entire set. Unfortunately, proportional
allocations do not always exist when goods are indivisible. For instance, when allocating a
single indivisible good to more than one agents it is impossible to achieve any proportional
allocation. Thus, several relaxations of proportionality such as PROP1, PROPx, and PROPm
have been considered in the previous work.
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Each of these notions requires that each agent i ∈ N receives value at least 1
n vi(M)−di(X),

where di(X) is appropriately defined for each notion. Proportionality up to the largest valued
good (PROP1) is a relaxation of proportionality that was introduced by Conitzer et al. [17].
PROP1 requires di(X) to be the largest value that agent i has for any good allocated to
other agents, i.e., di(X) = maxk∈N\{i} maxg∈Xk

vi({g}). It is shown in [17] that there always
exists a Pareto optimal1 allocation that satisfies PROP1. Moreover, Aziz et al. [4] presented
a polynomial-time algorithm that finds a PROP1 and Pareto optimal allocation even in the
presence of chores, i.e., some items can have negative value.

Another relaxation is proportionality up to the least valued good (PROPx), which is much
stronger than PROP1. PROPx requires di(X) to be the least value that agent i has for any
good allocated to other agents, i.e., di(X) = mink∈N\{i} ming∈Xk

vi({g}). Moulin [26] gave
an example for which no PROPx allocation exists, and Aziz et al. [4] gave a simpler example.

Recently, Baklanov et al. [5] introduced proportionality up to the maximin good (PROPm).
PROPm requires di(X) = maxk∈N\{i} ming∈Xk

vi({g}), which shows that PROPm is the
notion between PROP1 and PROPx. It is shown in [5] that a PROPm allocation always exists
for instances with at most five agents, and later Baklanov et al. [6] showed that there always
exists a PROPm allocation for any instance and it can be computed in polynomial time. To
the best of our knowledge, PROPm has been the best approximate notion of proportionality
that is shown to be achieved for all instances.

However, in some cases, PROPm is not a good enough relaxation of proportionality.
Suppose that there exists a good g ∈M for which every agent has value at least 1/n fraction
of the value of M . Then allocating g to some agent i and allocating all the goods in M \ {g}
to another agent achieves a PROPm allocation, whereas it will be better to allocate M \ {g}
to N \ {i} in a fair manner (see Example 1). This motivates the study of better relaxations
of proportionality than PROPm.

1.2 Our Contribution
In this paper, we introduce proportionality up to the least valued good on average (PROPavg),
a new relaxation of proportionality, and show that there always exists a PROPavg allocation
for all instances. PROPavg requires di(X) to be the average of minimum value that agent
i has for any good allocated to other agents, i.e., di(X) = 1

n−1
∑

k∈N\{i} ming∈Xk
vi({g}).

It is easy to see that PROPavg implies PROPm. Note that a similar and slightly stronger
notion was introduced by Baklanov et al. [5] with the name of Average-EFX (Avg-EFX), where
di(X) = 1

n

∑
k∈N\{i} ming∈Xk

vi({g}). Note that Avg-EFX is also an approximate notion of
proportionality. It remains open whether an Avg-EFX allocation always exists. The following
example demonstrates that PROPavg is a reasonable relaxation of proportionality compared
to PROPm.

▶ Example 1. Suppose that N = {1, 2, 3}, M = {g1, g2, g3, g4}, and each agent has an
identical additive valuation v such that v({g1}) = 10, v({g2}) = v({g3}) = 7, and v({g4}) = 6.
As v({g1}) ≥ 10, the allocation ({g1, g2, g3, g4}, ∅, ∅) satisfies PROP1 even though agents 2
and 3 receive no good. Similarly, the allocation ({g1}, {g2, g3, g4}, ∅) satisfies PROPm even
though agent 3 receives no good. In contrast, every agent has to receive at least one good
in any PROPavg allocation. Table 1 shows a comparison among some fairness notions (see
Section 1.4 for the definition of EFX).

1 An allocation X = (X1, . . . , Xn) is Pareto optimal if there is no allocation Y = (Y1, . . . , Yn) such that
vi(Yi) ≥ vi(Xi) for any agent i, and there exists an agent j such that vj(Yj) > vj(Xj).
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Table 1 Comparison among fairness notions in Example 1. The symbol “✓” (resp. “✗”) indicates
that the allocation satisfies (resp. does not satisfy) the corresponding fairness.

EFX PROPavg PROPm PROP1
({g1}, {g2, g4}, {g3}) ✓ ✓ ✓ ✓

({g1}, {g2, g3}, {g4}) ✗ ✓ ✓ ✓

({g1}, {g2, g3, g4}, ∅) ✗ ✗ ✓ ✓

({g1, g2, g3, g4}, ∅, ∅) ✗ ✗ ✗ ✓

Table 2 Relaxations of Proportionality.

di(X) Does it always exist?
PROPx mink∈N\{i} ming∈Xk vi({g}) No [4, 26]
Avg-EFX 1

n

∑
k∈N\{i} ming∈Xk vi({g}) Open

PROPavg 1
n−1

∑
k∈N\{i} ming∈Xk vi({g}) Yes (our result)

PROPm maxk∈N\{i} ming∈Xk vi({g}) Yes [6]
PROP1 maxk∈N\{i} maxg∈Xk vi({g}) Yes [17]

The main contribution of this paper is to show the existence of PROPavg allocations for
all instances, which extends the existence of PROPm allocations shown by Baklanov et al. [6].

▶ Theorem 2. There always exists a PROPavg allocation when each agent has a non-negative
additive valuation.

Known results on relaxations of proportionality are summarized in Table 2.
In order to prove Theorem 2, we provide an algorithm to find a PROPavg allocation. The

running time of our algorithm is pseudo-polynomial, while Baklanov et al. [6] showed that a
PROPm allocation can be computed in polynomial time. We discuss the time complexity in
Section 5 in detail.

1.3 Our Techniques

Our algorithm can be seen as a generalization of cut-and-choose protocol, which is a well-
known procedure to fairly allocate resources between two agents. In the cut-and-choose
protocol, one agent partitions resources equally into two bundles for her valuation, and then
the other agent chooses the best bundle of the two for her valuation. We generalize this
protocol from two agents to n agents in the following way: some n− 1 agents partition the
goods into n bundles, and then the remaining agent chooses the best bundle among them for
her valuation. To apply this protocol, it suffices to show that there exists a partition of the
goods into n bundles such that no matter which bundle the remaining agent chooses, the
remaining n− 1 bundles can be allocated to the first n− 1 agents fairly.

In our algorithm, we find such a partition by using an auxiliary graph called PROPavg-
graph. A formal definition of the PROPavg-graph is given in Section 3, and our algorithm
and its correctness proof are shown in Section 4. Let us emphasize that introducing the
PROPavg-graph is a key technical ingredient in this paper. It is also worth noting that Hall’s
marriage theorem [21], a classical and famous theorem in discrete mathematics, plays an
important role in our argument.

ISAAC 2022



55:4 Proportional Allocation of Indivisible Goods up to the Least Valued Good on Average

Figure 1 Relationship among some fairness notions. EF, PROP, or PROPx allocations do not
always exist, while PROPavg, PROPm, EF1, and PROP1 can be achieved for all instances. It is not
known whether EFX or Avg-EFX allocations always exist or not.

1.4 Related Work

Fair division of divisible resources is a classical topic starting from the 1940’s [29] and has
a long history in multiple fields such as Economics, Social Choice Theory, and Computer
Science [9, 10, 25, 28]. In contrast, fair division of indivisible goods has actively studied in
recent years (see, e.g., [2, 3]).

In the context of fair division, besides proportionality, envy-freeness is another well-studied
notion of fairness. An allocation is called envy-free (EF) if for each agent, she receives a set
of goods for which she has value at least value of the set of goods any other agent receives.
As in the proportionality case, envy-free allocations do not always exist when goods are
indivisible, and several relaxations of envy-freeness have been considered. Among them, a
notable one is envy-freeness up to one good (EF1) [11]. It is known that there always exists an
EF1 allocation, and it can be computed in polynomial time [22]. Another notable relaxation
is envy-freeness up to any good (EFX) [13]. An allocation X = (X1, . . . , Xn) is called EFX if
for any pair of agents i, j ∈ N , vi(Xi) ≥ vi(Xj)−mi(Xj), where mi(Xj) is the value of the
least valuable good for agent i in Xj . It is one of the major open problems in fair division
whether EFX allocations always exist or not. As mentioned in [5], it is easy to see that EFX
implies Avg-EFX. As with EFX, it is not known whether Avg-EFX allocations always exist for
instances with four or more agents. The relationship among notions mentioned above and
the existence results are summarized in Figure 1.

There have been several studies on the existence of an EFX allocation for restricted cases.
Plaut and Roughgarden [27] showed that an EFX allocation always exists for instances with
two agents even when each agent can have more general valuations than additive valuations.
Chaudhury et al. [14] showed that an EFX allocation always exists for instances with three
agents. It is not known whether EFX allocations always exist even for instances with four
agents having additive valuations. We can also consider the cases with restricted valuations.
For example, there always exists an EFX allocation when valuations are identical [27], two
types [23,24], binary [7, 18], or bi-valued [1].

Another direction of research related to EFX is EFX-with-charity, in which unallocated
goods are allowed. Obviously, without any constraints, the problem is trivial: leaving all
goods unallocated results in an envy-free allocation. Thus, the goal here is to find allocations
with better guarantees. For additive valuations, Caragiannis et al. [12] showed that there
exists an EFX allocation with some unallocated goods where every agent receives at least
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half the value of her bundle in a maximum Nash social welfare allocation2. For normalized
and monotone valuations, Chaudhury et al. [16] showed that there exist an EFX allocation
and a set of unallocated goods U such that every agent has value for her own bundle at least
value for U , and |U | < n. Berger et al. [8] showed that the number of the unallocated goods
can be decreased to n− 2, and to just one for the case of four agents having nice cancelable
valuations, which are more general than additive valuations. Mahara [24] showed that the
number of the unallocated goods can be decreased to n− 2 for normalized and monotone
valuations, which are more general than nice cancelable valuations. For additive valuations,
Chaudhury et al. [15] presented a polynomial-time algorithm for finding an approximate
EFX allocation with at most a sublinear number of unallocated goods and high Nash social
welfare.

2 Preliminaries

Let N = {1, . . . , n} be a set of n agents and M be a set of m goods. We assume that
goods are indivisible: a good can not be split among multiple agents. Each agent i ∈ N

has a non-negative valuation vi : 2M → R≥0, where 2M is the power set of M . We assume
that each valuation vi is additive, i.e., vi(S) =

∑
g∈S vi({g}) for any S ⊆ M . Note that

since valuations are non-negative and additive, they have to be normalized: vi(∅) = 0 and
monotone: S ⊆ T implies vi(S) ≤ vi(T ) for any S, T ⊆ M . For ease of explanation, we
normalize the valuations so that vi(M) = 1 for all i ∈ N .

To simplify notation, we denote {1, . . . , k} by [k] for any positive integer k, write vi(g)
instead of vi({g}) for g ∈ M , and use S \ g and S ∪ g instead of S \ {g} and S ∪ {g},
respectively.

We say that X = (X1, X2, . . . , Xn) is an allocation of M to N if it is a partition of M

into n disjoint subsets such that each set is indexed by i ∈ N . Each Xi is the set of goods
given to agent i, which we call a bundle. It is simply called an allocation to N if M is clear
from context. For i ∈ N and S ⊆M , let mi(S) denote the value of the least valuable good
for agent i in S, that is, mi(S) = ming∈S{vi(g)} if S ≠ ∅ and mi(∅) = 0. For an allocation
X = (X1, X2, . . . , Xn) to N , we say that an agent i is PROPavg-satisfied by X if

vi(Xi) + 1
n− 1

∑
k∈[n]\i

mi(Xk) ≥ 1
n

,

where we recall that vi(M) = 1. In other words, agent i receives a set of goods for which
she has value at least 1/n fraction of her total value minus the average of minimum value of
the set of goods any other agent receives. An allocation X is called PROPavg if every agent
i ∈ N is PROPavg-satisfied by X.

Let G = (V, E) be a graph. For S ⊆ V , let ΓG(S) = {v ∈ V \S | (s, v) ∈ E for some s ∈ S}
denote the set of neighbors of S in G. For v ∈ V , let G− v denote the graph obtained from
G by deleting v. A perfect matching in G is a set of pairwise disjoint edges of G covering all
the vertices of G.

3 Key Ingredient: PROPavg-Graph

In order to prove Theorem 2, we give an algorithm for finding a PROPavg allocation. As
described in Section 1.3, our algorithm is a generalization of the cut-and-choose protocol
that consists of the following three steps.

2 This is an allocation that maximizes Πn
i=1vi(Xi).

ISAAC 2022
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Figure 2 Examples of a PROPavg-graph GX . If GX is as in (a), then X satisfies (P1) but does
not satisfy (P2). If GX is as in (b), then X satisfies (P2).

1. We partition the goods into n bundles without assigning them to agents.
2. A specified agent, say n, chooses the best bundle for her valuation.
3. We determine an assignment of the remaining bundles to the agents in N \ n.
The partition given in the first step is represented by an allocation of M to a newly introduced
set of size n, say V2, and the assignment in the third step is represented by a matching in
an auxiliary bipartite graph, which we call PROPavg-graph. In this section, we define the
PROPavg-graph and its desired properties.

Let V2 be a set of n elements and fix a specified element r ∈ V2. We say that X = (Xu)u∈V2

is an allocation to V2 if it is a partition of M into n disjoint subsets such that each set is
indexed by an element in V2, that is,

⋃
u∈V2

Xu = M and Xu∩Xu′ = ∅ for distinct u, u′ ∈ V2.
For an allocation X = (Xu)u∈V2 to V2, we define a bipartite graph GX = (V1, V2; E) called
PROPavg-graph as follows. The vertex set consists of V1 = N \ n and V2, and the edge set E

is defined by

(i, u) ∈ E ⇐⇒ vi(Xu) + 1
n− 1

∑
u′∈V2\{r,u}

mi(Xu′) ≥ 1
n

for i ∈ V1 and u ∈ V2. It should be emphasized that the summation is taken over V2 \ {r, u},
i.e., mi(Xr) is not counted, in the above definition, which is crucial in our argument.
The following lemma shows that the PROPavg-graph is closely related to the definition of
PROPavg-satisfaction.

▶ Lemma 3. Suppose that GX = (V1, V2; E) is the PROPavg-graph for an allocation X =
(Xu)u∈V2 to V2. Let σ be a bijection from N to V2 and define an allocation Y = (Y1, . . . , Yn)
to N by Yi = Xσ(i) for i ∈ N . For i∗ ∈ V1, if (i∗, σ(i∗)) ∈ E, then i∗ is PROPavg-satisfied
by Y .

Proof. Let u∗ = σ(i∗) and suppose that (i∗, u∗) ∈ E. We directly obtain

vi∗(Yi∗) + 1
n− 1

∑
j∈[n]\i∗

mi∗(Yj) ≥ vi∗(Xu∗) + 1
n− 1

∑
u∈V2\{u∗,r}

mi∗(Xu) ≥ 1
n

,

where the first inequality follows from the definition of Y and mi∗(Xr) ≥ 0, and the second
inequality follows from (i∗, u∗) ∈ E. ◀

As we will see in Section 4, throughout our algorithm, we always keep an allocation
X = (Xu)u∈V2 to V2 that satisfies the following property.
(P1) GX − r has a perfect matching.
By updating allocation X repeatedly while keeping (P1), we construct an allocation that
satisfies the following stronger property.
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(P2) For any u ∈ V2, GX − u has a perfect matching.
Examples of a PROPavg-graph GX are shown in Figure 2. We can rephrase these conditions
by using the following classical theorem known as Hall’s marriage theorem in discrete
mathematics.

▶ Theorem 4 (Hall’s marriage theorem [21]). Suppose that G = (A, B; E) is a bipartite graph
with |A| = |B|. Then, G has a perfect matching if and only if |S| ≤ |ΓG(S)| for any S ⊆ A.

The property (P1) is equivalent to |S| ≤ |ΓGX −r(S)| for any S ⊆ V1 by this theorem. The
property (P2) is equivalent to |S| ≤ |ΓGX −u(S)| for any u ∈ V2 and S ⊆ V1 by Hall’s marriage
theorem. By simple observation, we can obtain another characterization of property (P2).

▶ Lemma 5. Let X = (Xu)u∈V2 be an allocation to V2. Then, X satisfies (P2) if and only
if |S|+ 1 ≤ |ΓGX

(S)| for any non-empty subset S ⊆ V1.

Proof. By Hall’s marriage theorem, it is sufficient to show that the following two conditions
are equivalent:

(i) |S| ≤ |ΓGX −u(S)| for any u ∈ V2 and S ⊆ V1, and
(ii) |S|+ 1 ≤ |ΓGX

(S)| for any non-empty subset S ⊆ V1.

Suppose that (i) holds. Let S be a nonempty subset of V1. Since (i) implies that
|ΓGX

(S)| ≥ |S| ≥ 1, we obtain ΓGX
(S) ̸= ∅. Let u ∈ ΓGX

(S). By (i) again, we obtain
|ΓGX

(S)| = |ΓGX −u(S)|+ 1 ≥ |S|+ 1. This shows (ii).
Conversely, suppose that (ii) holds. Let u ∈ V2 and let S ⊆ V1. If S = ∅, then it clearly

holds that |S| ≤ |ΓGX −u(S)|. If S ̸= ∅, then we have |S|+ 1 ≤ |ΓGX
(S)| ≤ |ΓGX −u(S)|+ 1,

which implies that |S| ≤ |ΓGX −u(S)|. This shows (i). ◀

4 Existence of a PROPavg Allocation

We prove our main result, Theorem 2, in this section. Our algorithm begins with obtaining
an initial allocation X = (Xu)u∈V2 to V2 satisfying (P1). Unless X satisfies (P2), we
appropriately choose a good in

⋃
u∈V2\r Xu and move it to Xr while keeping (P1). Finally,

we get an allocation X∗ = (X∗
u)u∈V2 to V2 satisfying (P2). As we will see later, we can obtain

a PROPavg allocation to N by using this allocation.

4.1 Our Algorithm
In order to obtain an initial allocation X = (Xu)u∈V2 to V2 satisfying (P1), we use the
following previous result about EFX-with-charity.

▶ Theorem 6 (Chaudhury et al. [16]). For normalized and monotone valuations, there always
exists an allocation X = (X1, . . . , Xn) of M \ U to N , where U is a set of unallocated goods,
such that

X is EFX, that is, vi(Xi) + mi(Xj) ≥ vi(Xj) for any pair of agents i, j ∈ N ,
vi(Xi) ≥ vi(U) for any agent i ∈ N , and
|U | < n.

The following lemma shows that by applying Theorem 6 to agents N \ n, we can obtain an
initial allocation X = (Xu)u∈V2 to V2 satisfying (P1).

▶ Lemma 7. There exists an allocation X = (Xu)u∈V2 to V2 satisfying (P1).

ISAAC 2022
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Proof. By applying Theorem 6 to agents N\n, we can obtain an allocation Y = (Y1, . . . , Yn−1)
of M \U to N \n, where U is a set of unallocated goods, satisfying the conditions in Theorem 6.
Let V2 = {r, u1, . . . , un−1} and define an allocation X = (Xu)u∈V2 to V2 as Xuj

= Yj for
j ∈ [n− 1] and Xr = U . Let GX = (V1, V2; E) be the PROPavg-graph for X. We show that
X satisfies (P1).

Fix any agent i ∈ V1. We have vi(Xui) + mi(Xuj ) ≥ vi(Xuj ) for any j ∈ [n− 1] \ i since
Y is EFX and Xuj

= Yj . We also have vi(Xui
) = vi(Yi) ≥ vi(U) = vi(Xr) and a trivial

inequality vi(Xui
) ≥ vi(Xui

). By summing up these inequalities, we obtain n · vi(Xui
) +∑

j∈[n−1]\i mi(Xuj
) ≥

∑
u∈V2

vi(Xu) = 1. This shows that

vi(Xui
) + 1

n− 1
∑

u′∈V2\{ui,r}

mi(Xu′) ≥ vi(Xui
) + 1

n

∑
j∈[n−1]\i

mi(Xuj
) ≥ 1

n
,

and hence (i, ui) ∈ E. Therefore, GX − r has a perfect matching {(i, ui) | i ∈ [n− 1]}, which
implies (P1). ◀

The following lemma shows that if we obtain an allocation X = (Xu)u∈V2 to V2 satisfying
(P2), then there exists a PROPavg allocation to N .

▶ Lemma 8. Suppose that X = (Xu)u∈V2 is an allocation to V2 satisfying (P2). Then, we
can construct a PROPavg allocation to N .

Proof. Let X = (Xu)u∈V2 be an allocation to V2 satisfying (P2). First, agent n chooses the
best bundle Xu∗ for her valuation among {Xu | u ∈ V2} (if there is more than one such bundle,
choose one arbitrarily). Since X satisfies (P2), there exists a perfect matching A in GX − u∗.
For each agent i ∈ V1(= N \ n), the bundle corresponding to the vertex that matches i in A

is allocated to i. By Lemma 3, i is PROPavg-satisfied for each agent i ∈ V1. Furthermore,
since we have vn(Xu∗) = maxu∈V2 vn(Xu) ≥ 1

n , agent n is also PROPavg-satisfied. Therefore,
the obtained allocation is a PROPavg allocation. ◀

The following proposition shows how we update an allocation in each iteration, whose
proof is given in Section 4.2.

▶ Proposition 9. Suppose that X = (Xu)u∈V2 is an allocation to V2 that satisfies (P1) but
does not satisfy (P2). Then, there exists another allocation X ′ = (X ′

u)u∈V2 to V2 satisfying
(P1) such that |X ′

r| = |Xr|+ 1.

We note that, as we will see in Section 4.2, the allocation X ′ in Proposition 9 is obtained
by moving an appropriate good g ∈

⋃
u∈V2\r Xu to Xr. If Proposition 9 holds, then we can

show Theorem 2 as follows. See Algorithm 1 for the algorithm description.

Proof of Theorem 2. By Lemma 7, we first obtain an initial allocation X = (Xu)u∈V2 to
V2 satisfying (P1). By Proposition 9, unless X satisfies (P2), we can increase |Xr| by one
while keeping the property (P1). Since |Xr| ≤ |M |, this procedure terminates in at most m

steps, and we finally obtain an allocation X∗ to V2 satisfying (P2). Therefore, there exists a
PROPavg allocation to N by Lemma 8. ◀
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Algorithm 1 Algorithm for finding a PROPavg allocation.

Input: agents N , goods M , and a valuation vi for each i ∈ N

Output: a PROPavg allocation to N

1: Apply Lemma 7 to obtain an allocation X to V2 satisfying (P1).
2: while X does not satisfy (P2) do
3: Apply Proposition 9 to X and obtain another allocation X ′ to V2.
4: X ← X ′.
5: Apply Lemma 8 to obtain a PROPavg allocation to N .

4.2 Proof of Proposition 9

Let X = (Xu)u∈V2 be an allocation to V2. For u∗ ∈ V2 \ r and g ∈ Xu∗ , we say that an
allocation X ′ = (X ′

u)u∈V2 to V2 is obtained from X by moving g to Xr if

X ′
u =


Xr ∪ g if u = r,

Xu∗ \ g if u = u∗,

Xu otherwise.

The following lemma guarantees that if there exists an agent i ∈ V1 such that (i, r) ̸∈ E

in the PROPavg-graph GX = (V1, V2; E), then we can move some good in
⋃

u∈V2\r Xu to
Xr so that the edges incident to i do not disappear. This lemma is crucial in the proof of
Proposition 9.

▶ Lemma 10. Let X = (Xu)u∈V2 be an allocation to V2 and let i ∈ V1 be an agent such that
(i, r) ̸∈ E in the PROPavg-graph GX = (V1, V2; E). Then, there exist u∗ ∈ V2 and g ∈ Xu∗

such that (i, u∗) ∈ E, |Xu∗ | ≥ 2, and the following property holds: if an allocation X ′ to V2
is obtained from X by moving g to Xr, then the corresponding PROPavg-graph GX′ has an
edge (i, u∗).

Proof. To derive a contradiction, assume that u∗ and g satisfying the conditions in Lemma 10
do not exist. Then, we have the following claim.

▷ Claim 11. For any u ∈ V2 with (i, u) ∈ E, we obtain

vi(Xu)−mi(Xu) + 1
n− 1

∑
u′∈V2\{r,u}:

(i,u′)∈E

mi(Xu′) <
1
n

. (1)

Proof of the Claim. Fix u ∈ V2 with (i, u) ∈ E. If Xu = ∅, then we have

vi(Xr) + 1
n− 1

∑
u′∈V2\r

mi(Xu′) ≥ vi(Xu) + 1
n− 1

∑
u′∈V2\{r,u}

mi(Xu′) ≥ 1
n

,

where the first inequality follows from vi(Xu) = 0 and the second inequality follows from
(i, u) ∈ E. This contradicts (i, r) ̸∈ E. Therefore, Xu ̸= ∅.

Let g be a good in Xu that minimizes vi(g). Then, vi(g) = mi(Xu). Define X ′ =
(X ′

u′)u′∈V2 as the allocation to V2 that is obtained from X by moving g to Xr. Let GX′ =
(V1, V2; E′) be the PROPavg-graph corresponding to X ′. Since u and g do not satisfy the
conditions in Lemma 10 by our assumption, we have (i, u) ̸∈ E′ or |Xu| = 1.
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If (i, u) ∈ E′, then we obtain |Xu| = 1, and hence

vi(Xr) + 1
n− 1

∑
u′∈V2\r

mi(Xu′) ≥ 1
n− 1

∑
u′∈V2\{r,u}

mi(Xu′)

= vi(X ′
u) + 1

n− 1
∑

u′∈V2\{r,u}

mi(X ′
u′)

≥ 1
n

,

where the equality follows from vi(X ′
u) = vi(∅) = 0 and the last inequality follows from

(i, u) ∈ E′. This contradicts (i, r) ̸∈ E.
Thus, it holds that (i, u) ̸∈ E′. Since vi(Xu)−mi(Xu) = vi(X ′

u), we obtain

vi(Xu)−mi(Xu) + 1
n− 1

∑
u′∈V2\{r,u}:

(i,u′)∈E

mi(Xu′)

≤ vi(Xu)−mi(Xu) + 1
n− 1

∑
u′∈V2\{r,u}

mi(Xu′)

= vi(X ′
u) + 1

n− 1
∑

u′∈V2\{r,u}

mi(X ′
u′)

<
1
n

,

where the last inequality follows from (i, u) ̸∈ E′. ◁

By summing up inequality (1) for each u ∈ V2 with (i, u) ∈ E, we obtain the following
inequality:∑

u∈V2:
(i,u)∈E

vi(Xu) +
(
−1 + l − 1

n− 1

) ∑
u′∈V2\r:
(i,u′)∈E

mi(Xu′) <
l

n
, (2)

where l = |{u ∈ V2 | (i, u) ∈ E}|.
On the other hand, for any u ∈ V2 with (i, u) ̸∈ E, we have

vi(Xu) + 1
n− 1

∑
u′∈V2\r:
(i,u′)∈E

mi(Xu′) ≤ vi(Xu) + 1
n− 1

∑
u′∈V2\{r,u}

mi(Xu′) <
1
n

, (3)

where the both inequalities follow from (i, u) ̸∈ E. Summing up inequality (3) for each u ∈ V2
with (i, u) ̸∈ E, we obtain∑

u∈V2:
(i,u)̸∈E

vi(Xu) +
(

n− l

n− 1

) ∑
u′∈V2\r:
(i,u′)∈E

mi(Xu′) <
n− l

n
, (4)

where we note that |{u ∈ V2 | (i, u) ̸∈ E}| = n− l.
By taking the sum of inequalities (2) and (4), we obtain∑
u∈V2:

(i,u)∈E

vi(Xu) +
∑

u∈V2:
(i,u)̸∈E

vi(Xu) < 1,

which contradicts
∑

u∈V2
vi(Xu) = 1.

Therefore, there exist u∗ ∈ V2 and g ∈ Xu∗ satisfying the conditions in Lemma 10. ◀
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Figure 3 PROPavg-graph GX corresponding to X in the proof of Proposition 9.

We are now ready to prove Proposition 9.

Proof of Proposition 9. Suppose that X = (Xu)u∈V2 is an allocation to V2 that satisfies
(P1) but does not satisfy (P2). Let GX = (V1, V2; E) be the PROPavg-graph corresponding
to X. Since X does not satisfy (P2), there exists a non-empty set S ⊆ V1 such that
|S|+ 1 > |ΓGX

(S)| by Lemma 5. Among such sets, let S∗ ⊆ V1 be an inclusion-wise minimal
one. Then, |S∗| ≥ |ΓGX

(S∗)| by the integrality of |S∗| and |ΓGX
(S∗)|, and |S|+1 ≤ |ΓGX

(S)|
for any non-empty proper subset S ⊊ S∗. We now show some properties of S∗.

▷ Claim 12. For any i ∈ S∗, it holds that (i, r) ̸∈ E.

Proof of the claim. Since X satisfies (P1), we have |S∗| ≤ |ΓGX −r(S∗)| by Hall’s marriage
theorem. Hence, we obtain |S∗| ≤ |ΓGX −r(S∗)| ≤ |ΓGX

(S∗)| ≤ |S∗|, where the last inequality
follows from the definition of S∗. This shows that all the above inequalities are tight. Since
|ΓGX −r(S∗)| = |ΓGX

(S∗)|, we obtain r ̸∈ ΓGX
(S∗), that is, (i, r) ̸∈ E for any i ∈ S∗. ◁

▷ Claim 13. For any i ∈ S∗ and u ∈ ΓGX
(S∗) with (i, u) ∈ E, GX−r has a perfect matching

in which i matches u.

Proof of the claim. Fix any i ∈ S∗ and u ∈ ΓGX
(S∗) with (i, u) ∈ E. Note that r ̸∈ ΓGX

(S∗)
by Claim 12, and hence u ̸= r.

Since X satisfies (P1), GX − r has a perfect matching A. In A, it is obvious that every
vertex in S∗ is matched to a vertex in ΓGX −r(S∗). Conversely, every vertex in ΓGX −r(S∗)
is matched to a vertex in S∗ as |S∗| = |ΓGX −r(S∗)| (see the proof of Claim 12). Thus, by
removing the edges between S∗ and ΓGX

(S∗) from A, we obtain a matching A1 ⊆ A that
exactly covers V1 \ S∗ and V2 \ (ΓGX

(S∗) ∪ {r}).
Let G′

X be the subgraph of GX induced by (S∗ \ i) ∪ (ΓGX
(S∗) \ u). We now show that

G′
X has a perfect matching. Consider any S ⊆ S∗ \ i. If S = ∅, then it clearly holds that
|S| ≤ |ΓG′

X
(S)|. If S ̸= ∅, then |S|+ 1 ≤ |ΓGX

(S)| ≤ |ΓG′
X

(S) ∪ u| = |ΓG′
X

(S)|+ 1, where
the first inequality follows from the minimality of S∗. Therefore, |S| ≤ |ΓG′

X
(S)| holds for

any S ⊆ S∗ \ i, and hence G′
X has a perfect matching A2 by Hall’s marriage theorem.

Then, A1 ∪A2 ∪ {(i, u)} is a desired perfect matching in GX − r. ◁

Fix any agent i∗ ∈ S∗. Since (i∗, r) ̸∈ E by Claim 12, by applying Lemma 10 to agent
i∗, we obtain u∗ ∈ V2 and g ∈ Xu∗ satisfying the conditions in Lemma 10 (see Figure 3).
Let X ′ = (X ′

u)u∈V2 be the allocation to V2 obtained from X by moving g to Xr and let
GX′ = (V1, V2; E′) be the PROPavg-graph corresponding to X ′. Then, the conditions in
Lemma 10 show that (i∗, u∗) ∈ E ∩ E′ and |Xu∗ | ≥ 2. We also see that E′ satisfies the
following.

▷ Claim 14. For any i ∈ V1 and u ∈ V2 \ u∗, if (i, u) ∈ E then (i, u) ∈ E′.
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Proof of the claim. Since |Xu∗ | ≥ 2, we have mi(X ′
u∗) = mi(Xu∗ \ g) ≥ mi(Xu∗) for any

agent i ∈ V1. Hence, for any i ∈ V1 and u ∈ V2 \ u∗ with (i, u) ∈ E, we obtain

vi(X ′
u) + 1

n− 1
∑

u′∈V2\{r,u}

mi(X ′
u′) ≥ vi(Xu) + 1

n− 1
∑

u′∈V2\{r,u}

mi(Xu′) ≥ 1
n

,

which shows that (i, u) ∈ E′. ◁

By Claim 13 and (i∗, u∗) ∈ E, there exists a perfect matching A in GX − r in which i∗

matches u∗. Then, Claim 14 and (i∗, u∗) ∈ E′ show that A ⊆ E′, that is, A is a perfect
matching also in GX′ − r. Therefore, X ′ satisfies (P1). Since |X ′

r| = |Xr|+ 1 clearly holds
by definition, X ′ satisfies the conditions in Proposition 9. ◀

5 Discussion

In this paper, we have introduced PROPavg, which is a stronger notion than PROPm, and
shown that a PROPavg allocation always exists.

As mentioned in Section 1.2, our algorithm runs in pseudo-polynomial time, and we do
not know whether it can be improved to a polynomial-time algorithm. This is because we
use Theorem 6 as a subroutine in order to obtain an initial allocation X to V2 satisfying (P1).
Actually, the proof of Theorem 6 given in [16] is constructive, but it only leads to a pseudo-
polynomial time algorithm. We can see that the other parts of Algorithm 1 run in polynomial
time as follows. In line 2, we can check (P2) in polynomial time by applying a maximum
matching algorithm for each GX − u. In line 3, it suffices to find a good g ∈

⋃
u∈V2\r Xu

such that (P1) is kept after moving g. Since (P1) can be checked in polynomial time, this
can be done in polynomial time by considering all g in a brute-force way. Finally, line 5 is
executed in polynomial time by a maximum matching algorithm again. Note that we can
speed up lines 2 and 3 by using the DM-decomposition of GX [19, 20], but we do not go into
details, because they are not the most time consuming part. We leave it open whether a
PROPavg allocation can be found in polynomial time or not.

In order to devise our algorithm, we have developed a new technique that generalizes the
cut-and-choose protocol. This technique is interesting by itself and seems to have a potential
for further applications. In fact, we can define a bipartite graph like the PROPavg-graph
for another fairness notion, and our argument works if we obtain an allocation satisfying a
(P2)-like condition. We expect that this technique will be used in other contexts as well.
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