584 research outputs found

    Connectionist Inference Models

    Get PDF
    The performance of symbolic inference tasks has long been a challenge to connectionists. In this paper, we present an extended survey of this area. Existing connectionist inference systems are reviewed, with particular reference to how they perform variable binding and rule-based reasoning, and whether they involve distributed or localist representations. The benefits and disadvantages of different representations and systems are outlined, and conclusions drawn regarding the capabilities of connectionist inference systems when compared with symbolic inference systems or when used for cognitive modeling

    12th International Workshop on Termination (WST 2012) : WST 2012, February 19–23, 2012, Obergurgl, Austria / ed. by Georg Moser

    Get PDF
    This volume contains the proceedings of the 12th International Workshop on Termination (WST 2012), to be held February 19–23, 2012 in Obergurgl, Austria. The goal of the Workshop on Termination is to be a venue for presentation and discussion of all topics in and around termination. In this way, the workshop tries to bridge the gaps between different communities interested and active in research in and around termination. The 12th International Workshop on Termination in Obergurgl continues the successful workshops held in St. Andrews (1993), La Bresse (1995), Ede (1997), Dagstuhl (1999), Utrecht (2001), Valencia (2003), Aachen (2004), Seattle (2006), Paris (2007), Leipzig (2009), and Edinburgh (2010). The 12th International Workshop on Termination did welcome contributions on all aspects of termination and complexity analysis. Contributions from the imperative, constraint, functional, and logic programming communities, and papers investigating applications of complexity or termination (for example in program transformation or theorem proving) were particularly welcome. We did receive 18 submissions which all were accepted. Each paper was assigned two reviewers. In addition to these 18 contributed talks, WST 2012, hosts three invited talks by Alexander Krauss, Martin Hofmann, and Fausto Spoto

    Scheduling Irregular Workloads on GPUs

    Get PDF
    This doctoral research aims at understanding the nature of the overhead for data irregular GPU workloads, proposing a solution, and examining the consequences of the result. We propose a novel, retry-free GPU workload scheduler for irregular workloads. When used in a Breadth First Search (BFS) algorithm, the proposed simple, monolithic concurrent queue scales to within 10% of ideal scalability on AMD’s Fiji GPU with 14,336 active threads. The dissertation presents an important finding that the retry overhead associated with Compare and Swap (CAS) operations is the principle reason why concurrent queues do not scale well as the number of clients increases in a massively multi-threaded environment

    Three Highly Parallel Computer Architectures and Their Suitability for Three Representative Artificial Intelligence Problems

    Get PDF
    Virtually all current Artificial Intelligence (AI) applications are designed to run on sequential (von Neumann) computer architectures. As a result, current systems do not scale up. As knowledge is added to these systems, a point is reached where their performance quickly degrades. The performance of a von Neumann machine is limited by the bandwidth between memory and processor (the von Neumann bottleneck). The bottleneck is avoided by distributing the processing power across the memory of the computer. In this scheme the memory becomes the processor (a smart memory ). This paper highlights the relationship between three representative AI application domains, namely knowledge representation, rule-based expert systems, and vision, and their parallel hardware realizations. Three machines, covering a wide range of fundamental properties of parallel processors, namely module granularity, concurrency control, and communication geometry, are reviewed: the Connection Machine (a fine-grained SIMD hypercube), DADO (a medium-grained MIMD/SIMD/MSIMD tree-machine), and the Butterfly (a coarse-grained MIMD Butterflyswitch machine)

    Coordination and Concurrency in Multi-Engine Prolog

    Get PDF
    Abstract. We discuss the impact of the separation of logic engines (independent logic processing units) and multi-threading on the design of coordination mechanisms for a Prolog based agent infrastructure. We advocate a combination of coroutining constructs with focus on expressiveness and a simplified, multi-threading API that ensures optimal use available parallelism. In this context, native multi-threading is made available to the application programmer as a set of high-level primitives with a declarative flavor while cooperative constructs provide efficient and predictable coordination mechanisms. As illustrations of our techniques, a parallel fold operation as well as cooperative implementations of Linda blackboards and publish/subscribe are described
    corecore