277 research outputs found

    Understanding mechanical environment changes and biological responses to canine retraction using T-loop

    Get PDF
    Jiang, Feifei. Ph.D., Purdue University, May 2015. Understanding Mechanical Environment Changes and Biological Responses to Canine Retraction Using T-loop. Major Professors: Jie Chen, School of Engineering and Technology, Anil Bajaj, School of Mechanical Engineering. Predictability of tooth displacement in response to specific orthodontic load system directly links to the quality and effectiveness of the treatment. The key questions are how the tooth\u27s environment changes in response to the orthodontic load and how the biological tissues respond clinically. The objectives of this study are to determine the mechanical environment (ME) changes and to quantify the biological tissues\u27 response. Eighteen (18) patients who needed maxillary bilateral canine retractions were involved in the study. A method was developed to quantify the 3D load systems on the canine, which allowed the treatment strategies to be customized in terms of orthodontic loading systems to meet either translation (TR) or controlled tipping (CT) requirement. Dental casts were made before and after each treatment interval, and the Cone Beam Computed Tomography (CBCT) scans were taken prior to and following the entire treatment for control of treatment strategy and post treatment evaluations. Finite element method (FEM) was applied to calculate the location of center of resistance (CRes) for tooth movement control. The location and variation of CRes were recorded and compared with previous studies. A quick CRes assessment method that locates CRes by calculating the centroid of the contact surface (CCS) and the centroid of the projection of root surface (CPCS) in certain direction was also tested and compared with the results from FEM. Customized T-loop spring, a kind of orthodontic appliance, was designed, fabricated, and calibrated on a load measuring system to ensure that the load met the clinician\u27s prescription. The treatment outcomes in terms of tooth displacement and root resorption characterized by the changes of tooth length and volume as well as the bone mineral density (BMD) represented by the Hounsfield units (HU) change were recorded and analyzed. The ME in terms of stress were also calculated by using FEM. Paired t-test and mixed model ANOVA methods were used to analyze the relationships between the mechanical inputs (quantified and customized load, and corresponding stress) and clinical outcomes (root resorption and BMD change). It was found that the overall root resorption is not significant for canine retraction, but apical root resorption does occur, meaning that orthodontic load is not a sufficient factor. Also, it was observed that HU distribution changed significantly in both root and alveolar bone. The maximum reduction was on the coronal level in the direction perpendicular to the direction of movement in root, and in the direction of the tooth movement at the coronal level in bone. In addition, it was determined that the locations of the CRes in the MD and BL directions were significantly different. The locations of the CRes of a human canine in MD and BL directions can be estimated by finding the CPCSs in the two directions. Finally, it was shown that the stress invariants can be used to characterize how the osteocytes feel when ME changes. The stress invariants in the alveolar bone are not significantly affected by different M/F. The higher bone modeling/remodeling activities along the direction of tooth movement may be related to the initial volumetric increase and decrease in the alveolar bone

    Craniofacial Growth Series Volume 56

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/153991/1/56th volume CF growth series FINAL 02262020.pdfDescription of 56th volume CF growth series FINAL 02262020.pdf : Proceedings of the 46th Annual Moyers Symposium and 44th Moyers Presymposiu

    A multi-sensing physical therapy assessment for children with cerebral palsy

    Get PDF
    This work presents the development of a multi-sensing interface called Palsy Thera Sense, to provide information data obtained during physical therapy of the children with cerebral palsy. It allows the monitoring the children's motor skills, and provide metrics that can be later used for proper and effective training. This interface is based on distributed force measurement system characterized by two different load cells. The signals from signals from the load cells distributed on the level of a force platform and at the level of child's body support ropes that are tied on the cerebral palsy spider cage are acquired and wireless transmitted to a client computation platform. Thus different tests can be carried out including, center of forces measurements and gait simulations. These tests can be study of children balance during different activities such as serious game playing for upper limb rehabilitation. The interface shown to be an important tool that provide support to cerebral palsy rehabilitation process, and for objective evaluation of the patients during the rehabilitation period. Several experimental results are included in the paper highlighting the capabilities of the designed and implemented multi-sensing system.info:eu-repo/semantics/acceptedVersio

    Explore the Dynamic Characteristics of Dental Structures: Modelling, Remodelling, Implantology and Optimisation

    Get PDF
    The properties of a structure can be both narrowly and broadly described. The mechanical properties, as a narrow sense of property, are those that are quantitative and can be directly measured through experiments. They can be used as a metric to compare the benefits of one material versus another. Examples include Young’s modulus, tensile strength, natural frequency, viscosity, etc. Those with a broader definition, can be hardly measured directly. This thesis aims to study the dynamic properties of dental complex through experiments, clinical trials and computational simulations, thereby bridging some gaps between the numerical study and clinical application. The natural frequency and mode shapes, of human maxilla model with different levels of integrities and properties of the periodontal ligament (PDL), are obtained through the complex modal analysis. It is shown that the comprehensiveness of a computational model significantly affects the characterisation of dynamic behaviours, with decreasing natural frequencies and changed mode shapes as a result of the models with higher extents of integrity and preciseness. It is also found that the PDL plays a very important role in quantifying natural frequencies. Meanwhile, damping properties and the heterogeneity of materials also have an influence on the dynamic properties of dental structures. The understanding of dynamic properties enables to further investigate how it can influence the response when applying an external stimulus. In a parallel preliminary clinical trial, 13 patients requiring bilateral maxillary premolar extractions were recruited and applied with mechanical vibrations of approximately 20 g and 50 Hz, using a split mouth design. It is found that both the space closure and canine distalisation of the vibration group are significantly faster and higher than those of the control group (p<0.05). The pressure within the PDL is computationally calculated to be higher with the vibration group for maxillary teeth for both linguo-buccal and mesial-distal directions. A further increased PDL response can be observed if increasing the frequency until reaching a local natural frequency. The vibration of 50 Hz or higher is thus approved to be a potential stimulus accelerating orthodontic treatment. The pivotal role of soft tissue the PDL is further studied by quantitatively establishing pressure thresholds regulating orthodontic tooth movement (OTM). The centre of resistance and moment to force ratio are also examined via simulation. Distally-directed tipping and translational forces, ranging from 7.5 g to 300 g, are exerted onto maxillary teeth. The hydrostatic stress is quantified from nonlinear finite element analysis (FEA) and compared with normal capillary and systolic blood pressure for driving the tissue remodelling. Localised and volume-averaged hydrostatic stress are introduced to describe OTM. By comparing with clinical results in past literature, the volume average of hydrostatic stress in PDL was proved to describe the process of OTM more indicatively. Global measurement of hydrostatic pressure in the PDL better characterised OTM, implying that OTM occurs only when the majority of PDL volume is critically stressed. The FEA results provide new insights into relevant orthodontic biomechanics and help establish optimal orthodontic force for a specific patient. Implant-supported fixed partial denture (FPD) with cantilever extension can transfer excessive load to the bone surrounding implants and stress/strain concentration which potentially leads to bone resorption. The immediate biomechanical response and long-term bone remodelling outcomes are examined. It is indicated that during the chewing cycles, the regions near implant necks and apexes experience high von Mises stress (VMS) and equivalent strain (EQS) than the middle regions in all configurations, with or without the cantilever. The patient-specific dynamic loading data and CT based mandibular model allow us to model the biomechanical responses more realistically. The results provide the data for clinical assessment of implant configuration to improve longevity and reliability of the implant-supported FPD restoration. On the other hand, the results show that the three-implant supported and distally cantilevered FPDs see noticeable and continuous bone apposition, mainly adjacent to the cervical and apical regions. The bridged and mesially cantilevered FPDs show bone resorption or no visible bone formation in some areas. Caution should be taken when selecting the FPD with cantilever due to the risk of overloading bone resorption. The position of FPD pontics plays a critical role in mechanobiological functionality and bone remodelling. As an important loading condition of dental biomechanics, the accurate assignment of masticatory loads has long been demanded. Methods involving different principles have been applied to acquire or assess the muscular co-activation during normal or unhealthy stomatognathic functioning. Their accuracy and capability of direct quantification, especially when using alone, are however questioned. We establish a clinically validated Sequential Kriging Optimisation (SKO) model, coupled with the FEM and in vivo occlusal records, to further the understanding of muscular functionality following a fibula free flap (FFF) surgery. The results, within the limitations of the current study, indicates the statistical advantage of agreeing occlusal measurements and hence the reliability of using the SKO model over the traditionally adopted optimality criteria. It is therefore speculated that mastication is not optimally controlled to a definite degree. It is also found that the maximum muscular capacity slightly decreases whereas the actual muscle forces fluctuate over the 28-month period

    Duration of tooth alignment with fixed appliances: A systematic review and meta-analysis

    Full text link
    INTRODUCTION A key goal of orthodontic treatment with fixed appliances is alignment of the dentition, and this remains a commonly selected outcome in clinical studies investigating orthodontic tooth movement. This systematic review has evaluated treatment duration to achieve alignment of the mandibular dentition using fixed appliances. METHODS Systematic literature searches without restrictions were undertaken in 9 databases for randomized clinical trials (RCTs) assessing duration and rate of tooth alignment using fixed appliances with or without treatment adjuncts published up to January 2021. After duplicate study selection, data extraction, and risk of bias assessment according to Cochrane, random-effects meta-analyses of aggregate data, and individual patient data were conducted. RESULTS Thirty-five trials were included with 2258 participants (39% male; mean age 17.8 years), giving a pooled duration to achieve whole-arch alignment of the mandibular dentition of 263.0 days (4 trials; 95% confidence interval [CI], 186.7-339.4 days) and incisor alignment in the mandibular arch of 100.7 days (9 trials; 95% CI, 84.1-117.4 days). Surgical-assisted orthodontics was associated with reduced duration of incisor alignment: mean difference of 44.3 days less (4 trials; 95% CI, 20.0-68.9 days; P <0.001; high quality of evidence), whereas subgroup and meta-regression analyses indicated significant effects of baseline crowding and premolar extractions. Individual patient data analysis from 3 RCTs indicated that for each additional participant age year, whole-arch alignment of the mandibular dentition took 13.7 days longer (3 trials; 95% CI, 7.7-17.7 days; P <0.001) and for each additional mm of irregularity, 17.5 days more were needed (2 trials; 95% CI, 9.8-25.2 days; P <0.001). CONCLUSIONS Patient and treatment-related characteristics can significantly affect the duration of tooth alignment and should be taken into account both clinically and when designing trial outcomes. Future research studies investigating rates of orthodontic tooth alignment would benefit from adequate sample sizes and a more consistent methodology in outcome assessment. Data in this systematic review provides a basis for appropriate trial design for future RCTs investigating the rate of orthodontic tooth alignment with fixed appliances

    Prototyping for Research and Industry

    Get PDF
    In this thesis we want to present some of the activities carried out during the PhD studies held at the PhD School "L. da Vinci" in the period from January 2012 to December 2014. The activities were held in the fields of robotics and mechanical engineering, and the main theme was the prototyping of new concepts, as well as the activity of conceptual design in its different phases, from generation of the idea, to the realization and testing of prototypes. The conceptual design phase is of fundamental importance to structure the process of generation of new ideas. Sometimes it is a process that is carried out unconsciously by the inventor. Providing a tool that allows to guide him in the various stages of idea generation can lead to advantages that let the inventor to explore areas from which take inspiration, which otherwise would not have been taken into account. An aspect of fundamental importance in the development of new prototypes is a process that goes in the opposite direction of the idea generation phase. Initially the conceptual design tends to provide tools to generate as many ideas as possible, but at some point there is the need to select a limited number of cases to investigate. Through the selection phase, which can be structured at levels more or less structured, and more or less qualitative/quantitative, the inventor tends to identify, case by case, which are the ideas in which is worth investing time and resources, before moving to the following stages. Prototyping, as well as its previous phase, now commonly called pretotyping, are mandatory steps for those who want to develop any new idea. The success of the final product or service may depend from the analysis of the pretotype first, and of the prototype later, since it allows to detect limits and possible improvements of the concept before moving to the final implementation phase

    Biomechanics and Remodelling for Design and Optimisation in Oral Prosthesis and Therapeutical Procedure

    Get PDF
    The purpose of dental prostheses is to restore the oral function for edentulous patients. Introducing any dental prosthesis into mouth will alter biomechanical status of the oral environment, consequently inducing bone remodelling. Despite the advantageous benefits brought by dental prostheses, the attendant clinical complications and challenges, such as pain, discomfort, tooth root resorption, and residual ridge reduction, remain to be addressed. This thesis aims to explore several different dental prostheses by understanding the biomechanics associated with the potential tissue responses and adaptation, and thereby applying the new knowledge gained from these studies to dental prosthetic design and optimisation. Within its biomechanics focus, this thesis is presented in three major clinical areas, namely prosthodontics, orthodontics and dental implantology. In prosthodontics, the oral mucosa plays a critical role in distributing occlusal forces a denture to the underlying bony structure, and its response is found in a complex, dynamic and nonlinear manner. It is discovered that interstitial fluid pressure in mocosa is the most important indicator to the potential resorption induced by prosthetic denture insertion, and based on this finding, patient-specific analysis is performed to investigate the effects caused by various types of dentures and prediction of the bone remodelling activities. In orthodontic treatments, a dynamic algorithm is developed to analyse and predict potential bone remodelling around the target tooth during orthodontic treatment, thereby providing a numerical approach for treatment planning. In dental implantology, a graded surface morphology of an implant is designed to improve osseointegration over that of a smooth uniform surface in both the short and long term. The graded surface can be optimised to achieve the best possible balance between the bone-implant contact and the peak Tresca stress for the specific clinical application need

    Torque Expression of Active and Passive Self-Ligating Orthodontic Brackets with Different Archwire Materials

    Get PDF
    This study aimed to compare torquing moments, engagement angles, and torsional stiffness generated by stainless steel (SS), titanium molybdenum alloy (TMA) and nickel titanium (NiTi) wires in three active self-ligating (ASL), one passive self-ligating (PSL), and a conventional twin orthodontic bracket system control. Brackets were tested in simulations of buccal and palatal root torque. A custom 3D printed testing apparatus was developed to measure torque. In general, the PSL and conventionally ligated systems generated significantly larger torquing moments than ASL systems, especially with stiffer wires and greater degrees of twist. Torquing direction only influenced torque expression with ASL systems. The PSL system demonstrated significantly smaller engagement angles than the ASL or twin bracket systems, especially with stiffer wires. Torsional stiffness values aligned with the expected modulus of elasticity of the given wire material. In addition to ligation modality, other aspects of bracket design likely contribute to these findings
    corecore