unknown

Biomechanics and Remodelling for Design and Optimisation in Oral Prosthesis and Therapeutical Procedure

Abstract

The purpose of dental prostheses is to restore the oral function for edentulous patients. Introducing any dental prosthesis into mouth will alter biomechanical status of the oral environment, consequently inducing bone remodelling. Despite the advantageous benefits brought by dental prostheses, the attendant clinical complications and challenges, such as pain, discomfort, tooth root resorption, and residual ridge reduction, remain to be addressed. This thesis aims to explore several different dental prostheses by understanding the biomechanics associated with the potential tissue responses and adaptation, and thereby applying the new knowledge gained from these studies to dental prosthetic design and optimisation. Within its biomechanics focus, this thesis is presented in three major clinical areas, namely prosthodontics, orthodontics and dental implantology. In prosthodontics, the oral mucosa plays a critical role in distributing occlusal forces a denture to the underlying bony structure, and its response is found in a complex, dynamic and nonlinear manner. It is discovered that interstitial fluid pressure in mocosa is the most important indicator to the potential resorption induced by prosthetic denture insertion, and based on this finding, patient-specific analysis is performed to investigate the effects caused by various types of dentures and prediction of the bone remodelling activities. In orthodontic treatments, a dynamic algorithm is developed to analyse and predict potential bone remodelling around the target tooth during orthodontic treatment, thereby providing a numerical approach for treatment planning. In dental implantology, a graded surface morphology of an implant is designed to improve osseointegration over that of a smooth uniform surface in both the short and long term. The graded surface can be optimised to achieve the best possible balance between the bone-implant contact and the peak Tresca stress for the specific clinical application need

    Similar works