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Abstract 

The purpose of dental prostheses is to restore the oral function for partially or 

completely edentulous patients; however, introducing any dental prosthesis into mouth will 

alter the biomechanical status of the oral environment, consequently inducing bone 

remodelling. Despite the advantageous benefits brought by dental prostheses, the attendant 

clinical complications and challenges, such as pain, discomfort, tooth root resorption, and 

residual ridge reduction, remain to be addressed. This thesis aims to explore several 

different dental prostheses, including dental implants, orthodontic appliances, partial 

removal dentures, conventional complete dentures and implant-retained dentures, by 

understanding the biomechanics associated with the potential tissue responses and 

adaptation, and thereby applying the new knowledge gained from these studies to dental 

prosthetic design and optimisation. 

Within its biomechanics focus, the research studies presented in this thesis are 

related to three major clinical areas, namely prosthodontics, orthodontics and dental 

implantology.  The oral mucosa is the most common soft tissue covering the majority of 

the oral cavity, and it plays a critical role in distributing occlusal forces from either full or 

partial dentures to the underlying bony structure. Upon reviewing the existing literature, 

the mucosal response is found in a complex, dynamic and nonlinear manner subject to 

occlusal loading. Through critical comparison of the residual ridge remodelling over a year 

and subsequent numerical modelling, it is discovered that hydrostatic pressure is the most 

important indicator to the potential resorption induced by prosthetic denture insertion. With 

this discovery, a patient-specific analysis is performed to investigate the effects caused by 

various types of dentures and prediction of the bone remodelling activities. Further 

exploration on this topic revealed the biomechanical differences between these treatment 

types. Furthermore, the denture base shape can be optimised to minimise the stress 
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concentration on the mucosal surface, thereby improving the uniformity of contact pressure 

and preventing severe bone resorption. In orthodontic treatments, the periodontal ligament 

has a similar role as the oral mucosa, and the hydrostatic pressure also appears to be most 

relevant and able to guide the directions of orthodontic tooth movement. A dynamic 

algorithm is developed to analyse and predict potential bone remodelling around the target 

tooth during orthodontic treatment, thereby providing a numerical approach for treatment 

planning. Bone, as the fundamental and supportive tissue in the oral cavity, can undergo 

rapid adaptation to variations in biomechanical stimulus, and this activity is governed by 

the strain energy density along with Wolff’s Law. A graded surface morphology of an 

implant is demonstrated to have improved osseointegration over that of a smooth uniform 

surface in both the short and long term. The graded surface can be optimised to achieve the 

best possible balance between the bone-implant contact and the peak Tresca stress for the 

specific clinical application need. To further enhance osseointegration and loading carrying 

capacity, a fully porous surface with more than 500 µm substructure in depth is also 

proposed by using injection moulding. This novel media can significantly reduce the 

property mismatch between titanium and native bone, which considerably improves 

contact area for cell attachment. 

Throughout the nine major research projects included in this thesis and several 

others (not included due to the word limit, instead only the journal publication details are 

referred for further information), the finite element method has been demonstrated to be an 

effective tool for analysing tissue behaviour and its response, designing and optimising 

dental prostheses as well as predicting short and long term outcomes for clinical treatment 

planning. The methodologies established in this study provide not only dentists but also 

material scientists and biomedical engineers with a tissue-remodelling oriented approach 

for developing an optimal dental prosthesis and clinical guidance procedures in the future.  
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Chapter 1: Introduction 

 

This chapter provides an overview to the entire thesis, including its purpose, an 

outline of the structure for the thesis, and the associated publications arising from the 

investigations conducted during the PhD candidature. 
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1.1 Overview  

The dental needs of the modern society have evolved for as a consequence of the 

diverse and complex needs of individuals. The purpose of dentistry is not just to restore the 

oral functionality of patients, but also to maintain or improve their appearance, comfort, 

oral hygiene, speech ability, and even the overall health [1]. In addition, the worldwide fast 

growing elderly population has led to dramatically increased demands for dental treatment, 

especially in the edentulous group [2, 3]. Meanwhile, as the awareness of importance in 

oral health has been raised significantly in the last decades, the dental care for youth and 

children has contributed to a considerable portion of the overall expenditure on dental 

services [4]. 

There are several specialised streams in dentistry, including prosthodontics, 

orthodontics, and dental implantology. Prosthodontics is the dental specialty to restore oral 

functions by applying dental prostheses, including artificial crowns, posts and cores, fixed 

and removable dentures, inlay and onlay bridges, and implant-associated prostheses. This 

specialty also provides diagnosis and treatment planning for temporo-mandibular disorders 

[5]. Orthodontics is another speciality involved in the diagnosis, prevention, and treatment 

of problems associated with the alignment of teeth and their supporting jaws. In this type 

of treatment, corrective appliances, such as braces, plates, headgears, and other functional 

appliances, are often applied to bring teeth and jaws into desired locations and orientations 

[6]. Rather than being a substantive speciality, dental implantology is more like a clinical 

approach to achieve the desirable outcomes in several streams, including prosthodontics 

and orthodontics. Dental implantology is a key method, sometimes, a unique solution, to 

replace missing teeth, retain and support prostheses, and provide anchorages for tooth 

movement [7, 8]. 
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There are several types of oral tissues that are involved in these types of treatments, 

including mucosa, periodontal ligament, and bone. The oral mucosa is a common soft 

tissue covering the majority of the oral cavity, which has a critical role in distributing 

occlusal forces from various types of dentures to the underlying bony tissues for fully or 

partially edentulous patients [9-12]. The periodontal ligament is another supportive tissue 

surrounding each individual tooth, and it has been found to be critical in the remodelling 

activities around the teeth during orthodontic treatments [13-16]. The bony tissues, 

including both cortical and cancellous bones, form the core load supporting structure in the 

oral cavity, and continuously undergo adaptation to form a structurally elegant and 

efficient architecture for withstanding functional loads [11, 17-21]. 

Introducing dental prostheses into the oral environment will certainly induce 

biomechanical changes on native musculoskeletal system, including soft and hard tissues. 

In the short term, an inappropriately designed prosthesis can cause pain and discomfort to 

patients [22-24], and also lead to lack of the primary stability with implants and mini 

screws [25-27]. In the long term, however, more severe problems can developed as a 

consequence of different types of treatments. Denture-induced symptoms can occur on the 

mucosa, including traumatic ulcers, angular cheilitis, irritation hyperplasia, and keratosis 

[28-30]. Tooth root resorption frequently occurs during orthodontic tooth movement [31, 

32]. The worst scenario, bone resorption, can develop in several scenarios. For instance, it 

can be caused by lack of stimulus to maintain the bone density, such as edentulous areas 

under bridges or dentures [33-37], and stress-shielding around implants [38-40]. On the 

other hand, it can also result from mechanical overloading, such as overloading-induced 

apoptosis around the implants [41-44] and residual ridge resorption under a compressed 

mucosa [34-37, 45]. 
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These clinical complications remain as challenges to success of the treatment 

outcomes, in both the short and long term. As shown in the literature, the associated tissue-

prosthesis interaction is the key to treatment success; therefore, the dental prosthesis design 

and optimisation must be tissue-prosthesis response oriented, taking currently poorly 

appreciated biomechanical activities into account. 

To further improve the success rate of dental treatments, substantial efforts have 

been devoted to clinical investigations of the dental prosthetic response, for understanding 

and estimating the potential effects induced by prosthetic insertion [11, 34, 46-52]. The 

clinical approaches often require significant sample sizes and very strict conditions to 

accommodate individual variances and ensure the experimental consistency, which often 

lead to prolonged time frames and considerable expenditures [53, 54]. In clinical practice, 

it can be very challenging for these traditional approaches to seek accurate and quantitative 

solutions to the biomechanics parameters involved, such as loading transfer and internal 

deformation, where highly irregular anatomy, complex tissue responses, and various 

biomaterials are involved [55, 56]. These sophistications prevent effective examination in 

the associated biomechanics and lead to substantial difficulties in predicting tissue 

responses. 

The numerical modelling finite element (FE) method serves as an alternative to 

study the clinical phenomena, and it has shown compelling advantages in biomechanical 

analysis and surgical planning [57-67]. The most distinct advantages of FE method is to 

provide the possibility of numerically analysing complex biological material and structural 

responses [10, 57, 68, 69], the repeatability of applying different treatments and conditions 

to the same subject [70-74], and the feasibility of predicting time-dependent responses and 

outcomes [17-21, 75-77]. With the recent advance in clinical scanning technologies, such 

as computerized tomography (CT), sophisticated 3D FE models are capable of precisely 
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capturing both anatomical and biomaterial features of an individual patient, thereby 

faithfully reflecting the case-specific bone profile and density distribution [78]. Based on 

clinical observations, complex soft-tissue responses can be mimicked in a nonlinear 

manner to more realistically reflect biomechanical behaviours [79]. All these benefits can 

potentially help with an understanding of tissue biomechanics, treatment analysis and 

planning, and outcome predictions. 

Even though most dentists and biomaterial scientists are aware that dental 

prostheses will certainly cause various tissue responses, thereby affecting the treatment 

outcomes, limited knowledge exists as to the underlying biomechanics and the associated 

consequence for prosthetic design and optimization, especially where the soft tissues are 

involved. To address these issues, this thesis aims are as follows: 

1) To investigate tissue responses from clinical observations and develop 

biomechanical models based on empirical clinical data for various types of 

tissues involved in dental treatments, including the oral mucosa, the 

periodontal ligament and adjacent bone; 

2) To examine both short-term and long-term tissue responses induced by 

prosthetic insertion, including tissue deformation, pain/discomfort, and 

remodelling activities; 

3) To develop dynamic tissue remodelling algorithms for various tissue types, 

and validate with clinical data, for the applications of treatment planning 

and prosthesis design; 

4) To compare various types of prostheses on their treatment outcomes in a 

patient-specific manner, and reveal the underpinning basic biomechanics by 

correlating to the clinical observations; 
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5) To develop integrated optimisation approaches for dental prostheses 

(functional graded material, implant configuration and denture-mucosa 

interface) involving multiple stages, including; numerical design, validation, 

and fabrication. 

1.2 Thesis Outline 

Through the PhD study, the candidate has explored a broad range of oral tissues 

along with associated dental prosthesis design and analysis; therefore, this thesis covers 

several topics across several dental disciplines including, prosthodontics (major), 

orthodontics and implantology. In order to present the research outcomes in a more 

understandable manner, this thesis is divided into three sections based on the practical 

applications and tissue types. Each chapter stands alone enabling a perspective of specific 

dental prostheses, with the knowledge gleaned during this research having commonality 

that can be mutually applied, such as image processing, FE model reconstruction, material 

property interpretation, material behaviour scripting and structural/material optimisation. 

1.2.1 Prosthodontics (Oral Mucosa) – Chapters 2-7 

Chapter 2 – Biomechanics of Oral mucosa 

This chapter provides a systematic review of both empirical and numerical research 

on the biomechanics of the oral mucosa in the existing literature. In this chapter, four 

aspects of the mucosal responses are addressed, including static, dynamic, volumetric and 

interactive responses, which are interpreted by the elasticity, viscosity and permeability, 

apparent Poisson’s ratio and friction coefficient, respectively. Both empirical studies and 

several numerical models are analysed and compared, and linked to observed anatomical 

and physiological insights. Furthermore, the clinical applications of this biomechanical 

knowledge on the mucosa are included to address several critical concerns, including 
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stimuli for tissue remodelling (interstitial hydrostatic pressure), pressure pain thresholds 

(PPT), tissue displaceability and residual bone resorption. 

Chapter 3 – Inverse Identification of Mucosa Incompressibility and Contact Friction 

Coefficient by using in-vivo Measurement 

As revealed through the literature review in Chapter 2, there is no existing method 

to directly measure apparent Poisson’s ratio and friction coefficient of the oral mucosa, 

despite their critical importance for modelling such tissue response. This chapter aimed to 

inversely determine these two biomechanical parameters by utilizing in vivo experimental 

data of contact pressures developed beneath a partial denture. Firstly, a tactile electronic 

sensing sheet was used to measure the in vivo contact pressure distribution under the 

denture base. Secondly, a CT scan was performed on the patient and a 3D FE model was 

constructed based on the CT images with virtual insertion of denture. Thirdly, a range of 

apparent Poisson’s ratios and the friction coefficients from the literature were considered 

for a series of nonlinear FE simulations to construct the surrogate response surface (RS) 

models. Finally, the deviation between computed in silico and measured in vivo results was 

minimized to identify the best matching Poisson’s ratio and friction coefficient. 

Chapter 4 – Mechanobiological Bone Reaction Induced by Removable Partial Denture 

(RPD) with 18F-fluoride PET Imaging 

Denture insertion is likely to cause changes in the biomechanical status of the oral 

environment; however, to date there have been no quantitative illustration of the associated 

changes. This chapter utilises the instantaneous bone metabolism at various time points 

available from 18-fluoride positron emission tomography (PET) and correlates mechanical 

stimuli in the residual ridge induced by removable partial denture (RPD) insertion. The 

resultant mechanobiological response is analysed using a 3D finite element (FE) model 

derived from the CT images of a specific patient. This approach reveals the effectiveness 
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of applying PET to determine bone metabolic activity associated with mechanical stimuli, 

and the results provide us with biomechanical insights of the association of radioactive 

tracer uptake with bone remodeling for the first time. 

Chapter 5 – Investigation of Mucosa-Induced Residual Ridge Resorption between 

Implant-retained Overdenture and Complete Denture 

Different types of prosthodontic prostheses can lead to different tissues reactions. 

This chapter aimed to investigate the residual ridge resorption (RRR) induced by an 

implant-retained overdenture (IRO) and associative biomechanics, compared to a 

conventional complete denture (CD) without implants. Cone beam computerized 

tomography (CBCT) is applied to quantify RRR in a three dimensional (3D) manner after 

one year of treatment with either IROs or CDs. Twenty patients were treated with IROs 

and nine patients with CDs. The corresponding 3D FE model is created from a set of 

representative scanned images for each configuration. The numerical analysis, of the 

hydrostatic stresses, contact surface deformation and strain energy absorption, is well-

correlated with the clinical observations.  

Chapter 6 – A Comparative Study on Complete and Implant Retained Denture Treatments: 

A Biomechanics Perspective of Oral Mucosa 

As an extension to Chapter 5, Chapter 6 further examines the potential effects induced 

by three different types of dentures (complete denture, 2-implant retained overdenture, and 

4-implant retained overdenture) on the same patient profile. Based on CBCT scans, a 3D 

heterogeneous FE model is created for a typical edentulous patient, and the supportive 

mucosa tissue, is characterized as a hyperelastic material. Following virtual insertion of the 

dentures, a measured occlusal load (63 N) was applied onto these cases. Clinically, the 

bone resorption was measured after one year in the two implant-retained overdenture 
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treatments. Despite the improved stability and enhanced masticatory function, the implant-

retained overdentures demonstrated the presence of higher hydrostatic stress in the mucosa 

at the posterior ends of the mandible due to the cantilever effect compared to the complete 

denture. Hydrostatic pressure in the mucosa signifies a critical indicator and can be well 

correlated with clinically measured bone resorption, pointing to the cantilever effect in 

implant-retained overdentures causing ridge resorption posteriorly. This study provides a 

biomechanical basis for denture treatment planning to improve long-term outcomes with 

minimal residual ridge resorption. 

Chapter 7 – Three-Dimensional Contact Shape Optimization and Free-Form Fabrication 

for Removable Partial Dentures: A New Paradigm for Prosthetic CAD/CAM 

To avoid pain/discomfort sensation and reduce the potential residual ridge 

resorption, the denture has traditionally been adjusted manually through an adaptation test, 

which is time consuming for both the clinician as well as patient and is without 

quantitative standards. This study aims to develop a fully automatic procedure for denture 

base contact optimization, to minimize the contact pressure on the mucosa and avoid 

associated clinical complications. A 3D heterogeneous FE model is constructed from 

scanned images, and the mucosa is modeled as a hyperelastic material from in vivo clinical 

data. A contact optimization algorithm is developed based on the bi-directional 

evolutionary structural optimization (BESO) technique. Both initial and optimized dentures 

are prototyped by 3D printers and evaluated with an in vitro test with fitting silicone and 

pressure sensitive film. 

1.2.2 Orthodontics (Periodontal Ligament) – Chapter 8 

Chapter 8 – A Time-Dependent Soft-Tissue Driven Bone Remodeling for Orthodontic 

Tooth Movement 
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While orthodontic tooth movement (OTM) has gained considerable popularity and 

clinical success, the roles played by the relevant tissues involved, particularly periodontal 

ligament (PDL), remain an open question in biomechanics. This chapter aims to develop a 

soft-tissue induced surface remodeling procedure by correlating time-dependent simulation 

in-silico with clinical data in-vivo, thereby providing a systematic approach for further 

understanding and prediction of OTM. The biomechanical stimuli, namely hydrostatic 

stress and displacement vectors experienced in PDL, are proposed to drive tooth movement 

through an iterative hyperelastic FE procedure. This algorithm is both indicative and 

effective to simulate OTM under different loading conditions, has considerable potential to 

predict therapeutical outcomes and to develop a surgical plan for sophisticated orthodontic 

treatment.  

1.2.3 Dental Implantology (Bone) – Chapters 9-10 

Chapter 9 – Multiscale design of surface morphological gradient for osseointegration 

Rapid and stable osseointegration signifies a major concern for the design of 

implantable prostheses, which stimulates continuous development of new implant 

materials and structures. This chapter promotes a graded configuration of a bead/particle 

coated porous surface for implants by exploring how its micromechanical features 

determine osseointegration through a multiscale modeling technique. A typical dental 

implantation setting is exemplified for investigation, using the remodeling parameters 

determined from a systematic review of bone-implant-contact (BIC) ratio published in the 

literature. The global responses of a macroscale model are obtained through 48 month 

remodeling simulation, which form the basis for the 27 graded microscopic models created 

with different particle diameters of 30, 50 and 70 µm. The osseointegration responses are 

evaluated in terms of BIC ratio and averaged 10% peak Tresca shear stress (PTS). 
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Chapter 10 – Characterisation of Anisotropic Elasticity and Diffusivity in Injection-

Moulded Porous Titanium for Dental and Orthopaedic Application 

With the same target of enhancing osseointegration, as stated in Chapter 9, using a 

porous titanium implant has been shown as an alternative. This paper introduces the novel 

injection moulding fabrication technique and then systemically characterises the fabricated 

samples. Surface morphology is firstly examined using a scanning electron microscope 

(SEM) and then a micro-computational topology (µ-CT) scan is performed to non-

invasively capture its subsurface 3D microscopic features. The porosity and the pore sizes 

are determined statistically based on the µ-CT image analysis. The minimum size of a 

representative volume element (RVE) of the scans is determined by convergence tests. 

Based on FE models created from these RVEs, homogenisation methods determine the 

microscopic heterogeneity in their anisotropic elasticity and oxygen diffusivity. 

1.3 Publications  

There have been a number of publications generated throughout this candidature, 

and future publications are in progress. This section summarises all publications in 

chronological order. 

1.3.1 Book Chapters 

1. Wei Li, Junning Chen, Chaiy Rungsiyakull, Zhongpu Zhang, Michael Swain, 

Qing Li. Multiscale Remodelling for Topographical Optimization in Coated 

Porous Implants. Biomaterials for Implants and Scaffolds, Springer (Accepted for 

publication on 28/09/2013) 

2. Junning Chen, Liangjian Chen, Wei Li, Michael V. Swain, and Qing Li. Porous 

Titanium Implant and Micro-CT Based Characterization of Sub-Surface 

Morphology. PRICM – 8. John Wiley & Sons, Inc., 2013: p. 1579-1586.  
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1.3.2 Journal Publications Arising from the Thesis 

1. Rohana Ahmad, Junning Chen, Mohamed I. Abu-Hassan, Qing Li, Michael V. 

Swain. Investigation of Mucosa-Induced Residual Ridge Resorption between 

Implant-retained Overdenture and Complete Denture. The International 

Journal of Oral & Maxillofacial Implants, 2014. In press (Accepted for publication 

on 25-Jun-2014). 

2. Chaiy Rungsiyakull, Junning Chen, Pimduen Rungsiyakull, Wei Li, Michael V. 

Swain, Qing Li. Bone's Responses to Different Designs of Implant Supported 

Fixed Partial Dentures. Biomechanics and Modeling in Mechanobiology. In press 

(Accepted on 24-Aug-2014, DoI: 10.1007/s10237-014-0612-6). 

3. Wei Li, Daniel Lin, Junning Chen, Zhongpu Zhang, Zhipeng Liao, Michael Swain, 

Qing Li. Role of Mechanical Stimuli in Oral Implantation. Journal of 

Biosciences and Medicines, 2014. 2: p. 63-68. 

4. Junning Chen, Wei Li, Michael V. Swain, Ali M. Darendeliler, and Qing Li. A 

periodontal ligament driven remodeling algorithm for orthodontic tooth 

movement. Journal of Biomechanics, 2014. 47(7): p. 1689-1695. 

5. Junning Chen, Rohana Ahmad, Michael V. Swain, Wei Li, Hanako Suenaga, and 

Qing Li. Comparing Contact Pressure Induced by a Conventional Complete 

Denture and an Implant-Retained Overdenture. Applied Mechanics and 

Materials, 2014(553): p. 384-89. 

6. Hanako Suenaga, Junning Chen, Wei Li, Keiichiro Yamaguchi, Keiichi Sasaki, 

Qing Li, Michael V. Swain. Validate Mandible Finite Element Model under 

Removable Partial Denture (RPD) with In Vivo Pressure Measurement. 

Applied Mechanics and Materials, 2014. 553: p. 322-26. 
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7. Ke Ke Zheng, Junning Chen, Corey Scholes, Qing Li. Magnetic Resonance 

Imaging (MRI) Based Finite Element Modeling for Analysing the Influence of 

Material Properties on Menisci Responses. Applied Mechanics and Materials, 

2014. 553: p. 305-09. 

8. Caleb Christos Ioannidis, Danè Dabirrahmani, Qing Li, Zhong Pu Zhang, Junning 

Chen, Richard Appleyard. Impaction Loads Resulting in Intraoperative 

Periprosthetic Femoral Fracture: A Finite Element Study. Applied Mechanics 

and Materials, 2014. 553: p. 299-304. 

9. Junning Chen, Chaiy Rungsiyakull, Wei Li, Yuhang Chen, Michael V. Swain, 

Qing Li. Multiscale design of surface morphological gradient for 

osseointegration. Journal of the Mechanical Behavior of Biomedical Materials, 

2013. 20: p. 387-97. 

10. Joseph Cadman, Che-Cheng Chang, Junning Chen, Yuhang Chen, Shiwei Zhou, 

Wei Li, Qing Li. Bioinspired lightweight cellular materials - Understanding 

effects of natural variation on mechanical properties. Materials Science and 

Engineering: C, 2013. 33(6): p. 3146-3152. 

1.3.3 Journal Publications Submitted and under Review 

11. Junning Chen, Rohana Ahmad, Wei Li, Hanako Suenaga, Michael Swain, Qing Li. 

A Comparative Study on Complete and Implant Retained Denture Treatments 

– A Biomechanics Perspective. Under review by Journal Biomechanics (13-May-
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12. Junning Chen, Hanako Suenaga, Michael Hogg, Wei Li, Michael Swain, Qing Li. 

Determination of oral mucosa Poisson’s ratio and friction coefficient from in-



Chapter 1 - Introduction  Page | 14 

vivo contact pressure measurements. Submitted to Journal of the Mechanical 

Behavior of Biomedical Materials (30-Jul-2014, JMBBM-S-14-00586). 

13. Junning Chen, Hanako Suenaga, Wei Li, Michael Swain, Qing Li. Three-

Dimensional Contact Shape Optimization and Free-Form Fabrication for 

Removable Partial Dentures – A New Paradigm for Prosthetic CAD/CAM. 

Submitted to the Journal of Prosthodontic Dentistry (27-8-2014, JPD-S-14-00670). 
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Element Modeling. Submitted to Journal of Dental Research (27-Aug-2014, JDR-
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Chapter 2: Biomechanics of Oral Mucosa 

 

The prevalence of prosthodontic treatment has been well recognised and the need is 

continuously increasing with the aging population. While the oral mucosa plays a critical 

role in the treatment outcome, the associated biomechanics is not yet fully understood. 

Using the literature available, this chapter provides a critical review on four aspects of the 

mucosal biomechanics, including static, dynamic, volumetric, and interactive responses, 

which are interpreted by its elasticity, viscosity/permeability, apparent Poisson’s ratio, and 

friction coefficient, respectively. Both empirical studies and numerical models are analysed 

and compared to gain anatomical and physiological insights. Furthermore, the clinical 

applications of such biomechanical knowledge on the mucosa are also explored to address 

some critical concerns, including stimuli for tissue remodelling (interstitial hydrostatic 

pressure), pressure pain thresholds (PPT), tissue displaceability, and residual bone 

resorption. Through this review, the state-of-the-art in the mucosal biomechanics and their 

clinical implications are discussed for future research interests, including clinical 

investigation, numerical modelling, and application/design optimisation. 

 

Associated Publications: 

1. Junning Chen, Wei Li, Michael Swain, Qing Li. Biomechanics of Oral Mucosa. Submitted to 

Acta  Biomaterialia.   
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2.1 Introduction  

With an increasing worldwide elderly population, the edentulous group of patients 

has been continuously expanding, resulting in significantly raised needs for prosthodontic 

treatments [1, 2]. Complete or partial dentures have been widely used in dental clinics to 

restore oral function for the past century [3-5]. During mastication, the oral mucosa 

beneath the denture plays a critical role in distributing occlusal loads to the underlying 

bony ridge over a large denture-supporting tissue interface [6-9]. Within this highly 

vascular tissue, the functional pressure, namely interstitial fluid pressure (IFP) or 

hydrostatic pressure, has been identified as one of the most important etiological factors 

causing the accompanying clinical complications [9-14].  

The mandible of aging patient is mainly supported by the periosteal plexus of blood 

vessels, and therefore very susceptible to diminished circulation under occlusal load 

induced mucosal pressure [15], which triggers nerve pain [16] and discomfortable 

sensation [14, 17], thus compromising patients’ life quality [18, 19]. Cellular swelling, 

increased nuclear size, and intercellular edema will occur when the mucosa is under 

compression [9, 13, 20]. This inflammatory response of cells and surrounding tissue 

further contributes to variation in permeability of the mucosal tissue, and continues to 

compromise circulation [21, 22]. Once the hydrostatic pressure builds up and exceeds the 

capillary pressure, blood flow will be decreased and may even temporarily cease altogether 

as a result of the combination of active arteriolar closure and passive capillary compression 

[22]. Consequently, reduced nutrient supply and metabolite removal may lead to the 

potential residual ridge resorption [3, 9, 11, 12, 23-26], a progressive phenomenon harmful 

to patients’ oral health [27, 28]. 

It is critical to understand the mucosal response to the prosthodontic prostheses for 

the treatment outcome, and the mucosa has been found to exhibit complex nonlinear and 
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time-dependent behaviours since the investigations commenced more than five decades 

ago [29-32]. Significant interest has arisen and extensive studies have been conducted to 

explore the biomechanics of the mucosa both clinically and numerically. 

This chapter aims to provide a systematic review of the biomechanics of mucosal 

responses to mechanical loading, and it has been structured into three parts. Firstly, a brief 

summary of the mucosa anatomy and physiology will introduce the basic biology 

associated with its biomechanical responses and illustrate the insights associated with these 

observations. Secondly, a critical review is conducted of both experimental and numerical 

studies on four major aspects of the mucosal responses, namely static, dynamic, volumetric, 

and interactive responses. Several material models for each individual aspect are 

investigated and compared of 3-dimensional (3D) finite elements models of mucosa. 

Finally, the clinical implications of the mucosa biomechanics are discussed considering the 

major relevance to prosthodontic treatments, including the tissue remodelling stimulus, 

pressure pain threshold, tissue displaceability, and residual ridge resorption. 

Understanding and adopting correct material models for the corresponding 

biomechanical behaviours will help identify biological determinants influencing the 

mucosa responses for better prosthodontic treatment planning and prediction. Furthermore, 

this review will demonstrate the current state-of-the-art of mucosal biomechanics research 

and reveals the potential research opportunities on fundamental biomechanics, clinic 

application and design optimisation. 

  



Chapter 2 - Biomechanics of Oral Mucosa Page | 26 

2.2 Anatomy and Physiology 

2.2.1 Anatomy 

Oral mucosa can generally be classified into two different groups, masticatory 

mucosa and lining mucosa. The masticatory mucosa is firm and exhibits distinct resistance 

to deformation under load [21], forming more than 60% of the oral cavity surface 

including tongue dorsum, hard palate and attached gingiva [33]. It comprises a surface 

epithelial layer and a deeper connective tissue layer, namely lamina propria (Figure 2-1a). 

The oral epithelium is a keratinized, stratified, and squamous structure, consisting of 

multiple rows of cells that constitute a load-bearing layer by intercellular adhesions. 

Within this layer, intercellular channels exist for communication with neighbouring cells, 

and contain viscous material (mucopolysaccharides) providing the deformability and load 

resistance [21, 34]. Under the surface epithelium, there is a basal complex that forms a 

transient region with the underlying lamina propria.  

The lamina propria is a compact fibrous structure, which comprises two sub-layers, 

the papillary layer connected to the basal complex and the deeper reticular layer. The 

superficial collagen fibres in the papillary layer are randomly oriented, and the transient 

regions are often irregular and non-smooth with undulating papillae ridges, providing 

enlarged areas for nutrient exchange [21]. The basal collagen fibres in the reticular layer 

gradually change to perpendicular attachments with the periosteum as shown in the middle 

layer of Figure 2-1a. The abundance of these fibrous attachments, known as 

mucoperiosteum, renders the masticatory mucosa immovable with firm connection to the 

bone, providing resistance to compressive and shear loads in function [33]. A capillary 

blood plexus lying between the papillary and deeper reticular layers provides nutrition to 

the mucosa, and gives rise to the blood vessels which ascend into the connective tissue 
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papillae. Nerve fibres penetrate the lamina propria, some ending in specialized sensory 

endings or cells in the papillae, whilst others extend into epithelium [35]. 

 

Figure 2-1 (a) Schematic diagram (left) and histological diagram of the healthy mucosa 

anatomy [36]; (b) SEM images of the vascular network within the rabbit palatine mucosa by 

corrosion casts [37]; (c) histological image of the mouse mucosa after 20 weeks underneath 

the denture without occlusal load [13]; (d) histological image of the mouse mucosa after 20 

weeks beneath a denture with 100 µm constant deformation [13]. 

The second type, the lining mucosa, is highly distensible and can deform much 

easier than the masticatory mucosa. It is ubiquitous in the oral cavity, and covers the 

buccal and lingual mucosa. It has a non-keratinized stratified squamous epithelium layer 

with flatter and shorter ridges, and the loosely attached cells may be easily dislodged with 

small abrasive forces [21]. The basal complex of lining mucosa has small, cuboidal and 

non-polarized cells, compared to the large, columnar and polarized ones in the masticatory 
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mucosa [38]. The lamina propria is more compact, in which the connective tissue papillae 

underneath are irregular and relatively shallow, extending to the epithelium for a shorter 

distance, and collagen bundles appear larger and denser in the reticular layer [39]. 

Generally speaking, the keratinized masticatory mucosa is stiffer than the non-keratinized 

lining mucosa [40]. 

The mucosa thickness can vary over a wide range [6, 41-48], from 0.30 mm on the 

attached buccal mucosa in the mandibular canine to 6.7 mm in the maxillary tuberosity 

region. It has been determined as one of the dominant factors to affect their biomechanical 

responses [8], aside from its various types and locations [29, 40, 49]. Early measurements 

of the mucosa thickness and structure were performed by histological examination of 

animals [32, 33, 35, 50, 51]. X-ray photograph provided a non-invasive approach showing 

a range of mucosa from 2 to 3 mm [52], but the low contrast and resolution of the soft 

tissue limited accurate measurements with this technique. Ultrasound is now commonly 

used to measure the resting thickness of the oral mucosa in the maxilla and mandible of 

dentate and edentate individuals [41-44, 53]. Edentulous patients showed a greater 

variation in soft tissue thickness than dentate individuals. With recent advances in 

Computed Tomography (CT), the potential of using this relatively new technique as an 

alternative to examination of the mucosa thickness is under exploration [45-47]. 

Accompanying the high accuracy, the increased radiation exposure requires extra caution 

because of radiation dosage [45].  

2.2.2 Physiology 

Apart from anatomical features, the physiologic response of the oral mucosa is 

believed to play a critical role in distributing masticatory forces, thus protecting the 

underlying residual ridge from excessive loading [6-9]. 
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Interstitial fluid 

The mucosa is a highly vascularized tissue (Figure 2-1b) [37] with a considerable 

amount of interstitial fluid, and its protective function arises from a cushioning effect. The 

pressure induced by prosthetic dentures provides a pumping effect for the flow of 

interstitial fluid to the unloaded neighbouring tissues [21, 32]. This movement encourages 

collagen fibres to align along the lines of mechanical stresses, thereby providing protection 

to the connective tissue itself as well as the underlying bone. With increasing masticatory 

loads, the hydraulic interstitial fluid pressure (IFP), or hydrostatic pressure, gradually 

builds up, which is one of the most important factors in the mucosal physiological 

responses [9, 11, 12]. Once the interstitial fluid pressure exceeds the vascular pressure, 

blood flow will be reduced and may temporarily cease, thereby potentially leading to 

localized ischemia [22, 26, 54-56]. This is a time-dependent process with blood flow 

reduction increasing with the loading time till a plateau; and the degree of ischemia is 

dependent on both the loading magnitude and time. The prolonged blood flow interference 

will further induce local anoxia and accumulation of metabolites, leading to the destruction 

of the supporting bony tissues, known as residual ridge resorption [9, 10, 13, 54, 57]. 

Upon mechanical load release, the mucosa is capable of recovery [7, 29, 30, 49, 58]. 

The released surface pressure allows the interstitial fluid to flow back, and the elastic 

recovery of the solid matrix accelerates the backflow by forming suction [59, 60]. While 

the load induced impedance of blood supply is not an irreversible condition, the recovery 

time is somewhat proportional to the loading magnitude and duration but the extent of 

recovery is converse [26, 54, 56, 61]. In young subjects, the blood flow can be almost fully 

restored following a short duration load, and the recovery may even exceed the initial 

blood flow by as much as 10% [26]. Therefore, the intermittent masticatory pressure may 

improve circulation. In contrast, more permanent effects of the lowering of blood supply 
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may result from the wearing of dentures for more than six months [56]. Ischemia occurs 

with continuous clenching and delays the recovery of blood flow in the mucosa underlying 

the denture after release of compression. Continuous pressure over a prolonged duration 

may even alter the oral anatomy, and consequently affect the physiological responses [58]. 

The mucosa then becomes less resilient to withstand masticatory forces and more sensitive 

to pressure [62]. Clinical recommendations have been made based on these findings, that it 

is essential for patients to leave their dentures out at night during sleep to aid in the 

recovery of blood supply to palatal mucosa [63]. 

 Mucosa Aging 

Aging is one of the most important factors affecting the mucosal mechanical 

properties and responses [64]. Clinically, the aged mucosa often has a smoother, glossier, 

and dryer surface than that of a young subject. Atrophy develops in the oral mucosa and is 

manifested by the reduction in surface epithelial layers, consequently the overall thickness 

decreases [46, 48, 65]. As the epithelial ridges flatten, the interface between the epithelium 

and the connective tissues becomes smooth. With a decreased number of cells in the 

lamina propria, the collagen fibre becomes thicker and is arranged in a denser parallel 

pattern, similarly to the reticular layer [66, 67]. Osteoporosis is also often presented with 

edentulous patients, and spurs of bone project into the overlying lamina propria, breaking 

the integrity of the mucosa unit [66]. Functionally, there is no evidence to show that the 

blood flow is affected by the cardiovascular status of the subject without disease [68], but 

most aged alveolar and gingival arteries exhibit arteriosclerosis, with narrowing vessels, 

even becoming occluded in some cases [66]. Decreased vascularisation, blood vessels 

stiffening, and lipid deposition lead to the reduction of the effective blood flow to the oral 

tissues, consequently impairing tissue healing ability and tolerance to pressure [69-71]. 

Also the metabolic activity slows down in the aging mucosa, leading to the reduction in 
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tissue turnover rate [72], which makes the mucosa more vulnerable to wear and tear 

induced by external loads. 

Histomorphological and Histochemical Change under Compression 

In order to clarify the histopathological basics associated with the denture 

prosthetic effects on the oral mucosa, various studies have been undertaken to investigate 

the morphological and biochemical changes under different occlusal loads and 

physiological conditions. Despite the clearly unfavourable effects caused by denture 

insertion [10, 13, 57, 73], early studies generated contradictory findings; some reported 

enhanced inflammatory responses in the supporting tissues underneath the dentures [5, 74, 

75], while others suggested minimal or no inflammation [28, 76, 77]. 

Distributed compression (e.g. flat contact) can introduce surface wrinkles to the 

oral mucosa, and the intercellular spaces were immediately reduced in both the epithelial 

and the lamina propria layers [32]. A concentrated load (e.g. convex contact) can further 

induce deformed epidermal and connective tissue ridges, accompanied by collapsed 

capillary vessels in the submucosa at the concentration point. Without an occlusal load 

present, the only histological change under the denture was slightly narrowed epithelial 

ridges in the first twelve weeks, which subsequently disappeared gradually [78] (Figure 2-

1c). Neither morphological or biochemical changes were observed in the epithelium and 

the lamina propria after 28 weeks without pressure.  

Under occlusal loading, however, inflammatory change and alveolar bone 

resorption occurred in the epithelium and the lamina propria, and the extent of these 

symptoms was proportional to the occlusal pressure [9, 13]. Within two weeks, the 

thickness of epithelium can be severely reduced (exceeding 30%) [55], manifested with 

shortened and branching epithelial ridges [9, 13]. The tissue fibres in the lamina propria 

become parallel to the bone surface, and osteoclasts start to appear (Figure 2-1d). For 
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occlusal pressures less than 5 kPa, these changes continued to develop through the first 8 

weeks and then reduced after 20 weeks, and showed minimal differences to the control 

group. Within this range, higher pressures resulted in the earlier appearance of osteoclasts, 

and induced more bone turnover along the endocoritcal surface than the periosteum, as 

indicated by the osteoblastic activities [55, 79]. 

The mucosa exhibits a higher tolerance to intermittent pressure than continuous 

pressure, as the threshold for the alveolar ridge resorption was 19.6 kPa for the former and 

6.86 kPa for the latter [10]. Larger continuous pressures induced more severe residual 

ridge height reductions [11]. At the other extreme, a continuous pressure less than 1.96 kPa 

(9.8 kPa for intermittent) led to no bone resorption [10], but new bone formation was also 

inhibited [11]. In the patients with systemic diseases or conditions, such as diabetes 

mellitus or osteoporosis, the oral mucosa and the underlying bone are more sensitive to 

occlusal loads, as shown by the lowered thresholds [79-82].  
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2.3. Biomechanical Responses 

While there are many aspects of the biomechanical responses of the oral mucosa, 

this study will focus on the four major areas which are closely relevant to clinical 

applications, thereby revealing the biological insights to these mechanical models. The first 

one is the static response, which is often known as the short-term or instant response. It is 

interpreted as the elasticity of a material in a path-dependent manner. The second one is the 

dynamic response, or so-called long-term and delayed response. It can be induced by the 

viscosity or permeability of the fluid component in the soft tissue, and interpreted in a 

time-dependent process. The third is the volumetric response, determined by the 

compressibility or Poisson’s ratio to indicate the capability of resisting a volumetric change 

while the shape is deformed. The last one is the surface interactive response, which is 

represented by the friction coefficients between the mucosa and prosthetic materials. 

2.3.1 Elasticity 

As one of the fundamental parameters to define material behaviour, the modulus of 

elasticity is the mathematical description of an object's tendency to be deformed 

proportionally to the applied force. Reflecting the stiffness of a material, this parameter is 

defined as the slope of its stress-strain curve in the elastic deformation region. The higher 

the elastic modulus, the stiffer the material is.  

The oral mucosa was found to be highly deformable under compression [83], and 

the elastic modulus appears to vary over a broad range. Being a heterogeneous material, 

the mucosa’s instant stiffness results from both the solid matrix structure (e.g. epithelial 

layer, fibrous network, blood vessel, etc.) and the fluid components (e.g. interstitial fluid, 

blood). Several material models have been developed to interpret such mucosal behaviours, 

including linear elastic, biphasic, multiphasic elastic, and hyperelastic models. Within a 
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short instant loading, the mass transfer, such as the fluid flow, is often disregarded in these 

models. In other words, this aspect of mucosa response is considered time-independent.  

Linear Elastic 

Linear elasticity is a simplification of the general nonlinear theory of elasticity as a 

branch in continuum mechanics. This constitutive model governs reversible behaviour of a 

material which is indicated by a straight stress-strain response curve with a constant elastic 

modulus. When subjected to sufficiently small stresses, nearly all solid materials can be 

represented by linear elastic constitutive equations (Eq. (1) for an isotropic case), which 

are relatively easy to solve. The linear elasticity model is thus the best known and most 

widely used theory in biomechanics. 
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At the early stage of exploring the stress-strain relationship of the mucosa, the 

experimental reports showed a wide range of possible compressive elastic moduli from 

0.06 MPa to 8.89 MPa when using a ‘dead’ weight or an instant load [29, 40, 44, 51, 84]. 

Meanwhile, there were several other relevant findings. Firstly, the mucosa is generally 

stiffer under tension than compression, showing elastic moduli from 0.91 to 11.12 MPa 

[51]. Secondly, it has anisotropic responses under both tension and compression [51]. 

Lastly, both mucosa thickness and elastic moduli can vary considerably in the same subject 

[40] and between individuals [84]. Compared with other oral soft tissues, such as 
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periodontal ligament (PDL), the oral mucosa shows lower stiffness [85] and the tendency 

of deforming more easily, with more than 3 times of difference in the tissue displaceability 

relative to PDL [86]. 

During modelling of the linear mucosal elasticity and the associated responses to 

dental prostheses (e.g. complete and partial dentures, dental posts, bridges, and implants), a 

broad range of elastic modulus values have been adopted in research, often by assumption. 

Initially, due to lack of sufficient experiment data, the skin properties (19.6 MPa) were 

adopted [87] for being another typical soft tissue, and this assumption was accepted in two 

other studies [88, 89]. Another two elastic modulus values, 10 MPa [90] and 5 MPa [91], 

were first reported in non-English journals. Both gained wide acceptances, such as [92-96] 

for the former and [97-99] for the latter. To simulate the effects of different mucosa 

resiliency to compression, elastic moduli of 340 MPa and 680 MPa were assumed for the 

hard and medium mucosa, compared to the soft one (1 MPa) [100-103]. At the other 

extreme, a very low elastic modulus of 0.1 MPa was also assumed [104, 105], and so was 

0.68 MPa [106, 107] in literature. 

There were also elastic moduli derived from experimental observations. A typical 

value of 1 MPa was derived from the experiment by Picton [86], and adopted in several 

finite element analysis (FEA) studies [108-117]. Similarly, other values between 1 and 5 

MPa were determined experimentally [51, 84], and adopted for simulations [118-126].  

All these linear elastic models from the literature assumed linearity with 

homogeneity and isotropy of the mucosa, although it has been anatomically demonstrated 

as a heterogeneous and anisotropic composite material [51], responding to mechanical 

loading in a complex non-linear manner [52]. Despite the over-simplified mechanics and 

limited supporting biological evidence, linear elasticity has its advantages in providing 

simple and direct prediction for the mucosa’s instant response. A simplified elastic model 
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is also preferred for the sake of the computational efficiency [127]. Therefore, the linear 

elastic material model has been extensively adopted in a number of studies, and has 

achieved wide acceptance, especially in the clinical field. Nevertheless, in such a 

simplified material model the elastic modulus varies over an enormous range from 0.1 to 

680 MPa, which consequently alters the soft tissue behaviour dramatically. Figure 2-2a 

summarizes the frequencies of different linear elastic moduli values appearing in the 

previous studies, and Figure 2-2b shows some examples of linear elastic models with the 

moduli of 1, 5, and 20 MPa. 

Bi-phasic and Multi-phasic Linear Elasticity 

Previous studies have shown that the mucosa thickness reduction was not 

proportional to the load increase [128], and with further increased compressive loads, the 

effects on the mucosa are compromised, suggesting an increasing elastic modulus with 

higher pressures [52]. The histological analysis indicated the nonlinearity may have 

resulted from the microstructural deformations, such as buckling and space close-up in the 

fibrous network and epithelium [32]. Consequently, the simplest linear elastic model does 

not adequately address the nonlinearity of the mucosal response [83, 129]. 

A bi-phasic linear elastic model was developed by using two moduli for 

approximation of the nonlinear stress-strain curve, thereby addressing change of the initial 

and subsequent moduli in a path-dependent manner. The switching between these two 

moduli is determined by mechanical stress (Eq. (2), where n is the number of phases, n = 2 

for this biphasic model), strain, or strain energy at a typical conversion point. The approach 

captures more features of the tissue responses, without substantially increasing 

computational cost. The effectiveness of such a bilinear material was verified using animal 

studies along with the other oral soft tissue, the periodontal ligaments (PDL) [130], and it 

has been applied in an associated finite element analysis [131]. 
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   (2) 

Despite considering the modulus rise with deformation strain, the biphasic linear 

elastic model still remains relatively simple and primitive, and few studies of relevance to 

mucosal responses have adopted this material model. Instead, a subsequent multi-phasic 

linear elastic material model (Eq. (2)) was developed, which was capable of capturing a 

more precise loading path for the mucosal deformation [132] (Figure 2-2b, dash line). The 

multi-phasic linear elastic material model has a series of path-dependent elastic moduli and 

corresponding conversion points at different loading extensions, to better imitate the 

nonlinear behaviour. This material model was derived based on the in vivo results of 

mucosal responses in the literature [52], by using 6 von Mises stress values as determinants 

of the conversion path, and the compressive response matches reasonably well with the in 

vivo measurements. This model enables a balance to be made between accuracy and 

computational efficiency, as the true nonlinear analysis requires a large number of loading 

steps with a substantial time penalty. With the increasing number of elastic phases, the 

stress-strain curve approaches the real nonlinear indefinitely, and the computational time 

rises in turn with more iterations. 

Hyperelastictiy 

Even with a multi-phasic linear elastic material model, the exact nonlinear elasticity 

cannot be entirely reproduced, as segmented straight lines do not represent the true 

equilibrium path. A hyperelastic material (so called “Green” elastic material) requires a 

constitutive model, which derives the elastic response from a strain energy density function, 
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providing a continuum approach to nonlinearity modelling of continuous material. It has 

been commonly applied in the mechanics of rubber-like materials, and the similarity to 

biological soft tissues has recently attracted noticeable attention [133]. These types of 

material models respond elastically (reversibly) under very large strains, which is exactly 

what a biological soft tissue does under both normal and pathological conditions [134]. 

Hyperelastic material modelling starts with the formulation of a potential energy 

function based upon scalar strain. The strain energy potential defines the strain energy 

stored in the material per unit of reference volume (volume as in the initial configuration) 

as a function of the strain at a typical point in the material. Such functions can be 

dependent either on strain tensors of a nonlinear deformation field, or on the invariants of 

these strain tensors, or even directly on the principal stretches. Simply speaking, the 

hyperelastic material describes the stress-strain relationship using a continuous function 

rather than one or a series of elastic constants, generating a true nonlinear map of 

behaviour. 

Hyperelastic material models can be generally classified into two categories, 

mechanistic (micro-mechanical) and phenomenological [135]. The former is directly 

derived from statistical mechanical arguments of the underlying material structure or 

idealized network, such as cross-linked polymers. Arruda-Boyce and Neo-Hookean are the 

two types of models in this category [135]. The mechanistic category is intrinsically tied to 

higher computational costs for its homogenisation procedures, and these micro-mechanical 

approaches link the macroscopic mechanical behaviour by using their governing 

parameters. Despite this profound basis, the requirements for understanding the structural 

composition and associated behaviours are extremely difficult in such mechanistic models, 

and often remain unclear or understudied for most biological tissues. 
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The phenomenological category, on the other hand, aim to link the functions to the 

direct empirical observations of phenomena, to match with fundamental theories. The 

functions in this category include Fung, Mooney-Rivlin, Ogden, Polynomial, Saint Venant-

Kirchhoff, Yeoh, and Marlow [135]. Ogden, being a popular type, can be expressed as in 

Eq. (3), in which iλ  are the deviatoric principal stretches obtained from the principal 

stretches, N is the order of the fitting equation, and iµ , iα , and iD  are the parameters for 

such a hyperelastic model. 

     (3) 

Compared to the stringent conditions required for the mechanistic category, the 

phenomenological models present distinctive advantages. The approach of fitting 

hyperelastic models to experimental data has been addressed in a number of textbooks 

[136, 137] and studies [133, 138-140], and it has been adopted for several different types 

of soft tissues in the human body, such as ligaments [141, 142], meniscus [143], skin [144], 

oesophagus [145], and oral PDL [146, 147]. Recently, Winterroth et al. characterized the 

nonlinear elastic property of engineered oral mucosal tissues by using scanning acoustic 

microscopy and fitting data to the 1st order Ogden strain energy potential function [53] (Eq. 

(3), where n = 1). Recent developments in computational power and techniques, have 

enabled more realistic models of tissue behaviour [117, 132, 146, 148, 149]. Surprisingly, 

little attention has been paid as yet to this material model to simulate the native oral 

mucosa response, which may be due to the requirements of incorporating its high 

nonlinearity and anisotropy [150, 151]. Figure 2-2b includes an example of hyperelastic 

material model (Ogden 3rd Order) derived from the clinical data reported by Kishi [52].  
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Comparison 

To illustrate the differences between these above mentioned elasticity models, a 

simple three-layer block (mucosa, cortical, and cancellous bones) is adopted herein to 

simulate the local mucosal response under uniformly distributed compression over an area 

of 10 mm in diameter (Figure 2-2c). A mucosa thickness of 2 mm is assumed here based 

on the average clinical measurements [8]. Periodic boundaries are prescribed to the 

surrounding sectional planes to simulate the tissue continuity with the neighbours, and a 

full constraint was assigned to the bottom of the block. The load on the top surface was 

ramped from 0 to 100 N. 

The material properties for the bony structures are isotropic and homogeneous, 

following the previous literature [146] to set a baseline. All three static elastic material 

models (linear, multi-phasic, and hyperelastic) were considered for the mucosa. Three 

linear elastic moduli are adopted at 1 MPa, 5 MPa, and 20 MPa to simulate low, medium 

and high stiffness in the most accepted range of literature values. The multi-phasic model 

was adopted as developed by Kanbara et al. [132]. The hyperelastic material model (Ogden 

3rd Order) is derived from the empirical data by Kishi [52]. The Poisson’s ratio is set to be 

a constant of 0.3 for all material models to focus the differences entirely on elasticity 

values and models. Figure 2-2d plots the percentage of the maximum mucosa thickness 

changes against the increasing loads under different material models. 
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Figure 2-2 (a) The frequencies of different linear elastic moduli adopted in existing FE studies; 

(b) a simplified model to present a unit of mucosa-bone structure; (c) the compressive stress-

strain relationships between different material models (linear elastic, multi-phasic elastic, and 

hyperelastic); (d) the maximum mucosa thickness changes in the different material models of 

mucosa under increasing loads up to 100 N in the test model. 

2.3.2 Viscosity and Permeability 

Accompanying the instant elastic response, the oral mucosa exhibits a dynamic 

response over the time under loading and upon unloading, such as creep and delayed 

recovery [21, 50, 85]. It is believed that, not only the interstitial fluid, but also the fluid 

components within the mucosa matrix contribute to this time-dependent behaviour [152]. 

Both the fluid viscosity and permeability contribute on the dynamic response, but the 

former has been better studied than the latter in the current literature. Being a complex 
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composite material, neither the viscosity nor the permeability alone represents the mucosal 

characteristics; they are concurrent with the elasticity, either linear or nonlinear. This 

section will focus on two material models, viscoelastic and porous elastic (poro-elastic). 

Viscoelasticity 

The time-dependent response was firstly quantitatively illustrated as the 

viscoelastic property by a histometric analysis conducted on dogs in the time domain [50], 

which suggested that apart from the elastic response, there was a viscous component in this 

fluid-rich material. The viscoelastic behaviour manifested during four stages under loading 

and upon unloading, namely the instant deformation, the creep, the instant recovery, and 

the delayed recovery.  

Upon immediate loading, the instant elastic deformation (1st Stage) takes place as 

elucidated by its elasticity, with relatively less noticeable viscous response in such a short 

time. The following creep at constant load (2nd Stage) can last for more than 6 hours with 

the trend continuing [50], sometimes for days. The extent of the creep can vary from 4% to 

30% of the total mucosa thickness [44, 52, 128], and gradually slows down after 1 minute 

[52]. The ‘elastic’ modulus after the creep stage settles usually after 1 hour, which is called 

the ‘steady’ modulus, and it can however still vary from 0.04 to 2.35 MPa [40, 44, 52, 128, 

153]. Upon unloading, some proportion of the elastic deformation recovers (3rd Stage), 

typically from 46% to 91% of the total mucosa thickness, which is also dependent on the 

loading history, including magnitude and duration, in a nonlinear manner [6, 86, 128]. 

Similar to creep, the delayed viscous recovery (4th Stage) continues for much longer than 

the instant recovery, and may reach 70-90% of the initial thickness [44, 128]. Compared 

with the PDL [85, 86], the protracted recovery that was observed in the mucosa, which 

could take more than 1 hour to complete, while it was only 1 to 2 minutes for the PDL. 
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With increasing loads, these differences were significant, suggesting a more considerable 

viscous behaviour in the mucosa. 

Several factors can affect the viscoelastic response [6], and are attributed to the 

physiology of incorporated biofluid. The mucosa in the elderly often has more significant 

viscous behaviour, especially the prolonged time and the less rebound with delayed 

recovery. It was suggested this arose because of the reduced amount of elastin and the 

greater capability of maintaining fluid in the mucosa with patient age [21]. Increasing 

contact areas generally lead to the stiffer mucosal responses [6, 52, 128], and higher 

loading rates also have similar effects [40, 86, 128]. Male subjects were found to exhibit 

stiffer mucosa response with slower recovery than female subjects [29], and it was 

suggested that female subjects usually have thicker mucosa than males [6].  

The most fundamental material model for viscoelasticity has two components as 

observed in experimental studies, the elasticity and the viscosity [154], which can be  

modeled in series (known as Maxwell model, Figure 2-3a upper left) or in parallel (known 

as Kelvin-Voigt model, Figure 2-3a upper right). A materials’ elasticity can be a path-

dependent factor following Hooke’s Law just like a spring, and the viscosity exhibits the 

time-dependent effect like a dashpot.  

In the literature, there are only few reports on the usage of viscoelastic models for 

mucosa. Two of the early studies [155, 156] assumed the orthotropic mucosa properties in 

a simplified 2-dimensional finite element model assuming a standard linear solid of a 

Kelvin-Voigt and Maxwell model in series, with the elasticity E1 = 1.1 MPa, E2 = 1.2 MPa, 

and the viscosity  18 MPa⋅s,  250 MPa⋅s. Other researchers [7, 157] assumed an 

isotropic, homogeneous, and linearly elastic body under isothermal conditions, and 

attempted to use an exponential function (Eq. (4)) [158]. In this equation, the modulus is 

1η = 2η =
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dependent upon time (t) and determined by two parameters, the initial modulus (E0) and 

the relaxation time ( ). By matching the numerical model with clinical data, the initial 

modulus was determined through a reverse-engineering approach at 0.083 ± 0.020 MPa, 

and the relaxation time is 503 ± 46 seconds [7, 157]. 

        (4) 

These two-component systems are the simplified version of the generalized 

Maxwell model (Maxwell-Wiechert model, Figure 2-3a lower), in which several Maxwell 

elements (spring plus dashpot) are assembled in parallel to accommodate more complex 

relaxation and creep behaviours.   

Prony’s method is often used in the interpretation of the experimental data, to 

derive the coefficients for the Prony’s expansion of multiple exponential terms (Eq. (5), for 

relaxation modulus) [159, 160]. It should be noted that G in this equation represents the 

shear modulus, but it can also be tensile-compressive modulus E, or bulk modulus K when 

needed, τ is the relaxation time. Often, the relaxation coefficient ( ) is normalized against 

the modulus as in Eq. (6). 

      (5) 

      (6) 

Besides the time domain, another approach is to study and model the viscoelasticity 

in the frequency domain, by using dynamical mechanical testing (DM) and magnetic 

resonance elastography (MRE) [161-163], by applying a small oscillatory stress and 

measuring the resulting strain. This approach expresses the viscoelastic properties by using 

the complex modulus (Eq. (7)). 
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        (7) 

In this equation, i is the imaginary unit, G′ and G″ are the storage modulus (elastic) and the 

loss modulus (viscous), respectively. The stress and strain are in phase for the purely 

elastic materials, generating the immediate response of one caused by the other, so the 

second term comes to zero. In contrast, the purely viscous material has a 90 degree phase 

lag in strain response. Viscoelastic materials behave somewhere between these two 

extreme types of materials. The two complex modulus parameters were determined as 2.53 

± 0.31 MPa (G′) and 0.90 ± 0.22 MPa (G″) by in vivo MRE [164]. The impact of fluid 

amount in the mucosa was also verified under DM [153]. While this approach has been 

applied to PDL numerical modelling [165], there has not been any report on the mucosa. 

Porous elasticity (Poro-elasticity) 

In contrast to the viscoelastic material model assuming a homogenized material, the 

porous elastic model considers the mucosa as a two-phase material, consisting of the solid 

porous matrix (e.g. collagen) and the ground (fluidic) substance (e.g. watery solutes) [59]. 

The ground substance, or the interstitial fluid for the mucosa, is allowed to flow from a 

stressed region to the unloaded neighbour regions, and the fluidic behaviour is described 

by Darcy’s law (Eq. (8)), in which Q is the total discharge rate (usually in mm3/min), A is 

the active area, h is the specimen thickness, and ∆P is the pressure difference to drive the 

flow. The permeability k in Eq. (8) is porosity-dependent (Eq. (9)), and is affected by the 

void ratio e at a certain time instant [166]. At zero strain, k0 is the initial permeability at the 

initial void ratio e0. M is a dimensionless constant. 

         (8) 
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      (9) 

Current research interest regarding mucosa permeability lies in drug delivery 

through oral tissues [167, 168], and the permeability examined in the literature was mostly 

for the absorption from the external space through the mucosa (perpendicular to the 

mucosa). Due to the structural complexity and the difficulty in preserving mucosa integrity, 

the permeability (parallel to the mucosa) that defines internal fluid flow has not been well 

studied. For other oral soft tissue, e.g. PDL, in vivo tests [169] have been performed to 

investigate the role of interstitial fluid on its mechanical response, and a porous 

hyperelastic (nonlinear elasticity) numerical model has been developed to match with the 

experimental results [170]. The initial permeability k0 and the dimensionless constant M 

were found as 8.81×10-9 mm2 and 14.2, respectively, which provide some insight for future 

studies on the mucosa. 

Comparison 

As some fundamental data for the mucosa is not yet available for incorporating into 

a porous elastic material model, this literature review focuses on the dynamic differences 

in the viscoelastic model, by varying the viscous terms. A Prony series is adopted as a 

general approach to deriving viscous response of soft tissue from clinical data by the least-

square method [159]. Based on the creep data reported by Kydd et al. [6], a 1st order Prony 

series (one exponential term, Eq. (10)) provides sufficient fit (strain error < 1%). The linear 

elastic constant, Ee, is inversely determined at 0.083 MPa assuming Poisson’s ratio at 0.3, 

similar to some early reports [7, 157]. The normalized relaxation coefficient, g1, is found at 

0.527 (or 0.044 MPa for the absolute value with the determined elastic modulus), and the 

time constant, τ1 is 90.6 seconds. 
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      (10) 

We adopted these inversely determined parameters for the same model used in 

Section 3.1, and tested under a constant loading of 50 kPa (equivalent to the average 

contact pressure under a common denture base with an occlusal load of 150 N) [7]. The 

volume-averaged strain under the loading area along the loading direction ( ) is plotted 

against time (brown solid line, Figure 2-3b), showing 10 minutes of creep and 10 minutes 

of recovery. The clinical data [6] is also included as shown by black rectangles for 

comparison. 

Upon varying one of the two parameters, we can compare the variation in mucosal 

responses. At the constant τ1 (90.6 seconds), the higher normalized relaxation coefficient 

g1 at 0.7 (pink solid line) imply increased viscous response than the elastic component, 

whereas the lower g1 at 0.3 (green dash line) is opposite. At the constant g1 (0.527), the 

time constant τ1 at 60 and 300 seconds indicate faster creep (blue dash line) and slower 

creep (red solid line), respectively. 

1( t/ )
e 1E(t) E (1 g [1 e ])τ−= − × −

33ε
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Figure 2-3 (a) The schematic diagrams of common viscoelastic material models; (b) the 

viscoelastic responses of different parameters in the test model, compared to the clinical data; 

(c) the frequencies of different Poisson’s ratios adopted in existing FE studies; (d) the volume 

averaged strain responses by the different Poisson’s ratios of mucosa under 100 N in the test 

model. 

2.3.3 Poisson’s Ratio 

Poisson’s ratio is the other fundamental mechanical property just like the elastic 

modulus, which defines the volumetric response of the mucosa to mechanical loading. It is 

the tendency to resist a volumetric change when the material shape is deformed, and it is 

often defined by the negative ratio of the transverse strain to the longitudinal strain. Under 

compression, material tends to expand sidewise along the perpendicular directions to the 

loading direction; while under tension, it then tends to shrink. As another natural property, 

Poisson’s ratio indicates the compressibility of material, and the value of 0.5 indicates a 
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perfectly incompressible material. Thus, the volumetric behaviour of the oral mucosa is 

determined by its Poisson’s ratio. 

As the oral mucosa is a nonlinear and heterogeneous composite material, this 

volumetric response is more appropriately considered as ‘the apparent Poisson’s ratio’ or 

‘the Poisson’s effect’, to reflect the homogenized behaviour generated by all the individual 

components involved. The term ‘Poisson’s ratio’ used in this review is for brevity and 

common acceptance in elastic materials. 

Compared to the exhaustive investigation conducted on the mucosa stress-strain 

relationship (elasticity), few reports are available regarding its lateral responses, or its 

compressibility, with surrounding neighbour tissues involved. The primary reason is the 

difficulty of measuring the lateral response. The highly complex and continuous anatomic 

morphology makes direct in vivo measurement difficult (if not impossible), and the mucosa 

acts as a unit from the surface epithelium to the sub-surface periosteum bonded to the bone, 

which prevents ex vivo loading to break its integrity. There are some non-invasive in vivo 

techniques to measure the displacement/strain responses in soft tissues but these are 

somewhat limited, they are termed elastography (and include ultrasound elasticity imaging, 

magnetic resonance elasticity imaging, and tactile imaging) [171-174]. These image-based 

techniques can monitor the lateral motion under a constant compression or dynamic 

vibration along the axial motion. In addition to the benefits of being non-invasive, the 

accuracy significantly relies on the image resolution and noise deduction procedures. So 

far, the only application of elastography to the oral mucosa was documented by Cheng et al. 

[164] on its elastic modulus, but no information was reported on the Poisson’s ratio or 

lateral response. Apart from the technique issues, the other reason is perhaps the 

insufficient awareness of the importance of Poisson’s ratio. In fact, the discrepancy of 
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different Poisson’s ratios was claimed as a non-critical factor for its response in the 

literature [29]. 

Without sufficient experimental data, most finite element studies have made 

assumptions of Poisson’s ratios based upon the knowledge gained from other soft tissues. 

One typical value of 0.3, adopted from skin [87], has been widely accepted for static linear 

elastic studies [88, 89, 104, 105, 112-115] and dynamic viscoelastic analysis [7, 157]. 

Another two values often appearing in literature are 0.37 [127] and 0.4 [92], derived from 

earlier experimental studies [86, 90], have gained wide acceptance [94, 96, 100-103, 108-

110, 116-119].  

Biological soft tissues are often considered as ‘incompressible’; and being one of 

them, the mucosa was also assumed to have higher Poisson’s ratios to simulate the low 

compressibility or non-compressibility (perfectly incompressible). The values of 0.45 [95, 

100-103, 106, 107, 111, 121-124, 126, 175] and above [97-99], or even 0.5 [29] have been 

suggested for finite element study purposes. Apart from the constant Poisson’s ratio, a 

series of multi-phasic Poisson’s ratios have been adopted by Kanbara et al. [132], in which 

the Poisson’s ratio increases with von Mises stresses at the conversion points from 0.3 to 

0.49. In conclusion, a range of Poisson’s ratios from 0.3 to 0.5 have been adopted in the 

previous studies, and the frequency in the literature is summarized in Figure 2-3c. 

To illustrate the effects of Poisson’s ratio on the mucosal responses, the same 

model used in Section 3.1 is tested with the Poisson’s ratios from 0.3 to 0.49, with linear 

elastic (E = 5 and 20 MPa) and hyperelastic (Ogden 3rd Order) material models, under a 

constant load of 100 N. The volume-averaged strain is plotted in Figure 2-3d against 

increased Poisson’s ratio values. Clearly, Poisson’s ratios affect the mucosal response in a 

nonlinear manner, where the higher the Poisson’s ratio, the less deformable the tissue. 
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2.3.4 Friction Coefficient 

The oral mucosa being a protective layer over the residual ridge, does not just 

sustain the compressive loading, but also the surface shear induced by the friction beneath 

the dentures. The prevalence of mucosal lesions associated with denture wearing is well 

known. Acute or chronic reactions to the mechanical injury can be caused by both 

microbial denture plaque and constituents of denture materials [176]. Most of these 

denture-induced symptoms, such as traumatic ulcers, angular cheilitis, irritation 

hyperplasia and keratosis, are related to the frictional loading on the mucosa and are hard 

to cure [177-179].  

Understanding the interactive response between denture and the supporting mucosa 

is critical to prevent soft tissue injuries, and the associated occlusal load transmission 

requires correct determination of nonlinear elastic contact. This interactive response can be 

related to the friction coefficient, which differs significantly among subjects, depending on 

their oral physiological conditions and denture materials used [180].  

The variability of saliva generation alters the friction coefficient, thereby affecting 

the contact responses [181]. Xerostomia (known as dry mouth) is one of the most common 

problems in the elderly edentulous population, associated with reduction of saliva 

production, which has been shown to cause severe impact on denture usage, leading to 

membrane stomatitis [97, 180, 182, 183]. In experimental studies, high friction coefficients 

between 0.3 and 0.4 were reported with ‘dried’ surfaces (hydration index closes to 0, to 

simulate xerostomia) [181, 184], whereas a low value around 0.02 was reported for well-

lubricated conditions [184]. 

With the same oral condition, the friction coefficient can also change between 

different denture materials. A material with higher wettability will be more likely to form a 
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superior lubricating layer between the supporting mucosa surface and the denture base, 

thus protecting the surface tissue by reduced friction. Seven types of common denture liner 

materials were tested in silico [185]. Under dry conditions, the friction coefficient was 

between 0.35 and 0.97; after being wetted in a warm water bath, the friction coefficient 

dropped to between 0.24 and 0.90. Acrylic resin material was found to have significantly 

better wettability than silicones [186], and the friction coefficient decreased drastically 

when wet [185]. 

Clinically, no effective in vivo approach has been reported for measuring the 

friction coefficient of individual patients. Meanwhile, due to the complexity of the 

nonlinear contact simulation, the results of such finite element studies are somewhat 

diverse. By comparing the linear and non-linear contacts under the denture base, a finite 

element study found that while the difference was less than 20% in terms of the magnitude 

of the von Mises stress in the mucosa and claimed to be insignificant [187]. Other studies 

have adopted either fully bonded, fully tied, or other linear contact mechanism between the 

denture and the mucosa, to simulate a linear transmission of occlusal forces [98, 103, 106, 

107, 112, 119, 120, 122, 126]. On the other hand, while incorporating this nonlinear 

mechanism, most studies adopted different frictional coefficients from 0 (frictionless) to 

0.75 (penalty contact) [96, 97, 104, 105, 108, 110, 111, 113, 117, 121, 157, 181, 183, 188]. 

Nevertheless, there has been no systematic study on the effects induced by different 

friction coefficients, and this review will test the common range reported in literature, from 

0.02 to 0.8, for both linear elastic (elastic modulus at 5 and 20 MPa) and hyperelastic 

(Ogden 3rd Order) material models as used in Section 3.1.3. The interactive reaction is 

highly dependent on the surface morphology of the interface; therefore, a simple 3D jaw 

model is constructed from the CT images. The complete denture is made of acrylic 

containing BaSO4, to impart radio-opacity, with an elastic modulus of 2.67 GPa and a 
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Poisson’s ratio of 0.167 [189, 190]. A pair of bilateral occlusal loads equivalent to 60 N is 

assigned to the vicinity of the first molar, along the tooth root direction, and full constrains 

are applied to the distal condyles of the mandible (Figure 2-4a) [190]. As the primary 

indication for the pathological consequences, the maximum contact pressure of the mucosa 

surface is plotted in Figure 2-4b against the frictional coefficient. The linearly elastic 

material models show either marginal differences or decrease in the maximum contact 

pressures, with increasing friction coefficients, which obviously do not match the clinical 

observations [181, 184]. In this figure, the path-dependent material models, multi-phasic 

elastic and hyperelastic, show gradually increasing maximum contact pressures with 

increasing friction coefficients.  

 

Figure 2-4 (a) The schematic diagram of the finite element model in the friction coefficient 

test; (b) the maximum contact pressure against increasing friction coefficients in different 

material models. 
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2.4. Clinical Implication 

All biomechanical models of the mucosa serve the purpose to interpret, analyse, 

and predict the various biomechanical aspects of the mucosal responses to dental 

prostheses, for possible optimal treatment outcomes and with minimum side effects to 

patients. This section will illustrate some common clinical concerns and link them back to 

the biomechanics to identify specific insights relevant to dental prosthetic design and 

treatment planning.  

 

Figure 2-5 (a) The distribution patterns of the von Mises stress in bone and the hydrostatic 

pressure in mucosa compared to the residual ridge resorption under CT (white: before 

denture insertion; cyan: 1 year after denture insertion); (b) the PPT thresholds determined in 

the clinical data of literature; (c) the vertical displacement of a removable partial denture 
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under an occlusal load of 60 N on the 1st molar; (d) the mucosa hydrostatic pressure pattern 

vs. the residual ridge height reduction. 

2.4.1 Tissue Stimulus 

Often mechanical bodies experience more than one type of mechanical stresses (e.g. 

normal and shear) along different directions, and a general expression of these stresses can 

be defined by the Cauchy stress tensors (Eq. (11)). To assess the collective effect of these 

different components on biological variations, several scalar forms can be computed from 

the Cauchy stress tensor, such as the von Mises, Tresca and maximum principal stresses. 

        (11) 

Among these scalar forms, the von Mises (VM) stress (Eq. (12)) has been most 

prominent and widely applied in the finite element analysis for materials engineering. It is 

also known as the equivalent stress in biomechanics, and derived based on the von Mises 

yield criterion, suggesting the yielding of material occurs once the second deviatoric stress 

invariant reaches a critical value. In dentistry, its applications to dental implants and other 

metallic prostheses (such as some parts of the partial removable denture, the metallic 

sleeve/bar within overdentures) has been well recognized [102, 106, 107, 148, 191]. With 

assumptions regarding homogeneity and isotropy, the application of such an equivalent 

stress has been extended from metallic materials to both cortical and cancellous bones 

[192-195]. 
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A histological study on the anatomy of mucosa has revealed it as a complex 

structure with a large number of channels and vessels [37]. The interstitial fluid filling this 
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porous structure can flow to the neighbouring mucosa under compression and transmit 

loads through a highly vascularized network embedded inside the mucosa [21, 32]. This 

fluid-induced stress over any nominal internal plane is equal in magnitude and always 

directed perpendicular to this plane, regardless of its orientation. This isotropic stress status 

is known as the interstitial fluid pressure (IFP) or hydrostatic pressure (Eq. (13)) within the 

mucosa, and indicates the functional pressure. Different to the von Mises stress, the 

hydrostatic pressure is related to the first stress invariant. 

        (13) 

The hydrostatic pressure from animal studies varies across different locations in the 

oral mucosa [196-198]. In rats, the highest IFP of 1.97 kPa was found at the hard palate, 

and the lowest ones were found at the alveolar mucosa and the free gingiva at 0.48 and 

0.31 kPa, respectively. Around the attached gingiva, the pressure can vary from 1.14 to 

1.23 kPa. The hydrostatic pressure can increase if there is an inflammatory response [199], 

which may occur following denture insertion [21, 22] and consequently compromise 

mucosa permeability [168, 200]. Being one of the most important etiological factors to 

denture-induced symptoms [9-14], excessive interstitial fluid pressure (hydrostatic pressure) 

can reduce blood circulation and even temporary cause localized ischemia [26, 54-56], 

accompanied by pain and discomfort [85]. Such prolonged excessive pressure may lead to 

the destruction of the supporting bony tissues, known as residual ridge resorption [8-10]. 

To investigate mucosal responses to external loading, such as denture insertion, the 

hydrostatic pressure determined from FEA provides meaningful indication to possible 

internal biomechanical changes [201-204]. Figure 2-5a compares the distributions of the 

von Mises stress in the bone and the hydrostatic pressure in the mucosa, and examines their 

relevance to the residual ridge resorption measured from two sets of CT scan images over 
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one year duration. The white mask in the CT scan is the pre-insertion status of the patient, 

and the cyan mask is 1-year post-insertion. The white triangles indicate the most severe 

locations of bone resorption, which obviously better correlated to hydrostatic pressure 

distribution. 

While fundamental knowledge concerning hydrostatic pressure has been well 

studied in fluid statics problems, its application to biological tissues is gradually increasing 

and being recognized over a wide range of anatomical components, such as stomach, heart, 

liver, lung, ligament, and cartilage [204-208]. For the oral mucosa, it has been used to 

evaluate the possibility of tissue remodelling driven by the occlusal loads during tooth 

eruption under the combined stimuli of intermittent tongue, lip and cheek actions [209]. In 

the other oral tissue, PDL, the hydrostatic pressure has also been shown as a mechanical 

stimulus for remodelling in the surrounding bony structure during orthodontic treatment 

[146], as well as the accompanying root resorption [201, 210]. If the hydrostatic pressure 

in PDL exceeds the capillary blood pressure, partial or complete collapse of the capillaries 

may occur just like in the mucosa. The distributions of hydrostatic pressure matched well 

with the clinical observations of residual ridge reduction. 

Hydrostatic pressure also plays a role of predicting the outcome of removable 

denture treatments, which is closely associated with both mechanical and physiologic 

functions of the soft tissues beneath denture bases. Mechanically, the mucosa acts as a 

buffer or cushion to distribute the mastication loading from denture to supporting bone. 

Physiologically, the blood vessels provide nourishment to the supporting bone of the 

denture foundation. A denture that mechanically abuses the subjacent soft tissues hinders 

the physiologic functions of these tissues. On the other hand, any systemic condition that 

unfavourably affects the physiologic function also influences the mechanical capabilities of 

the tissues, thereby jeopardizing the outcome of such denture treatments [83]. 
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2.4.2 Pressure Pain Threshold (PPT) 

The sensation of pain is the most direct indication of a maladaptive denture to the 

supporting mucosa, and it is the most common and critical issue affecting the denture 

function [17]. While the biochemical pathway of triggering the pain is not yet fully 

understood [211], previous research has revealed that high contact pressure can cause pain 

in the mucosa [212-214]. To clarify this statement, the contact pressure here refers to the 

load borne perpendicularly on the mucosal surface, rather than the internal hydrostatic 

pressure. A pressure-pain threshold (PPT) has been proposed as a measure of the lowest 

pressure that causes pain, which links the objective stimulus (pressure) to the subjective 

response (pain) in a quantitative fashion. A pressure algometer is a common technique to 

measure the in vivo PPTs, and its validity and reliability have been verified in literature, 

showing positive and consistent associations in clinics [211, 215].  

Several studies have been carried out to investigate PPT (Figure 2-5b), and it was 

found to vary from 102 to 405 kPa [17, 62, 211-213, 216]. There are several factors 

affecting PPT, including mucosa thickness, morphology, location, age, loading rate, and 

loading history. Patients with thin mucosa covering sharp bony ridges are more likely to 

have lower PPT than thick mucosa over a flat bone surface under a denture base [14, 128]. 

The loading locations, such as the palatal, lingual, and buccal mucosa, have their different 

morphologies, thickness, and anatomical features, leading to the various PPTs observed in 

clinics [62, 211, 212, 216]. Aging is a critical factor in the changes of mucosa anatomy and 

physiology as reviewed in Section 2, and it also influences PPT. A general trend indicates 

that younger people have lower PPT, whereas the oral mechanosensitivity was found to 

decrease with age [217]. The viscous responses associated with interstitial fluid are 

reflected in both loading rate and loading history as discussed in Section 3.2. Slower 

loading rates generally result in lower thresholds, as the fluid has more time to flow into 
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unstressed neighbouring tissues before building up substantial resistance to internal 

deformation [211, 212, 215]. In contrast, a faster impact stiffens the tissue and develops 

higher pressures [7, 21, 157]. The pain tolerance can ramp up with increasing loading 

duration, and the extent of the recovery of the mucosa affects the subsequent PPT [16, 17]. 

All these factors above are reflected in the biomechanical responses of the mucosa 

[14]. Simplified mucosa material models (e.g. linear elastic) often find that the denture 

induced pressures [112, 218] are below the measured pain thresholds, which is contrary to 

the clinical observations [219]. Correctly established finite element models can provide 

objective diagnostic criteria of the surface contact pressure for predicting the discomforts 

induced by denture treatment. Furthermore, the internal hydrostatic pressure can be 

determined based on the transmission of contact pressure through mucosa, and allows 

further insights into biomechanics triggering the pain sensation. 

2.4.3 Tissue Displaceability 

Some dentures are not fully supported by a single type of tissue, and they more 

often distribute occlusal loads unevenly to multiple supporting tissues, such as tooth 

(including PDL), mucosa and bone around an implant [148]. The tissues have quite distinct 

material behaviours and alter the denture deformation in a complex manner. Removable 

partial dentures and implant-retained overdentures are typical examples, which are not 

entirely tooth/implant supported but also by mucosa and bone. These displaceability 

differences lead to the varying denture/tissue deformation in both directions, along and 

across the residual ridge. As an example, Figure 2-5c shows the displacement of a 

removable partial denture under occlusal loading (60 N on the 1st molar of the denture). 

Compared with complete denture, the teeth supported partial denture and the 

implant-retained overdenture have much stiffer support sites somewhere in the dental arch 
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than the mucosa. The former is often supported by a complex native tooth unit, consisting 

enamel (or artificial crown), dentin, and PDL. Their different material properties contribute 

to the difference in the denture displacement [128, 148, 220, 221]. The displacement of 

contact surface generally increases from the supporting tooth unit towards the distal 

extension (often called free-end-saddle) [222], resulting in stress concentrations in the 

underlying mucosa [223]. It should also be noted that the oral mucosa responds differently 

to loads than PDL in a dynamic manner, as the mucosa is much easier to displace than 

PDL and takes longer to recover for the same load [86, 128]. In an implant-retained 

overdenture, the metallic implants provide even more rigid support [127], and enlarge the 

displacement difference at the distal ends of the denture with more severe stress 

concentrations, known as the cantilever effects [191, 192, 224, 225]. Across the residual 

ridge, the mucosa morphology and thickness can vary significantly [42-44, 48, 218], and 

the heterogeneous bone with different qualities underneath [226-228] further contributes to 

the varying mechanical responses. The difference of tissue displaceability is also likely to 

trigger denture instability [229, 230].  

The tissue displaceability difference does not just cause stress-induced pain, 

discomfort, and bone resorption to patients through mucosa [3, 24-26], but also affects the 

long-term health of the remaining teeth and other surrounding soft tissues [149, 179, 231]. 

Several impression techniques [232-235] have been developed to minimize the effects 

from the displaceability differences in clinical practice. Various partial denture rests 

(supports) have been developed and compared to reduce potential stress concentration [95, 

106, 132]. Shortening the denture arms [93, 236] or adding stiffer metal frame or wires 

[237] were suggested to reduce the cantilever effect. In the implant retained cases, the 

number, location, type of implants [102, 107, 127, 238] have been analysed for their 

effects on the interaction with underlying tissues. Through all these clinical and numerical 
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studies, understanding of the displaceability and material behaviour will contribute to 

enhancement of more successful treatment outcomes. 

2.4.4 Residual Ridge Resorption 

The residual ridge provides essential support to different kinds of dentures, and the 

bone quality is critical to the stability and functionality of a denture [3, 57, 239-241]. On 

the other hand, bone is a dynamic tissue that continuously undergoes adaptation to form a 

structurally elegant and efficient architecture for withstanding change of functional loads 

[242, 243]. This adaptive process involves bone formation (apposition) and removal 

(resorption), which has the capability of evolving in relation to the change of habitual 

loading environment [228].  

As indicated in Figure 2-5a, introducing dental prostheses is likely to alter the 

biomechanical state in the oral structures with respect to both stimulus transfer and 

distribution [8, 244-246]. It is believed that the alveolar bone begins to atrophy following 

teeth extraction or with edentulous aging, due to lack of stimulus to maintain the local bone 

quality [3, 241, 247]. However, the stimulus induced by the denture basal surface may not 

necessarily positively stimulate bone growth, in contrast, it may cause residual ridge 

resorption [3, 4, 239, 241, 247] (Figure 2-5d). The established remodelling algorithms for 

long bones, such as Wolff’s rule, are arguably inappropriate for explaining this denture-

induced bone resorption [248]. 

From clinical observations, the residual ridge around implants often shows to 

various extent positive gains of mass density, or at least preservation of mass, [248, 249]; 

and the similar trends present in numerical studies [106, 127, 191]. On the other hand, the 

load-borne mucosal regions often suffer from bone loss, including the posterior arms of 

implant-retained overdentures and the basal areas of partial or complete dentures [25, 109, 
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224, 250-253], even though the stresses induced in the mucosa are much lower than the 

ones around the implants [10, 13, 57]. These existing studies imply that, with the soft 

tissue involved, the residual ridge remodelling is not just the consequence of mechanical 

stimuli, but also affected by the physiological conditions in the surrounding tissues of 

mucosa, such as nutrient supply and metabolite removal to the supporting mandibular bone 

[15].  

Clinical investigations have been exploring the etiological pathway of denture-

induced residual ridge resorption [8-12]. As pointed out in previous sections of this review, 

the hydrostatic pressure in the mucosa plays a critical role, especially in the aging 

population. An inappropriately designed dental prosthesis may cause further clinical 

complications rather than solving the initial problem of restoring masticatory function if 

the relevant biomechanics is not considered properly. In the literature, mucosal responses 

have gradually begun to attract considerable attention to help understand and analyse 

potential signs of residual ridge resorption [92, 109, 155, 224]. However, unlike Wolff’s 

law, there is a lack of systematic studies on soft tissue driven remodelling rules to guide 

relevant clinical activities to date. 
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2.5. Conclusion 

With the rapid developments in molecular and cellular biology, further information 

has been gradually revealed as to the physiological reactions of the oral mucosa to occlusal 

loading, including the histological changes and biochemical reactions. Such knowledge 

assists with comprehending the biomechanical responses of the mucosa, and provides 

valuable insights for numerical modelling of these responses from clinical observations. 

The limitations of these biomechanical models should certainly be recognized. Proper 

application of these biomechanics models does not just assist with dental prosthetic design, 

but also enables estimating and predicting successful treatment outcomes. Furthermore, 

these models can in turn contribute towards discovery of the physiological factors 

associated with the biomechanical responses to advance our understanding in clinical and 

biological research. 

This chapter has reviewed four aspects of the biomechanical responses in the oral 

mucosa, namely the static, dynamic, volumetric, and interactive responses. The first aspect, 

as interpreted by the assumption of linear and/or nonlinear elasticity, has been more 

extensively explored than the other three, and this nonlinear finite element analysis has 

enabled a better match with the realistic responses of soft tissue. The dynamic response is 

interpreted by the viscosity component, often with assumption of homogeneity of mucosa 

tissue. The heterogeneity of the mucosa has not been extensively explored as yet, which 

from biomechanical perspective results in interstitial fluid activity and the associated 

dynamic response, thereby linking microscopic biomechanics to its physiology. The 

presented in-depth studies on the apparent Poisson’s ratio effect and contact interaction 

between mucosa and dental prosthetic devices remains preliminary, and their relationship 

to either the mucosal anatomy or physiology is unclear. Future experimental research 
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would be appreciated in all these areas to expand the existing knowledge in the mucosal 

biomechanics and assist clinical treatment and surgical planning for long term success. 
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Chapter 3: Mucosa Incompressibility and Contact Friction 

Properties using Inverse Analysis of in-vivo Measurements 

 

Despite their critical importance, there are no existing methods available to directly 

measure apparent Poisson’s ratio and friction coefficient of oral mucosa tissue. This 

Chapter aims to determine these two biomechanical parameters of oral mucosa by utilizing 

the in vivo experimental data of contact pressure developed beneath a partial denture. An 

inverse procedure is established based on nonlinear finite element analysis (FEA) and 

surrogate modelling technique. The established non-invasive methodology is demonstrated 

to effectively identify such biomechanical parameters of oral mucosa and it can be 

potentially used for determining biomaterial properties of other soft biological tissues. 

 

Associated Publications: 

1. Hanako Suenaga, Junning Chen, Wei Li, Keiichiro Yamaguchi, Keiichi Sasaki, Qing Li, Michael V. 

Swain. Validate Mandible Finite Element Model under Removable Partial Denture (RPD) 

with In Vivo Pressure Measurement. Applied Mechanics and Materials, 2014. 553: p. 322-26. 

2. Junning Chen, Hanako Suenaga, Michael Hogg, Wei Li, Michael Swain, Qing Li. Determination of 

oral mucosa Poisson’s ratio and friction coefficient from in-vivo contact pressure 

measurements. Submitted to Journal of the Mechanical Behavior of Biomedical Materials. 
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3.1 Introduction  

Complete or partial dentures are widely used in the edentulous population to restore 

oral function [1, 2]. In this context, the oral mucosa plays a critical role in distributing 

masticatory force from the denture to the underlying bony ridge [3-5]. Some associative 

clinical complications often cause pain and patient discomfort mainly due to excessive 

contact pressures [6, 7]. The differential displacements (displaceability) of the mucosa 

across the residual ridge also triggers denture instability [8, 9], thus compromising the 

mastication ability and associated quality of patient’s life [10, 11]. In the worst scenario, 

this may lead to bone resorption along the residual ridge [1, 12-14]. 

For the above reasons, significant interest has arisen and extensive studies have 

been undertaken regarding the biomechanical response of the mucosa under denture 

compression. Both the nonlinear elastic (instant or short term) response [15-18] and 

viscoelastic [3, 19-25] (time-dependent or long term) response of the mucosa have been 

examined via both experimental and computational approaches. The mucosa is a highly 

vascularized tissue with considerable volume fraction of interstitial fluids, and the 

substantial fluidic exchange occurs with surrounding tissues under compression [18, 24]. 

The mucosa’s protective function arises from its cushioning effect and the extent to which 

it may be characterized by its deformation and compressibility. While exhaustive 

examination has been conducted on the mucosa stress-strain relationship (apparent moduli), 

little attention has been paid to its lateral responses (more relevant to compressibility) with 

surrounding neighbour tissues. In fact, the apparent Poisson’s ratio (ν ) of mucosa has not 

been considered as a critical factor in literature [21]. Previous FE modelling studies have 

assumed a rather broad range of possible values, from 0.30 to 0.49 [3, 16, 19, 20, 26]. 

From a biomechanics perspective, the effect of the apparent Poisson’s ratio has not been 

adequately addressed thus far.  
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The contact between a denture and the supporting mucosa involves nonlinear 

mechanics, and the frictional behaviour can also vary over a considerable range, depending 

on the amount of saliva in oral environment. The prevalence of xerostomia (known as dry 

mouth) in the elderly edentulous population has been reported to have severe impact on 

denture usage, often resulting in pain and ulceration [27-30]. The variability of saliva 

generation alters the friction coefficient (fc), thereby affecting the contact responses [31]. 

Clinically, no effective in vivo approach has been reported for measuring the friction 

coefficient of individual patients, and as a consequence, the use of friction coefficients in 

finite element in mucosa contact analysis is somewhat arbitrary. 

Knowing a set of appropriate parameters including the boundary conditions, FE 

models have compelling features in mimicking biomechanical responses to clinical 

scenarios yielding considerable detail [32, 33]. In contrast, if some parameters are not 

precisely known, FEA can still be run over a given range of them. Following these FE 

trials, the most appropriate set of parameters can be determined in an inverse manner. 

This chapter aims to first examine the influence of the apparent Poisson’s ratio of 

the oral mucosa and friction coefficient on the contact pressure between the mucosa and 

denture base using a 3D patient-specific FE model. These two biomechanical parameters 

will then be determined from the in vivo measurement of contact pressure by minimizing 

its deviation to the modelling results. The study thus establishes an inverse procedure to 

determine oral biomechanical properties, which enables more realistic FE modelling for 

denture design and assists treatment planning for patients who have specific mucosa and 

lubrication conditions (e.g. xerstomia [30]). 
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3.2 Materials and Methods 

3.2.1 CT Scan and in vivo Contact Pressure Measurement 

The subject involved in this study was a 66-year-old woman, who was prescribed a 

distal extension removable partial denture (RPD) to replace the missing mandibular left 

molars (Figure 3-1a). The research protocols for this study were approved by the research 

ethics committee at both the Tohoku University Graduate School of Dentistry (Japan) and 

Sendai Kousei Hospital. The RPD treatment was performed in the prosthodontic clinic of 

Tohoku University Hospital. The CT scan of the mandible was taken using a Discovery ST 

Elite instrument (GE Healthcare Japan Co., Tokyo, Japan). 

 
Figure 3-1 (a) Occlusal view of mandible with RPD; (b) tactile sensor sheet; (c) pressure 

sensitive film. 

For the in vivo measurement of contact pressure, a duplicate RPD was fabricated 

using the same materials, namely platinum-gold alloy (PGA-2, Ishifuku Metal Industry co., 

Ltd, Tokyo, Japan) for the metal frame, resin (Acron MC, GC Co., Tokyo, Japan), and 

artificial teeth (Surpass Posterior Teeth, GC Co., Tokyo, Japan). A 1.0 mm thick tactile 

sensor sheet was used to measure the contact pressure under the denture base, with a 

measuring range of 0-2 MPa (Conformable TactArray SensorTM, Pressure Profile Systems 

Inc., CA, USA) (Figure 3-1b) [34]. The sensor was constructed from a flexible and 

conductive cloth that can be molded into shapes with multiple curvatures. Electrode strips, 

2 mm in width, were regularly arranged in an orthogonal fashion, and the 30 overlapping 
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areas functioned as sensing points to measure pressure distribution in the regions of 

interest (ROI). The sensor sheet was bonded to the RPD basal surface using an adhesive 

(PPX set, Cemedine Co., Ltd., Tokyo, Japan). Following this, a fitting test was performed 

to check the adaptation between the sensor sheet and residual ridge. Occlusal adjustment 

was performed before the measurements, ensuring that the occlusal contact points were 

distributed evenly in the dental arch. Pressure distribution was acquired at the maximum 

voluntary clenching force, and five trials were conducted for the experiment. Occlusal 

forces on the dental arches were measured simultaneously with pressure sensor films 

(Dental PrescaleTM, Fuji Photo Film Co., Tokyo, Japan, Figure 3-1c) for each trial to 

ensure the correlation of contact pressure to force application. 

3.2.2 Finite Element Modelling 

Another duplicated denture was made specifically for scanning from the same cast, 

consisting of pure titanium for the metal frame (to reduce metal Xray scattering artefacts 

associated with the denser Pt-Au alloy), radiopaque resin (Scanning resin, Yamahachi 

Dental MFG. CO, Aichi, Japan) for denture base and radiopaque teeth (SR Ortho TAC, 

Ivoclar Vivadent Pty. Ltd., Municipality, Principality of Liechtenstein). The CT scan 

(NewTom 3G 9000, QR S.r.l., Verona, Italy) was taken with exposure parameters of 110 

kV, and tube current of 6.0 mA.  

The CT scan stacks for both subject and denture were segmented in ScanIP Ver. 4.3 

(Simpleware Ltd, Exeter, UK). Based on Hounsfield unit (HU) values, 11 masks were 

created to represent the individual teeth, cortical and cancellous bone; another 3 masks 

were generated for the metal frame, denture base, and artificial teeth in the other stack 

(Figure 3-2a). Due to substantially low contrast, the mucosa was modeled by offsetting the 

outer layer of the cortical bone with 4 pixels to provide an average thickness of 

approximately 1.2 mm, as indicated in an earlier study [4]. All the masks were further 
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processed in 3D parametric modelling software Rhinoceros 3.0 (Robert McNeel & 

Associates, Seattle USA) to create geometric models by using the non-uniform rational B-

splines (NURBS) (Figure 3-2b). The insertion of the RPD was performed virtually onto the 

patient mandible model for the final assembly, and in the mandible model, the 

corresponding regions of interest (ROI) were assigned by the same CT image coordinates, 

corresponding to the in vivo measurement. 

 

Figure 3-2 (a) Masks segmented for individual components from two individual CT scans, 

patient jaw and denture, mucosa (transparent maroon), cortical bone (transparent yellow), 

cancellous bone (opaque orange), teeth (opaque grey), denture base (transparent cyan), frame 

(opaque blue), and artificial crowns (opaque red); (b) solidified model with NURBS 

representation after visual insertion of the removable partial denture; (c) finite element 

models meshed in ABAQUS 6.9.2; (d) loading conditions (orange: native teeth; blue: artificial 

crowns) and boundary conditions (cyan triangles) assigned to the model. 

a. b.

c. d.
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The exported IGS models were meshed in ABAQUS 6.9.2 (Dassault Systèmes, 

Waltham USA). The adaptive mesh control was set to have a maximum elemental size of 1 

mm (Figure 3-2c). For this sophisticated 3D model, hybrid formulated tetrahedral elements 

(C3D4H) were used to capture the complex curvature and preserved the continuity of the 

contact surface. The model comprises 699,411 degrees of freedom (D.O.F.) with 1,319,320 

tetrahedral elements. To ensure numerical accuracy, a mesh convergence test was 

performed similar to our previous studies [35, 36]. 

The mucosa was defined as a hyperelastic material because of its nonlinear 

responses [3, 17, 24]. Driven by the unit volume strain energy, a third order Ogden strain 

energy constitutive equation [37] was derived from the in vivo data documented by Kishi 

[17] via a least-square fitting, which is a function of the instantaneous strain. The 

mechanical properties of other materials were taken from those used in the previous FE 

studies [33, 38-41]. 

The clasp of the denture frame was locked by a pressure-fit onto the crowns, and 

their contact was achieved by assigning a tie constraint in ABAQUS. A surface-to-surface 

contact was defined between the denture base and the mucosa, with a friction coefficient to 

be identified in Section 2.3. Occlusal loads were assigned onto each corresponding tooth as 

measured clinically (Table 1). The boundary conditions were prescribed to the distal ends 

of the condyles (Figure 3-1d) [42, 43]. 
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   Table 3-1 In vivo occlusal loads measured clinically on the subject 

Left Side Right Side 

Tooth Magnitude (N) Tooth Magnitude (N) 

Central Incisor 6.3 (1.8) Central Incisor 7.9 (1.7) 

Lateral Incisor 5.8 (1.3) Lateral Incisor 7.2 (1.3) 

Canine 55.4  (8.1) Canine 71.8 (14.7) 

First Premolar 48.7 (11.2) First Premolar 42.4 (16.6) 

Second Premolar 66.5 (11.3) Second Premolar 42.5 (10.1) 

First Molar (Denture) 28.7 (9.8) First Molar 42.1 (10.9) 

Second Molar (Denture) 29.4 (10.4)   

 

3.2.3 Response Surface Method (RSM) 

In this study, the two undetermined variables were the apparent Poisson’s ratio (ν ) 

and friction coefficient ( cf ). A wide range of ν  has been assumed in the previous FE 

models reported in the literature, ranging from 0.30 to 0.49 [3, 16, 19, 20, 26]. Soft tissue 

is often considered as nearly incompressible, and this behaviour can be modeled with a 

very high Poisson’s ratio ν  of 0.499.  

Friction coefficient cf  can also differ significantly among subjects, depending on 

their physiological conditions, denture materials and treatment outcomes [28]. The 

variability as to the amount of saliva considerably influences the friction between the 

denture base and the mucosa [31]. High friction coefficients between 0.3 and 0.4 were 

reported with ‘dried’ surfaces (hydration index closes to 0, to simulate xerostomia) in 

experimental studies [31, 44], whereas a low value around 0.02 were reported for well-

lubricated conditions [44]. Previous FE studies have used values between these two 

extremes [26, 29, 30]. 
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Based on the literature data available, the possible ranges of ν and cf  can be 

defined in Eqs. (1) and (2), respectively. Seven apparent Poisson’s ratios (0.3, 0.35, 0.4, 

0.45, 0.47, 0.49, and 0.499) and five friction coefficients (0.01, 0.1, 0.2, 0.3, and 0.4) were 

selected for sampling tests, resulting in 35 different combinations for the FE simulations. 

The objective function (i.e. overall deviation between FE modelling and the in vivo 

measurements over the 30 ROIs) was defined in Eq. (3), where N (=30) is the number of 

ROIs, and *
iσ  and iσ  (i=1, 2, …, N) are the corresponding in vivo and simulated contact 

pressures, respectively. To best match the in vivo results, the simulation is expected to 

achieve the minimum deviation with respect to a set of unknown parameters c( ), fν . 

0.3 0.499ν≤ ≤          (1) 

0.02 0.4≤ ≤cf         (2) 

N
2

c i i
i 0

* 2 * 2
1 1 N N

1min ( ) ( )
N

1 [( ) ... ( ) ]
N

* J , f =

                   

ν σ σ

σ σ σ σ

=
−

= − + + −

∑
     (3) 

It is difficult to formulate an explicit cost function, c( )J , fν , in Eq. (3) for such a 

highly nonlinear problem. Response surface method (RSM) is one of the surrogate 

modelling techniques that were considered an effective, and sometimes unique alternative 

in engineering and biomedical design [32, 40, 45, 46]. Since the knowledge of the 

objective functions is lacking; we attempted several different polynomial models in order 

to capture complex mutual effects from these two variables [47]. Using this method, the 

most suitable response surface (RS) function was determined based on the best fit and the 

least error. 

  



Chapter 3 - Poisson’s ratio and Friction Coefficient of Oral Mucosa Page | 91 

3.3 Results  

3.3.1 In vivo Occlusal Force and Contact Pressure 

The occlusal forces measured are summarized in Table 1. These in vivo forces were  

assigned onto each corresponding tooth in the patient-specific model. Total occlusal force 

on the entire dental arch was 438.7 N, and total force on the artificial teeth was 84.6 N.  

 

Figure 3-3 In vivo measurement of contact pressure underneath the RPD: (a) 30 sensor 

locations (5×6) over the residual ridge indicated on a pressed mould from the subject; (b) 

averaged contact pressure reading (from 5 repeat tests) of individual sensor positions. 

Figure 3-3a shows the in vivo contact pressure measurement on the same subject, 

over the sensing points as specified in Figure 3-3b (5×6 matrix, lingual-buccal: A-E, distal-

mesial: 1-6). The average contact pressure contour (5 measurements for all the 30 sensors) 

on the residual ridge beneath the denture base is presented in Figure 3-3b. The pressure 

range over the contact surface varied from 0.09 to 0.87 MPa, where the maximum occurs 

on the lingual side of the residual ridge crest (Sensing Point A4); and the minimum occurs 

on the mesial and distal ends of the buccal side (Sensing Points C1 and D6). 
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3.3.2 Numerical Contact Pressure and Mucosa Displaceability (Displacement) 

The contact pressure beneath the denture base and the tissue displacement 

difference (relative displacement) are major concerns in denture design [8, 9]. Figure 3-4a 

specifies the mandibular region under the RPD. Figure 3-4b shows the reference point on 

the first premolar for measuring the displacement difference over the entire denture and 

crown. 

 

a. b.

c. d.

e. f.
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Figure 3-4 (a) Contact pressure measurement area underneath the RPD; (b) displaceability 

measurement area on the RPD; (c) the maximum contact pressure contours on mucosa for 

the four extreme cases; (d) the maximum contact pressure change with different Poisson’s 

ratios and different friction coefficients; (e) the contours of displaceability difference with 

respect to the first premolar for the four extreme cases; (f) the maximum displaceability 

difference on the denture base with the different Poisson’s ratios and friction coefficients. 

Figure 3-4c compares the contact pressure contours for the four extreme 

combinations of the unknown parameters ( 0.30ν =  and 0.499; c 0.02f =  and 0.40). It is 

evident that ν  and cf  have significant impact on the mucosa responses, indicated by the 

changes in contact pressure distributions and their peak values. When the mucosa is 

modeled as highly incompressible but well lubricated ( 0.499ν = , c 0.02f = ), the 

maximum contact pressure can reach 1.8 MPa, 21 times that for the lowest Poisson’s ratio 

case ( 0.30ν = ). When c 0.40f = , the predicted contact pressure reached 2.69 MPa. The 

maximum contact pressures are plotted versus cf  for different ν  ranging from 0.30 to 

0.49 in Figure 3-4d, at different friction coefficients, excluding 0.499ν =  because of its 

unrealistic mucosal response in comparison with the experimental results. Increasing either 

Poisson’s ratio or friction coefficient induces nonlinear increases in the maximum contact 

pressures.  

Figure 3-4e illustrates the relative displacement on the denture base with respect to 

the 1st premolar, as the result of different mucosa displaceabilities. At 0.30ν =  and 

c 0.02f = , the lingual side of the denture base moved down 0.02 mm more than the 

premolar, as the smallest difference among all parameters. Obviously, ν  plays a more 

dominant role in the tissue displaceability, and the maximum difference reaches 18 times. 

Figure 3-4f summarizes the maximum displaceability difference for individual cases. It is 

observed that the displaceability difference has nonlinear relationships to both Poisson’s 
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ratio and friction coefficient, but the trend is concavely negative, different to contact 

pressure distributions (Figure 3-4d). 

3.3.3 Response Surface and Minimum Deviation Determination 

Since the high apparent Poisson’s ratios ( 0.49ν =  and 0.499) generates unrealistic 

contact pressure contours with considerable deviations ( c( )J , fν > 100 kPa, Eq. 3) from the 

in vivo measurements, the associated sampling points are excluded from the RS modelling 

and subsequent parametric identification. Thus a total of 25 sample points (with 30 ROIs 

each) are considered for the construction of RS model. 

 

Figure 3-5 (a) The regions of interest (ROIs) indicated on the numerical model (lower sub-

figure), corresponding to the sensing points of the in vivo contact pressure measurement 

(upper sub-figure); (b) the response surface model based on the 25 sampling points, over the 

given variable domains. 

Figure 3-5a illustrates the corresponding ROIs (lower) in the FE model to the in 

vivo measurement areas (upper). Using the least square algorithm, the quartic-quadratic (ν

- cf , Eq. 4) model provides the best possible fit to the simulation outcomes, with an 

adjusted R2=0.9997 and the residual standard error of 0.11 kPa. With The corresponding 

a. b.
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polynomial coefficients are listed in Table 2. With this RS surrogate model, the minimum 

deviation within the given variable range is 1.57 kPa, for 0.402ν =  and 0.213=cf . 

2
00 10 01 20 11

2 3 2 2
02 30 21 12

4 3 2 2
40 3

c c c

c c c

c c1 22

( )J , f ν f ν ν f

f ν ν f ν f

           

p +p × +p × +p × +p × ×

            +p × +p × +

 ν ν f

p × × +p × ×

+p × +p × × + ×νp ×f

ν =

    (4) 

Table 3-2 The coefficients of the response surface polynomial model (Eq. 4)  

Coefficient Value 

p00 8.14E+02 

p10 -9.06E+03 

p01 -6.25E+01 

p20 3.80E+04 

p11 3.36E+02 

p02 1.29E+02 

p30 -7.09E+04 

p21 -5.05E+02 

p12 -6.53E+02 

p40 4.96E+04 

p31 1.26E+02 

p22 8.34E+02 
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3.4 Discussion 

A common clinical problem confronting prosthodontists is the design and 

maintenance of distal extension RPDs, because the mechanical supports required from the 

abutment teeth and residual ridge mucosa are quite different [48]. While optimal load 

transfer through the abutment teeth and the residual ridges is highly desirable; this has 

proven considerably difficult to realize as accurate values of mucosa properties have not 

been established [21]. There is no direct approach available for measuring the Poisson’s 

ratio of the oral mucosa in a clinical scenario [19]. Although the previous studies [3, 20] 

attempted to derive the nonlinear moduli of mucosa via the same approach as hard tissues 

[49], data regarding its volumetric deformation has not been specifically identified. More 

importantly, the effect of the apparent Poisson’s ratio has been largely disparaged because 

of the lack of data [21]. Our study has on the other hand clearly demonstrated the 

importance of Poisson’s ratio to both the contact pressure distribution and mucosa 

displaceability, within the assumed range of Poisson’s ratios suggested in the early FE 

studies [16, 26, 29]. 

From a mechanical aspect, solid evidence has shown that Poisson’s ratio could alter 

the cushioning effect [50], thereby preventing both compressive and shearing damage. This 

cushioning effect of the masticatory mucosa comes from its hierarchical vascular structure 

and internal permeability. A stratified squamous keratinized epithelium covers the 

underlying tissues, tightly bonded by collagenous connective tissue [51]. A fluid-rich 

vascular network forms in the underlying tissues, and the permeability determines how fast 

the interstitial fluid can be transferred from a loaded area to its surrounding unstressed 

mucosal periosteum [4, 52, 53]. Both of these factors can be affected by aging, 

physiological conditions, and therapeutic treatments [27-30, 51-54]. Consequently, the 
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altered overall cushioning effect reflects the change in its apparent Poisson’s ratio and 

other biomechanical material properties. 

The friction coefficient between the denture material and mucosa has drawn some 

attention [31, 44]. It is directly linked to the mucosa-denture interaction and the stability of 

a denture [16, 26, 29]. It is important that the denture provides sufficient wettability by 

forming a superior lubricating layer over the supporting mucosa to reduce friction and 

minimize patient discomfort [55]. However, the prevalence of xerostomia (lack of saliva) 

in denture wearers can lead to inflamed and traumatic ulcerations with elevated 

circumferential fibrous tissue, which can further develop into an epulis fissuratum [56-58]. 

Thus, the friction coefficient acts as a critical indicator for denture design. 

At the current stage of this study, the elementary stress-strain behaviour of the 

mucosa was adopted from a group of average patients based on the existing literature [17]. 

The mucosa condition can however vary significantly between individuals, and it also 

changes across different types of mucosa (e.g. masticatory, lining) within the same subject. 

It must be noted that further large scale patient-specific studies are needed to generate the 

statistical implications of these two parameters. Nevertheless, this study provides some 

biomechanical insights for the mucosal apparent Poisson’s ratio and friction coefficient, 

which have not been adequately addressed in the literature to date. 
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3.5 Conclusions 

This study established a FE based identification procedure for determining apparent 

Poisson’s ratio of mucosa and the friction coefficient between the denture and oral mucosa. 

These two critical biomechanical parameters were determined by minimizing the 

discrepancy between the FE analyses and experimental tests of contact pressure. A 

combined quartic-quadratic response surface model was constructed to mathematically 

represent the deviation cost function with respect to the design variables of Poisson’s ratio 

and friction coefficient. For this specific patient, we found that 0.402ν =  and c 0.213f =  

achieved the closest fitting to the in vivo experimental results. After illustrating the 

importance and biomechanical insights of these two parameters, this chapter also 

established a non-invasive procedure for combining clinical analysis, biomechanics and 

dental materials studies in a patient-specific manner. The biomechanical parameters 

determined here will potentially generate more realistic simulations and biomechanical 

studies with potentially improved patient satisfaction. 
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Chapter 4: Mechanobiological Bone Reaction Quantified by 

Positron Emission Tomography 

 

This chapter investigates instantaneous mandibular bone metabolism at various 

time points induced by removable partial denture (RPD) insertion. This behaviour was 

observed by correlating 18F-fluoride positron emission tomography (PET) image data with 

the calculated mechanical stimuli in the residual ridge. The resultant mechanobiological 

response was analysed using a 3D finite element (FE) model derived from the 

computerized tomography (CT) images of a specific patient under the mastication loading. 

This approach reveals the effectiveness of PET to determine bone metabolic activity 

associated with mechanical stimuli, and the results provide for the first time biomechanical 

insights into the association of tracer uptake with bone remodelling. Good correlation was 

found between bone metabolism and mechanical stimuli induced following RPD insertion. 

It was shown that PET enables detection of current bone metabolic activity, which is 

strongly associated with changed mechanical stimuli, in a much shorter duration than a 

conventional X-ray that quantify the summation of bone remodelling. The non-destructive 

nature of PET/CT scan and FEA is able to provide an effective means to clinical 

examination and monitoring of various denture treatments.  

Associated Publications: 

1. Hanako Suenaga, Junning Chen, Keiichiro Yamaguchi, Wei Li, Keiichi Sasaki, Michael Swain, 

Qing Li. Mechanobiological Bone Reaction Induced by Removable Partial Denture Quantified 

by PET (18F) Imaging and Finite Element Modeling. Submitted to Journal of Dental Research.   
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4.1 Introduction  

While dentures have had a long history of successful usage in clinical dentistry, the 

manner, in which mastication induced load is supported by the soft gingival tissue 

overlying the bony ridges of the oral cavity, is an unnatural situation and has significant 

clinical consequences.  This not only causes pain and discomfort, but also leads to bone 

resorption, typically occurring on the residual ridge beneath a mal-adapting denture base 

[1]. As widely accepted in previous studies [2-5], mechanical stimuli give rise to bone 

remodelling activities, either apposition or resorption, as implied by Wolff’s rule. 

Therefore, it is important to investigate the mechanobiological responses induced, thereby 

controlling it through biomechanical design of dental prosthesis.  

While X-rays have been commonly utilized to evaluate the bone quality in clinical 

practice [6-11], which enables detecting 30-50% changes in bone mineral; this technique is 

difficult to identify short term responses [12]. Nuclear medicine scanning techniques, such 

as bone scintigraphy, single-photon emission computerized tomography, and 18F-fluoride 

Positron Emission Computerized Tomography (PET), on the other hand, can identify 

subtle functional variations prior to the major structural change detectable by X-ray [13]. 

Recently, 18F-fluoride PET has received critical attention for its improved resolution and 

shorter waiting time for earlier clinical evaluation than other approaches [14-18].  

The sensitivity of nuclear medicine scanning techniques to quantify increased bone 

turnover associated with stress injury has drawn attention in clinical practice [18]. Various 

in vivo human studies have been undertaken to evaluate stress fractures [19, 20]. Although 

all these studies acknowledged the role played by mechanical forces and its influence in 

bone metabolic activities, none of them have quantified or confirmed a correlation between 

tracer uptake and bone mechanical stimulus [21]. 
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As no direct or non-destructive in vivo approach has been reported for directly 

measuring mechanical stimuli on humans, the finite element (FE) method provides and is 

considered an effective alternative [22-25]. With advances in clinical computerized 

tomography (CT), sophisticated 3D anatomy can be precisely modeled, reflecting patient-

specific details possible with such studies [26]. In addition, with the increased 

computational power available it enables more realistic models of tissue behaviour, 

including simulating complicated responses in a nonlinear manner [22]. 

This study investigates the relationship between bone metabolism observed by 18F-

fluoride PET image and mechanical stimuli of the mandible the supporting residual ridge 

induced by insertion of removable partial denture (RPD). 18F-fluoride PET imaging 

technique is used to quantify the change of bone metabolism in the residual ridge 

underneath denture base before and after RPD treatment. The corresponding FE analyses 

are conducted for the measured occlusal forces in vivo to quantify mechanical responses. 

Different mechanobiological stimuli determined from FE analyses are then quantitatively 

related to the standardized uptake values (SUV) of PET in the regions of interest (ROI). 

This study reveals the effectiveness of applying PET to predict bone metabolic activity 

associated with mechanical stimuli, and provides us with biomechanical insights into the 

association of tracer uptake with bone remodelling. 

  

http://en.wikipedia.org/wiki/Standardized_uptake_value
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4.2 Materials and Methods 

4.2.1 18F-fluoride PET/CT Imaging and Reconstruction 

The subject was a 66-year-old female patient in the prosthodontic clinic of Tohoku 

University Hospital, Japan. The research protocols for this study were approved by the 

ethics committees at both the Tohoku University Graduate School of Dentistry and Sendai 

Kousei Hospital.  

The subject’s mandibular left molars and right second molar were missing and she 

chose a unilateral distal extension RPD to replace her left molars (Figure 4-1a and 1b). 

PET/CT scans were performed before (pre-insertion) and 6 weeks after (post-insertion) the 

RPD insertion, by using an 18F-fluoride PET/CT imaging scanner (Discovery ST Elite, GE 

Healthcare Japan Co., Tokyo, Japan). Signed consent forms were obtained from the subject 

after full explanation of the procedures. The emission in 3D acquisition mode with spatial 

resolutions of 2.0, 2.0, and 3.27 mm in radial, tangential, and axial directions commenced 

75 mins after intravenous injection of 37 MBq 18F-fluoride. Occlusal forces on the dental 

arches were measured using pressure sensitive films (Dental PrescaleTM, Fuji Photo Film 

Co., Tokyo, Japan). 
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Figure 4-1 Intraoral view of mandible, coronal multiple planar reconstruction (MPR) and 

placement of regions of interests (ROIs), with patient-specific finite element modelling. (a) 

Intraoral view of mandible without denture; (b) Intraoral view of mandible with denture; (c) 

Locations of the four coronal planes for MPR; (d) Reconstructed CT image on the patient 

jaw with white rectangles to specify ROI; (e) The corresponding PET image to CT; (f) fusion 

image created from CT and PET; (g) the transparent view of the patient jaw model before 

denture insertion, maroon - mucosa, brown - cortical, yellow - cancellous, grey - teeth; (h) the 

geometric model with non-uniform rational B-spline (NURBS) for the patient jaw after 

CT image PET image Fusion image
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virtual insertion, pink - mucosa, yellow – native teeth, silver - artificial teeth, cyan - denture 

base, black - denture frame (cortical and cancellous bones are invisible in this view). 

The PET and CT data were further processed and fused using medical image 

viewer software (EV Insite R, PSP Co., Tokyo, Japan), which allows detection and 

alignment of anatomic landmarks between the different cross-sectional examinations 

(Figure 4-1c-1f). Four coronal images were selected across the left residual ridge under the 

RPD of interest, by using the multiple planar reconstruction (MPR) procedure. These 

images were ordered from mesial, A, to distal, D (Figure 4-1c). Seven cubic regions of 

interests, with 2 mm size, were placed on each image. Four of them were positioned over 

the cortical bone as shown in Figure 4-1d (1: alveolar crest, 2: buccal side, 3: base of 

mandible, 4: lingual side) and remainders (5-7) were positioned in cancellous bone 

between 1 and 3. SUVs, reflecting accumulation of 18F-fluoride, and the CT values were 

measured for each ROI. The SUV expresses the ratio of the amount of 18F-fluoride in a 

certain ROI compared with a situation where the 18F-fluoride is distributed equally over 

the entire body. 

2.4.2 Finite Element Modelling 

The CT image stack of the subject was segmented in ScanIP Ver. 4.3 (Simpleware 

Ltd, Exeter, UK), based on their Hounsfield unit (HU) thresholds. 11 masks were created 

for the individual teeth, cortical bone, and cancellous bone. Due to the low contrast, the 

mucosa was constructed by offsetting the outer layer of cortical bone with 4 pixels, 

providing about 1.2 mm average thickness [12]. All masks were then exported to 3D 

parametric modelling software Rhinoceros 4.0 (Robert McNeel & Associates, Seattle USA) 

to create geometric models for the pre-insertion condition (Figure 4-1e) with non-uniform 

rational B-spline (NURBS) representation.  
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A CT image of RPD was obtained by using a duplicated denture specifically made 

for scanning, which consists of pure titanium, scanning resin for denture base, and radio-

opaque teeth [27]. After performing the image registration using isosurfaces to the subject 

CT, another 3 masks were created for the denture frame, denture base, and artificial teeth, 

following the same approach as abovementioned. The subject and denture masks were 

assembled for the virtual denture insertion, as the post-insertion condition (Figure 4-1f).  

Both models for the pre- and post-insertion conditions were meshed in ABAQUS 

6.9.2 (Dassault Systèmes, Tokyo Japan), with the adaptive mesh control set to a maximum 

elemental size of 0.5 mm for hybrid formulated tetrahedral elements (C3D4H). The 

corresponding ROIs to the PET images were defined based on the same coordinates in 

these models. After a mesh convergence test similar to our previous studies [28, 29], the 

final meshes comprised 4,337,113 and 5,278,816 elements (2,287,506 and 2,784,185 

degrees of freedom) for the pre- and post-insertion models, respectively. 

As a critical and nonlinear material [30-32], the mucosa is modeled as being 

hyperelasticity based on literature data [23]. The denture-mucosa contact was modeled 

with a low frictional coefficient of 0.1 to mimic normal oral lubrication conditions [33, 34]. 

Occlusal forces were applied to each corresponding teeth as measured clinically, 

differently for pre- and post-insertion. Boundary conditions were prescribed to the distal 

ends of condyles and the muscular forces were derived from occlusal forces [35]. 

Different mechanical stimuli, i.e. von Mises stress (VMS), equivalent strain (ESN), 

and strain energy density (SED), were considered in this study. Linear regression analysis 

was performed to examine their relationship with SUV in this patient-specific case. 
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4.3 Results 

4.3.1 Occlusal Force 

The occlusal force measured on individual teeth is summarized in Figure 4-2a and 

2b, for pre-/post-insertion. Before denture insertion, the total occlusal forces were 

considered as 175.6 and 176.2 N for the left- and right-hand sides of the dental arch, 

respectively. RPD insertion altered the load distribution (Figure 4-2b), increasing the total 

force to 215.8 N (left) and 191.6 N (right) at post-insertion with adjustment.  
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Figure 4-2 The comparison between pre-insertion (a, c, e) and post-insertion (b, d, f) of the 

RPD, for their influence on occlusal force distributions (a & b), the mechanobiological stimuli 

(c & d) as determined from FEA in the form of strain energy densities (SED), and standard 

uptake value (SUV) distributions (e & f) on PET/CT fusion MPR images. 

4.3.2 Mechanobiological stimuli 

SED is plotted on the oblique planes through both the left and right residual ridges 

at pre-insertion (Figure 4-2c) and post-insertion (Figure 4-2d), respectively. As the 

occlusal force increased, mechanical stimuli of all three forms (VMS, ESN and SED) 

increased. Most obviously, the mechanical stimuli increased in the left residual ridge and 

around the root of left premolars, compared to the right side. SED is the most sensitive 

stimulus following denture insertion, in which its maximum ramped up by 25 times in 

Week 6 in the cortical and 21 times in cancellous bone.  

4.3.3 Bone metabolic activity 

Consistent with distribution of mechanical stimuli after denture insertion, the right 

edentulous area maintained an almost constant level of metabolic activity, whereas the 

SUVs on the left residual bone beneath the denture base increased (Figure 4-2e and 2f). 

The SUVs around the roots of the left premolars, direct abutment teeth (Teeth 34 and 35), 

were more significantly affected by the RPD insertion than the indirect abutment teeth 

(Teeth 44 and 45), showing an enlarged area of high bone metabolic activity (white 

triangles).  

To compare mechanical stimuli with SUV more quantitatively, Figure 4-3 

summarizes the volume-averaged ROI values of VMS (1st row) and SUV (2nd row) for pre-

insertion (left column) and post-insertion (right column). VMS in cancellous bone (ROI 

number 5-7) were lower than those in cortical bone (ROI number 1-4), whereas SUV 

shows the opposite trend.  
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Figure 4-3 von Mises stress (1st row) of individual regions of interest (ROI 1 - 28), and the 

corresponding standard uptake values (SUVs) from PET scan (2nd row), at pre-insertion (left 

column) and post-insertion (right column) of the RPD. 

The VMS of cancellous bone has two clear trends after denture insertion (Figure 4-

3b: ROI number 5-7). Firstly, in the same MPR plane, VMS decreased as the number of 

ROI increased, or in other words, reducing from the top of residual ridge towards the 

bottom, as shown by the dashed arrow in Figure 4-3b. Secondly, for the same ROI, the 

VMS became lower distally (slice number A to D), as shown by solid arrows. The SUV 

also exhibited similar position dependent tendencies, as shown by solid and dashed arrows 

in Figure 4-3d. 
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4.4 Discussion 

After the intravenous injection of 18F-fluoride, some of it diffuses through the bone 

capillaries into the bone extracellular fluid. From there, the 18F-fluoride ions exchange 

with hydroxyl groups in the hydroxyapatite at the surface of bone crystals forming 

fluoroapatite mainly at sites of bone remodelling with high turnover. Thus, the uptake of 

18F-fluoride reflects blood flow and osteoblastic activity, and high SUV implies high bone 

turnover [16, 36]. On the other hand, mechanically stimulated osteoclasts regulate 

osteoblastic activity [37].  Therefore, 18F-fluoride PET scanning is highly sensitive to 

increased bone turnover associated with mechanical stimuli. Previous animal studies have 

shown that the tracer uptake in loaded bone regions is generally proportional to the degree 

of injury [18] and the tracer uptake in bone around an implant increased depending on 

magnitude of applied loading [38]. In this study, the increased applied occlusal force after 

denture insertion induced higher mechanical stimuli in the residual bone, and SUV 

increased in the region of the residual ridge with higher mechanical stimuli. 

To further investigate the association between SUV and mechanobiological stimuli 

quantitatively, Figure 4-4 shows the SUV plotted against the VMS, EVS, and SED. The 

SUV was generally higher in cancellous than cortical bone at the same levels of VMS and 

SED (Figure 4-4a and 4c). This is because the cortical bone has a much lower surface area 

than cancellous bone [26], and 18F-fluoride ion exchange is dependent on the surface area 

of bones. Furthermore, the densities and Young’s moduli in these two types of bones are 

quite different, reflecting different distribution patterns of mechanical stimulus [3, 39]. 

Therefore, the cortical and cancellous bones were analyzed separately using linear 

regression methods as plotted in Figure 4-4.  
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Figure 4-4 Linear regression analysis between SUVs in regions of interest (total 28 ROIs: 7 

ROIs on each MPR image A to D) and the corresponding mechanobiological stimuli in 

different forms, including von Mises stress (1st row), equivalent strain (2nd row), and the 

strain energy density (3rd row), in both cortical (filled dots) and cancellous (open circles) 

bones before (left column) and after (right column) RPD insertion. 

As shown in Figure 4-4a and 4c, the SUV had clear dependences on VMS and SED 

in the cancellous bone, especially after denture insertion (R2 > 0.8, p < 0.01). These results 

indicate that bone metabolism interpreted by 18F-fluoride PET is directly proportional to 

VMS and SED in cancellous bone. On the other hand, there were no strong relationships 
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between SUV and mechanical stimuli in the cortical bone (R2 < 0.55). The spatial 

resolution of PET was limited at 2 mm, as this was the minimum size for ROIs. The ROIs 

in cortical bone area may include not only the cortical but also the cancellous region, and 

even residual ridge mucosa. The much lower Hounsfield Unit (HU) values in the 

corresponding CT scan confirms this concern (e.g. ROI 1 on MPR plane A, 490.4 ± 395.8 

HU), and this factor can attribute to the poor correlations observed for cortical bone. 

As the subject had had the same edentulous conditions and occlusal activities for 

more than 8 years before the RPD insertion in this experiment, the mandible should have 

adapted to the occlusal force associated homeostasis of apposition and resorption, which is 

referred as a ‘lazy zone’ in the Wolff’s law [4, 5]. At this stage, the physiological factors, 

such as diet, calcium and hydroxyapatite balance, hormones etc., were more dominant in a 

systematic level than the mechanically induced perturbation of metabolism [40-45]. 

Furthermore, the pilot study [13] demonstrated that SUV initially increased at 4-6 weeks 

after the RPD treatment, reflecting bone’s response to the change in mechanical 

environment; and then decreased at 13 weeks, indicating that the SUV change induced by 

RPD insertion was temporary, which was much shorter than the 8 years of the subject’s 

clinical record. Thus, at pre-insertion, SUV is considered to reflect more the effects of 

physiological factors than the mechanical stimuli induced by RPD treatment. The insertion 

of RPD, on the other hand, altered the occlusal load distribution on the dental arch as 

measured in vivo, consequently varying the stimulus distribution patterns. Therefore, there 

were higher determination coefficients between SUV and all quantified mechanical stimuli 

after denture insertion, in both the cortical and the cancellous bone.  

In contrast to the long delay required in the case of X-ray to quantify bone 

augmentation or resorption, this study demonstrated that PET scans are able to detect bone 

metabolic change in a much shorter duration, which is strongly correlated with mechanical 
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stimuli. Currently, 18F-fluoride PET has been mainly utilized to evaluate bone tumour, 

osseous metastasis, or metabolic bone diseases [46]. The current combined PET-FEA 

technique, while not specifically evaluated in the previous studies, may be useful to detect 

false-positive outcomes during screening for these diseases. This procedure may also be 

useful to detect clinical conditions such as temporomandibular disorder, occlusal trauma or 

fatigue fracture of the jaw at an early stage. 

Despite the high discriminatory opportunities of 18F-fluoride PET/CT, it is not yet 

as widely used as bone scintigraphy. Although other types of PET tracer are already 

commercially available, 18F-fluoride positron tracer must be manufactured in-house just 

prior to usage. Therefore, it may take a while before this technique becomes more widely 

procedural in a dental clinical setting. Meanwhile, this study focuses on a representative 

subject to determine a preliminary relationship between SUV and mechanical stimuli. 

Further large scale clinical studies are certainly warranted to provide the statistical 

implications of these correlations, which is however beyond the scope of this study. 
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4.5 Conclusion 

This study demonstrated the relevance of the combined PET-FEA technique to 

examine the relationship between mandibular bone metabolism and modified mechanical 

stimuli induced by RPD insertion. Using this technique, it was shown that PET scans 

detect current bone metabolic change and in a much shorter duration than possible with X-

rays. It was also shown that the bone metabolic change is strongly correlated with induced 

mechanical stimuli. It was found that bone metabolism interpreted by 18F-fluoride PET is 

strongly proportional to VMS and SED in the cancellous bone. 
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Chapter 5: Investigation of Mucosa-Induced Residual Ridge 

Resorption between Implant-Retained Overdenture (IRO) and 

Complete Denture (CD) 

 

Different types of prosthodontic prostheses can lead to different tissue reactions. 

This chapter investigates the residual ridge resorption (RRR) induced by an implant-

retained overdenture (IRO) and associated biomechanics, compared to a conventional 

complete denture (CD) without implants. Cone beam computerized tomography (CBCT) is 

applied to quantify RRR in a three-dimensional manner after one year of treatment with 

either IROs (20 subjects) or CDs (9 subjects). A 3D FE model is created from a set of 

representative scan images for each treatment type to analyse the relevant biomechanics. 

Clinically, IRO leads to at least twice the RRR compared with CD and this could be due to 

higher hydrostatic stress and less effective energy absorption capabilities of the mucosa 

underneath the IRO. While implants associated with the overdentures provide patients the 

capability of exerting more biting forces, they could potentially concentrate hydrostatic 

stress and cause higher RRR compared to a conventional CD. 

Associated Publications: 

1. Rohana Ahmad, Junning Chen, Mohamed I. Abu-Hassan, Qing Li, Michael V. Swain. Investigation 

of Mucosa-Induced Residual Ridge Resorption between Implant-retained Overdenture and 

Complete Denture. The International Journal of Oral & Maxillofacial Implants, 2014.  Accepted.   
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5.1 Introduction  

Current evidence from bone remodelling studies relevant to complete dentures 

(CDs) and implant-retained overdentures (IROs) strongly advocate functional pressure as 

one of the most important etiological factors for residual ridge resorption (RRR) [1-5]. 

When two implants are used to retain dentures, bite forces can increase considerably [6-10] 

but generally lead to more severe RRR [11, 12] in the posterior region of the mandible 

distal to the implants compared to a conventional complete denture. With implant-

supported overdentures (using four or more implants), reduced resorption [13-15] and even 

bone apposition [16-20] has been observed in the posterior region of the mandible as less 

pressure is exerted on the soft tissue mucosa and the underlying bone as most of the 

increased mastication forces are transferred to the implants. 

When soft tissue mucosa underneath the denture base is compressed, blood flow 

which supplies nutrients to and removes metabolites from the bone is affected, potentially 

leading to an incidence of resorption [21, 22]. Maruo et al. [23] demonstrated that the 

amount of RRR versus the pressure induced blood flow rate exhibits a simple linear 

regression (R = 0.766). As most denture wearers are in their late middle age, the blood 

supply to the mandible mainly takes place from the subperiosteal plexus of vessels and 

therefore is very susceptible to diminished circulation under denture pressure [24]. The 

blood pressure in the venous capillary of the subperiosteal plexus is quite low, within the 

range of 15 mmHg (venous) to 35 mmHg (arterial), equivalent to 2.0-4.7 kPa [25].  

When the epithelial layer of the mucosa is subjected to load, there will be cellular 

swelling, increased nuclear size and intercellular oedema [26]. This inflammatory response 

of the cells and surrounding tissue may contribute to a change in the permeability of the 

mucosal tissue which may further compromise blood circulation. If the hydrostatic 

pressure that develops in the mucosa underneath the denture exceeds the blood pressure in 



Chapter 5 - Residual Ridge Resorption under Dentures Page | 123 

the mucosa blood vessels, blood flow will be decreased and may even temporarily cease 

altogether as a result of a combination of active arteriolar closure and passive capillary 

obstruction [27]. However, there has been limited exploration from a clinical perspective to 

quantify the correlation between hydrostatic pressure and resultant RRR.  

This chapter aims to investigate RRR induced by two types of dentures, namely CD 

and IRO, in clinical application across a one-year interval and correlate it to the hydrostatic 

stress and other associative biomechanics namely the contact surface deformation and 

strain energy absorption. We hypothesize that the hydrostatic stress plays a significant role 

in RRR and its magnitude is influenced by the bite force exerted on the denture and the 

resultant contact surface deformation in the mucosa as well as the strain energy absorption 

capabilities of the mucosa underneath the dentures.  The established association of RRR 

with hydrostatic pressure will assist development of critical insights into the mechanism of 

RRR taking place for different types of dentures. To be noted, this piece of work was 

carried out before Chapter 3, and the discovery from Chapter 3, such as the Poisson’s ratio 

and the friction coefficient of the mucosa, is not reflected in this chapter. Instead, the 

material properties adopted in this study are from existing literature studies. 
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5.2 Materials and Methods 

5.2.1 Denture Fabrication and CBCT Imaging  

Ethics approval to carry out this study was obtained from the Ethics Committee of 

Universiti Teknologi MARA, Malaysia (600-RMI (5/1/6) 20th April 2009). All recruited 

patients had diagnostic Cone Beam Computerized Tomography images of the mandible 

taken before the provision of new CDs. A duplicate denture containing barium sulphate 

was worn during imaging to enable clear definition of the bone, mucosa and dentures from 

which RRR patterns and the mucosa thickness could be analysed in a 3D manner. 

For those patients with enough bone for placement of implants (11 or 13 mm 

implants were used), two implants (Ankylos® implants, Dentsply, Friadent, Germany) were 

placed in the canine regions of the mandible. After two months, the implants were exposed 

and telescopic male abutments attached (Ankylos® SynCone® Dentsply, Friadent, 

Germany). The mandibular denture was converted to an overdenture by incorporating the 

corresponding female metal sleeves inside its fitting surface. Both groups of patients had 

the second CBCT images taken for bone measurement after one year. There were 20 

patients in the IRO group (12 females and 8 males) and 9 patients for the CD's (3 females 

and 6 males). Their age ranged from 52-79 years old at recruitment, average age was 67 

years old. The antagonistic jaw for both treatment groups is also edentulous and restored 

with conventional complete denture. Among the exclusion criteria is that a patient should 

not have any extraction within the last 6 months. As for history of denture usage, it varies 

from no experience to almost 25 years of denture wearing. 

The CBCT images were taken with an i-CAT (Imaging Sciences International, 

Hatfield, Pa) machine which was set at 120 kVp, 18.45 mAs, 20-second acquisition time, 

13 cm field of view and a voxel size of 0.30 mm. The DICOM files of the sectional images 

were acquired and stored to a portable hard driver for quantitative and modelling analyses. 
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5.2.2 Biting Force and Bone Volume Change 

Once patients were comfortable wearing their prostheses, they had their unilateral 

maximum bite force measured. They were asked to bite on a 200 N compression load cell 

(LMB-A-200N, Kyowa, Japan) placed in the molar region as hard as they possibly could. 

The load cell was connected to a data logger (PCD-300B, Kyowa, Japan) and a computer. 

Each bite recording lasted for 10 seconds and the measurements were carried out three 

times on each side of the jaw. The patients were allowed a 5 minute rest between the 

recordings. They were not given any feedback on their bite force and were not allowed to 

see the recordings. The highest recorded force was taken as the maximum bite force.  

The 3D models of the initial diagnostic and at one year post treatment were 

superimposed in Mimics program version 14.1 (Materialise NV, Leuven Belgium) and 

subsequently exported into 3-matics program version 5.1 (Materialise NV, Leuven 

Belgium) to produce colour maps that reveal the magnitude of the RRR that have occurred 

after a period of one year [28]. The RRR results for both IRO and CD scenarios were 

quantified by measuring the changes in bone volume between the pre- and post-treatment 

models. The region of interest was from about 5 mm distal to the implants up to the 

retromolar area just anterior to the ascending ramus. 

5.2.3 3D Finite Element Modelling and Simulation 

Two male participants, one from IRO and the other from the CD group who are of 

similar age (62 years old), and scored the highest maximum bite force values in their 

respective treatment group were selected as representative models for finite element 

analysis. A complete 3D model of the mandible, mucosa and denture was created from 

their diagnostic CBCT images. The patient’s CT image stacks at the pre-treatment 

conditions were imported into ScanIP Ver. 4.3 (Simpleware Ltd, Exeter, UK) for 
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segmentation as shown in Figure 5-1. Three individual masks were created to present the 

mandibular bone, denture and mucosa based on the gray-values of each pixel, normalised 

to a range from 0 to 255, and the thresholds of each mask were determined by sampling the 

localized counts (Figure 5-1a right). Due to the relative low density of the oral mucosa 

compared to other oral tissues, its image was improved by offsetting the contrast of the 

outer layer of the cortical bone by 5 pixels thus producing mucosa of a minimum thickness 

of 1 mm.  
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Figure 5-1 Finite element modelling procedures. (a) a cross-section of CBCT image showing 

the different Hounsfield Unit values of the denture, mandibular bone and the soft tissue 

mucosa; (b) 3D masks created for each structure, denture (azure), mucosa (pink), and jaw 

bone (orange), in STL format; (c) solid models created by NURBS in IGES format; (d) 

superimposition required to position the implants for the implant-retained denture, including 

a. b.

c. d.

e. f.
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(diagnostic) pre-treatment scan (light orange), 1-year follow-up (dark red), implants (dark 

blue), and implant models (grey); (e) final model imported and meshed in ABAQUS 6.9.2; (f) 

boundary and loading condition assigned to the model, as chewing forces (red arrows) and 

fixation (blue nodes), while mucosa is hidden from the picture. 

All three masks in each image stack were then exported in STL format and further 

processed using 3D parametric modelling software Rhinoceros 4.0 (Robert McNeel & 

Associates, Seattle USA) as shown in Figure 5-1b to create geometric models. The surface 

mesh on the masks formed a scaffold for constructing free-form parametric surfaces by 

using the non-uniform rational B-spline (NURBS) function (Figure 5-1c). The manipulated 

surfaces were then solidified and exported as IGES files for finite element modelling in 

ABAQUS 6.9.2 (Dassault Systèmes, Tokyo Japan). 

In ABAQUS 6.9.2, the adaptive mesh control was set to have a maximum 

elemental size of 1 mm with the maximum deviation factor set at 0.05 for the curvature 

control in all components as shown in Figure 5-1e. Further mesh refinement was set to 0.5 

mm on the interfaces between denture and mucosa. After a mesh convergence test similar 

to our previous studies [29, 30], the final mesh comprises 669,042 (376,974 degrees of 

freedom) and 727, 743 (423, 598 degrees of freedom, Figure 5-1e) tetrahedral elements for 

the CD and IRO models, respectively.  

For the IRO, one extra step was required to place a pair of dental implants into the 

model. The implants, consisting of fixtures and abutments, were modelled in SolidWorks 

2012 (Dassault Systèmes Solidworks Corp., Massachusetts USA). To ensure the correct 

locations of the fixtures, the CT scan at one year after placement was superimposed onto 

the pre-treatment model in Rhinoceros 4.0, where the implant models were matched to the 

fixtures mask (Figure 5-1d). 

The material properties of cortical and cancellous bones were considered to be 

isotropic and linear elastic as used in previous studies [31-33]. The mechanical properties 



Chapter 5 - Residual Ridge Resorption under Dentures Page | 129 

of titanium alloy (Ti6Al4V) implant fixtures and that of the denture was obtained from 

O'Brien [32] and Satoh et al. [34] and the mucosa from Isaksson et al. [33] (this study was 

performed prior to Chapter 3; therefore, the material properties were adopted from 

literature). These detailed values are summarized in Table 1, and all the mechanical 

properties were assumed to be homogeneous and isotropic [35, 36]. 

  Table 5-1 Material properties of the implant screws, mandibular bone, mucosa and denture 

 In both treatment cases, the cortical and cancellous bones were considered bonded 

as occurs for their biological function. For the IRO, the fixtures were assumed to be fully 

locked by tissue ingrowths from the surrounding bone structure [37-39], by assigning a full 

tie constraint in ABAQUS. Both the dentures were slightly off-set from the mucosa surface 

of the jaw and the displacement was generated upon loading. As such, the denture model 

was allowed to initiate the surface-to-surface contact between the denture and mucosa.  

As suggested from previous clinical studies by Gibbs et al. [40] a localised load 

was applied to each side of the dentures using 40% of the measured maximum bite force in 

the participants by assuming a nearly symmetric loading condition as in Figure 5-1f. The 

load was applied in the vicinity of the first molar, in a vertical direction. This loading 

scenario has been considered as isometric bilateral biting of the mandible in the literature 

[41], and similar magnitudes of force have been adopted for mandibular loading in other 

finite element analyses [42-45]. 

  
Screw Cortical 

Bone 
Cancellous 
Bone Mucosa Denture 

Young's 
Modulus 
(MPa) 

110, 000 15,750 1, 970 1 2,650 

Poisson Ratio 0.350 0.325 0.325 0.167 0.30 
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The boundary conditions were prescribed to the distal ends of the condyles where 

they are connected to the joints with the maxilla. Early FEA studies have shown that the 

rotational degrees of freedom have limited effects on the local stress distribution if it is 

remote from this boundary [41]. Thus, full kinematic constraints of all degrees of freedom 

are applied here to effectively prevent rigid body motion of the mandibular model [35, 41]. 

5.2.4 Hydrostatic Stress and Strain Energy 

As one of the primary indications to the prosthesis induced interference, the 

hydrostatic stress in the mucosa is determined by using a FORTRAN subroutine (UVARM 

- User Defined Output Field Requirement) in ABAQUS. It is derived by the one third of 

the sum of the principal and formulated as below: 

( ) ( )hydro 1 2 3 xx yy zz

1 1σ  σ σ σ σ σ σ
3 3

= + + = + +     (1) 

In order to further assess the overall cushioning role that the mucosa plays under 

these two different prosthetic configurations, the absorption of strain energy in mucosa was 

used for measuring the severity of the disturbance brought to the mucosa under 

compression. As defined in Eq. (2), the total strain energy density was calculated by 

summing the products of stress and strain component in all elements (n is the total number 

of elements in the mucosa under stress). 
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5.3 Results  

5.3.1 Maximum Biting Forces and Bone Volume Change 

The maximum bite force in the participants with IROs was 172 N, which is nearly 

twice that of the CD wearers (95 N). The average bite forces during the entire duration (10 

seconds) were 110 ± 32 N and 63 ± 15 N, respectively. The individual data of bite forces 

and bone volume changes are summarised in Table 2 (CD) and Table 3 (IRO). In the FE 

models, the load used for each case was 40% of those peak values, which is 68.8 N for 

IRO and 38.3 N for CD.  

RRR was first measured in terms of the percentage change in bone volume that has 

taken place after a period of one year of wearing the prostheses. RRR occurred 

predominantly on the denture bearing areas, occlusally in the molar region and more 

lingually in the premolar area. The mean decrease in bone volume associated with IROs 

was -3.8% ± 4.5 which is around twice that of CDs (-1.9% ± 0.4), corresponding to the 

twice average bite forces in the former than the latter.  

       Table 5-2 Maximum Biting Force and Bone Volume Change of CD participants 

CD Patient ID Gender Bite force 
 

% Bone Volume change after 1st Year 
 

1 M 60 -2.1 
2 M 45 -2.3 
3 F 62 -2.4 
4 F 57 -2.3 
5 M 56 -1.9 
6 F 60 -1.8 
7 M 62 -1.2 
8 M 67 -1.9 
9 M 102 -1.4 

Mean  63 ± 15.7 -1.9 ± 0.4 
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      Table 5-3 Maximum Biting Force and Bone Volume Change of IRO participants 

IRO Patient ID Gender Bite force (N) % Bone Volume change after 1st Year 

1 F 91 -5.0 
2 M 69 -1.0 
3 M 88 -7.8 
4 M 199 -5.3 
5 F 100 -1.0 
6 F 154 -0.8 
7 F 145 -7.5 
8 F 121 -7.9 
9 F 117 -5.1 
10 F 86 -15.9 
11 F 84 -8.1 
12 M 110 -4.4 
13 F 123 2.1 
14 F 137 -0.7 
15 M 96 -1.3 
16 F 85 -4.2 
17 M 76 -2.4 
18 F 75 -0.7 
19 M 113 3.7 
20 M 137 -2.9 

Mean 
 

110 ± 32 -3.8 ± 4.5 
In Figure 5-2a and 5-2c, the residual ridge thickness changes were plotted for the 

CD and the IRO configurations, respectively. The scale ranges from -2.0 mm to +2.0 mm, 

for the bone resorption and apposition. Between them, the white colour indicates minor or 

no change. Under the CD, the white colour is dominant across the entire base contact, with 

a little pink for the minor ridge height reduction. In contrast, red and maroon colours at the 

posterior ends of the IRD indicate severe bone resorption, whereas some extent of bone 

apposition occurs around the two implants anteriorly. 
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Figure 5-2 (a) The residual ridge resorption with the complete denture without implants 

under 76.6 N, and (b) its corresponding distribution of hydrostatic stress on the mucosa.  (c) 

The residual ridge resorption with the implant-retained overdenture under 137.6 N and (d) 

its corresponding distribution of hydrostatic stress on the mucosa. (For hydrostatic stress, the 

colour Maroon indicates Tensile Stress; Red: Neutral Zone; Green: Close to Systolic Pressure; 

and Dark Blue: Highest Compressive. For residual ridge resorption, the reddish scales 

indicates bone resorption and the greenish scales, bone deposition). 

5.3.2 Hydrostatic Stress Distribution  

Based on the finite element outcomes of these two patient cases, the hydrostatic 

stress contours of the mucosa under the CD (Figure 5-2b) and the IRO (Figure 5-2d) are 

compared. In these two plots, the dark blue indicates the most severe compressive pressure 

under the denture bases, and the red colour shows the least effect as a neutral status 

(neither compressive nor tensile). The green regions designate a medium range of the 

a. b.

c. d.
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compressive pressure, close to the systolic blood pressure (140 mmHg, approximately 19 

kPa).  

The mucosa under a CD demonstrates a fairly low and uniform hydrostatic stress 

distribution from anterior to the posterior part of the residual ridge. In contrast, the 

hydrostatic stress magnitude in the mucosa under the IRO is higher and the distribution 

appears to be concentrated on the occlusal and lingual surfaces of the residual ridge in the 

molar and premolar regions respectively. For the individual patient, the volumetric average 

of hydrostatic stress over the contact region is -34.53 ± 8.07 kPa for the IRO, and -23.32 ± 

0.81 kPa for the CD, representing a 32.5% reduction. The peak stress values also reduced 

from 128.5 kPa for IRO to 66.1 kPa for CD between these two cases.  

When the contours of hydrostatic stress are compared with the contours of RRR, 

good agreements between the hydrostatic pressure contours and RRR can be observed for 

both the IRO and CD cases. For the CD, the low FE hydrostatic pressure correlates well 

with the minimal RRR observed after one year. For the IRO, the areas with high 

hydrostatic pressures correspond very well with areas of predominant resorption, which are 

on the occlusal and lingual surfaces of the residual ridge in the molar and premolar regions 

respectively. 

5.3.3 Contact Surface Deformation and Energy Absorption 

From FE modelling, the total compressed contact areas between the mucosa and 

denture in these two cases are calculated as 4608.7 mm2 (CD) and 2833.4 mm2 (IRO), 

respectively. By combining the contact status and the surface normal deformation, Figure 

5-3 compares the deformation of these contact surfaces of the CD (Figure 5-3a) with the 

IRO (Figure 5-3b). With a total force of 76.6 N over the CD, the peak contact deformation 

of the mucosa is 0.58 mm in the normal direction. It is seen that the entire contact region 
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(2,762 nodes under contact) deforms fairly uniformly, with an area averaged deformation 

of 0.16 ± 0.06 mm, which agrees very well with the hydrostatic pressure contour. For the 

IRO, while the total biting force (137.6 N) applied was about 1.8 times of the CD, the peak 

contact deformation is 1.19 mm, more than double that of the CD in the posterior region of 

the denture. Nevertheless, the corresponding area averaged deformation is 0.32 ± 0.23 mm 

(over 1,708 nodes under contact), approximately double that for the CD.  

 

Figure 5-3 Contact surface deformation on the mucosa: (a) complete denture under 38.4N 

load, (b) implant-retained over denture under 68.8N load and (c) complete denture under 

similar higher load as overdenture with 68.8N. Larger contact deformation could be observed 

with the IRO even though similar higher load is used for complete denture. The contact 

surface deformation colour scale indicates: black: no contact formation, blue: minimal 

deformation, red: large deformation, white: severe deformation beyond 1mm.   

When equal load of 137.6 N (68.8 N on each side) was applied for both IRO and 

CD case, the increasing biting force on the CD certainly leads to further mucosal 

deformation, but does not change the deformation pattern significantly (Figure 5-3c). 

Furthermore, the same biting force still caused the larger maximum deformation on IRO 

than CD, showing more concentrated disturbance to the local mucosa. 

Contact Surface Deformation (mm)

CD
(38.4N)

IRO
(68.8N)

CD
(68.8N)

a. b. c.
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Figure 5-4 Strain energy absorbed by mucosa under different treatment strategies, while 

experiencing different loads. 

Figure 5-4 graphs the energy absorption results at their respective mastication loads. 

Despite the load ratio of 1.8:1, it is found that, the mucosa beneath the IRO only stores 

47.8% more strain energy on average than the CD due to the localized hydrostatic stress 

concentration as presented in Figure 5-2. 

 



Chapter 5 - Residual Ridge Resorption under Dentures Page | 137 

5.4 Discussion 

Mechanical loading is recognized as one of the major causes of bone apposition 

and resorption in denture wearers [1-5]. The hydrostatic stress in mucosa has been 

considered a key factor that disturbs local microcirculation of tissues surrounding the bone, 

thereby affecting its mineralization pathway [46-48]. In this study, the hydrostatic stress 

distributions generated from the patient-specific 3D finite element models showed a good 

correlation with the in-vivo measurements of RRR in two different clinical treatment 

scenarios, namely CD and IRO. The clear visualisation of hydrostatic stress could provide 

biomechanical evidence of how the hydrostatic stress may affect the local blood supply in 

mucosa. 

 

Figure 5-5 Hydrostatic pressure that develops along the interface between the denture and 

mucosa along the right hand side of the mandible, measured from the mid plane of the 

mucosa along the residual ridge and following the curvilinear coordinates (seen on the 

residual ridge surface of the mandible models). 
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To further illustrate the difference in hydrostatic pressure observed between these 

two treatment scenarios, the corresponding hydrostatic stresses on the contact interface 

between the mucosa and the denture are plotted in Figure 5-5, in which the curvilinear 

distance is measured from the centre of the incisors to the retromolar area along the 

residual ridge. As the mandibles exhibit the symmetrical similarity along the sagittal plan, 

the right hand side of the mandibles was plotted. It can be seen that the distribution of 

hydrostatic stresses along the mucosa-residual ridge interface differs considerably between 

the IRO and CD cases. The CD develops a relatively more even pressure distribution and 

its average is about 17.7 ± 4.81 kPa, which attributes to much lower RRR, as quantified in 

Figure 5-2a. The localized pressure increases to a level around 30 kPa in the loading area, 

which appears to cause a certain extent of RRR in the same location. In contrast, the IRO 

generates an uneven distribution of hydrostatic pressure. The pressure rises sharply in the 

posterior area and the peak values are about twice of the CD. The mastication force, based 

upon clinical measurement, for the IRO case is 1.8 times that of CD case, but the resultant 

peak hydrostatic stress leads to a 2-fold difference along this contour path. Interestingly, 

the area below the trend line, which is a measure of the effective force supported by the 

mucosa, of the IRO is only 1.13 times that of the CD, indicating that a substantial portion 

of the mastication force has been borne by the implants.  

Another possible explanation for the current clinical observations may be that a 

much smaller denture bearing area is available to support the IRO posteriorly compared to 

the CD that has the entire interface as the denture bearing area for sharing the load (Figure 

5-2). The average denture bearing area of contact after deformation was found to be 4608.7 

mm2 for CD and 2833.4 mm2 for the IRO, which are fairly close to those reported in 

literatures, around 4000 mm2 in the former and about half that in the latter.[22] When two 

implants are placed in the canine regions, the mucosa area available posteriorly to support 
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the overdenture is further reduced to about half from our in-vivo measurements. The longer 

the interabutment distance anteriorly, the smaller the mucosa area available for supporting 

the denture posteriorly. When combined with the higher bite force that is typically 

associated with the IRO, the smaller contact area may cause more localized RRR (twice as 

that of the CD). Furthermore, by virtue of the IRO design, free rotation during function 

may result in enhanced posterior loading.[49] Since the conventional CD could move 

around during functioning, there may be not a particular area with highly concentrated 

stress as happens in the IRO situation.  

When an IRO was made to be mainly mucosa-borne, some portion of the 

masticatory force will be shared by the implants anteriorly. This is evidenced by the 

extremely low hydrostatic pressure recorded in the mucosa in the anterior region in the 

distance from 0 to 41 mm seen in Figure 5-5, where the implant is located. Upon moving 

in a posterior direction, the hydrostatic pressure increases steadily and has a peak at the 

first molar area where the biting force is exerted. For the CD, although hydrostatic pressure 

is found to reach its peak also at the molar region, the peak value is much lower than that 

in the IRO and the hydrostatic pressure is more uniformly distributed across the entire 

denture bearing area.  

The outcome of energy absorption analysis implies that the mucosa under the CD 

stores deformation energy more efficiently than that under an IRO. This implies that an 

IRO may enable a patient to achieve a higher biting force, but could likely induce RRR 

around the posterior region of the mandible, due to the unevenly distributed hydrostatic 

pressure and the cushion effect in terms of energy absorption efficiency. 

Although the IRO generates more localized RRR than the CD, the benefits of 

higher mastication forces with implants should be taken into consideration. It must be 

pointed out that the current implementation of implants follow conventional clinical 
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experience and there is considerable room for optimising the implant locations, length, 

angle, and other factors to transfer the load onto the mucosa more uniformly, leading to 

improved stress distribution and energy absorption efficiency.  

It must be acknowledged that there are several limitations associated with the FE 

modelling in this study. First, a pair of bilateral biting forces was used instead of unilateral 

in the FE analysis, which does not represent how human mouth commonly functions. 

Second, only vertical force on a single tooth was applied in the analysis, further 

investigation is necessary to explore the effects from multiple teeth loading or different 

force directions (e.g. transverse). Furthermore, the bone density value in the CBCT scan 

cannot be calibrated to make a heterogeneous FE model. As Field et al.[50] suggested, a 

heterogeneous material distribution can affect potential bone remodelling activities. In this 

study, identical material properties have been applied to these two cases, enabling similar 

baseline for comparison purposes, and the heterogeneous effect will be considered in 

future studies. The mechanical properties of the other critical component, namely the 

mucosa, adopt values from literature for the same purpose; however, its individual variance 

may require attention. Future work can be done to optimise the arrangement of the IRO, 

including fixture position, length, abutment angle, et cetera, to generate a more uniformly 

distributed hydrostatic pressure. With the development in computerized tomography scan 

technology, there is potential to develop a patient-specific treatment plan[50] in clinical 

application, which may provide the least disturbance to blood flow in the mucosa to suit 

individual residual ridge condition. 
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5.5 Conclusions 

Within the limitation of this 3D FE and short term clinical study involving twenty 

nine participants, it may be concluded that the IRO leads to at least twice the RRR as 

compared with the CD and this could be due to the higher hydrostatic stress associated 

with the IRO. While implants provide the capability of exerting more biting forces, they  

potentially concentrate hydrostatic stress and promote RRR.  
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Chapter 6: A Comparative Study on Complete and Implant 

Retained Denture Treatments: A Biomechanics Perspective 

Biomechanics of Oral Mucosa 

 

 

While an implant-retained overdenture allows edentulous patients to achieve higher 

occlusal forces than the conventional complete dentures, the biomechanical influences 

have not been thoroughly investigated. Clinically, there is limited knowledge and means 

for predicting localized bone remodeling after denture treatment with and without implant 

support. As an extension to Chapter 4, this chapter provides an in-silico approach to 

exploring the treatment effects on the oral mucosa and identifying potential resorption of 

residual ridge under three different denture configurations in a patient-specific manner. 

Despite the improved stability and enhanced masticatory function, implant-retained 

overdentures have demonstrated higher hydrostatic stress in mucosa at the posterior ends 

of the mandible due to a cantilever effect, than with complete dentures. Hydrostatic 

pressure in the mucosa, as shown in Chapter 4, is a critical indicator and correlated well 

with clinically measured bone resorption, pointing to more severe mandibular ridge 

resorption posteriorly with implant-retained overdentures. This study provides a 

biomechanical basis for denture treatment planning to improve long-term clinical outcomes 

with minimal residual ridge resorption. 
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6.1 Introduction  

Residual ridge resorption is a progressive phenomenon harmful to a patient’s oral 

health, and has been reported to continue even 25 years post-extraction of teeth, which 

severely compromises prosthetic support and retention for satisfactory functioning of 

conventional complete dentures [1, 2]. To overcome these problems, implants have been 

increasingly used to retain complete dentures and have demonstrated to be a successful 

treatment alternative for edentulous patients with mandibular denture predicament [3-6]. 

Despite these clear benefits, there have been reports concerning severe residual ridge 

resorption associated with implant-retained overdentures [7, 8]. The biomechanical 

differences of these different configurations have not yet been clearly addressed in terms of 

their association to possible clinical outcomes. 

The functional pressure, namely interstitial fluid pressure (IFP) or hydrostatic 

pressure, in the mucosa has been indicated as one of the most important etiological factors 

accounting for the residual ridge resorption [8, 9]. Such highly vascularized soft tissue 

plays a critical role in distributing masticatory force from the dentures to the underlying 

bony ridge [9-11] over a larger denture-supporting tissue interface, thereby alleviating 

stress concentration. The aging edentulous mandible is mainly supported by the periosteal 

plexus of blood vessels and is therefore very susceptible to diminished circulation under 

denture-induced contact pressure, which may reduce nutrient supply and metabolite 

removal in the supporting bone [12]. Specifically, the resultant hydrostatic pressure may 

exceed the systolic pressure and disturb local circulation in surrounding periosteal tissue, 

potentially causing bone resorption [13].  

Clinically limited in vivo techniques exist for evaluating the disturbance induced by 

denture insertion to the mucosa. Despite recent findings correlating hydrostatic pressure to 

soft-tissue induced bone resorption, the biomechanical effects of a denture pressing on the 
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mucosa still remains poorly understood [14, 15]. This prevents effective prediction of 

possible bone remodeling after denture insertion in clinical practice as there have been few 

adequate clinical methods for examining the associated biomechanics. Finite element (FE) 

methods on the other hand have shown compelling advantages in biomechanical analysis 

and surgical planning. With advanced clinical computerized tomography (CT), 

sophisticated 3D FE models allow precise capturing of both anatomical and biomaterial 

features of an individual patient, thereby faithfully reflecting the case-specific bone profile 

and density distribution [16]. Complex soft-tissue responses can be mimicked in a 

nonlinear manner to more realistically reflect biomechanical behaviour [17].  

This study aims to evaluate the differences in mucosal hydrostatic pressure of these 

three different (namely, complete, two and four implant-retained) denture treatments in a 

patient-specific setting. A 3D heterogeneous FE model was created based on clinical CT 

scans. The mucosa is characterized as a nonlinear (hyperelastic) material derived from 

clinical data. Visual insertion of the prostheses was tested under a clinically measured 

occlusal load (63 N) in the vicinity of the first molars. The simulated treatment results with 

two implant-retained overdentures were validated clinically against a one year follow-up 

study for the specific patient. Furthermore, increased occlusal forces reported in the 

literature were also attempted on these models to examine their consequences. The finite 

element analysis procedure allows comparison of different treatment options by correlating 

the biomechanical responses to clinical outcomes, thereby establishing an in-silico 

approach to evaluate different denture designs for reducing potential residual ridge 

resorption. 
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6.2 Materials and Methods 

6.2.1 Patient Data Acquisition and Modeling  

The patient CT image was stored in DICOM format (Figure 6-1a, 3D rendering) 

and imported into ScanIP Ver. 4.3 (Simpleware Ltd, Exeter, UK) for segmentation based 

on Hounsfield Unit (HU) thresholds. Three segmented masks (bone, mucosa, and denture) 

were further processed in 3D parametric modeling software Rhinoceros 4.0 (Robert 

McNeel & Associates, Seattle USA) to create geometric models with non-uniform rational 

B-spline (NURBS) (Figure 6-1b).  

In order to enable meaningful comparison, the same denture profile (Figure 6-1b) is 

considered here for all three different configurations during virtual insertion. For the 

overdentures retained by two implants (Figure 6-1c), the implants were placed in the 

vicinity of the canine on each side of the jaw; and by four implants (Figure 6-1d), they 

were placed equidistant within the interforamina region, as adopted clinically [11, 18]. The 

final assemblies were exported to ABAQUS 6.9.2 (Dassault Systèmes, Tokyo Japan) for 

FE meshing (Figure 6-1e). To ensure the numerical accuracy, an adaptive mesh was 

employed and a mesh convergence test was carried out, similarly to our previous studies 

[19, 20]. For these different cases, the final meshes contain 2,614,854 (complete), 

2,864,871 (two implants), and 3, 188, 247 (four implants) degrees of freedom (D.O.F.) 

using quadratic tetrahedral elements with hybrid formulation (C3D10H) to ensure 

smoothness of contact boundaries for the nonlinear analysis.  
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Figure 6-1 Patient-specific FE model with denture fitting. (a) volume-render CT scan of a 

patient’s lower jaw during initial treatment consultation; (b) solidified model with NURBS 

representation (osseous tissue (red), mucosa (transparent brown), and denture (opaque 

white), as well as mastication forces (blue); (c) and (d) virtual implantation for over-denture 

systems (left: 2-implants and right: 4-implants): osseous tissue (maroon), mucosa 

(transparent brown), denture (transparent green), and screws (grey), as well as mastication 

forces (red); (e) final model (the 4-implant retained overdenture system is shown here) 

imported and meshed in ABAQUS 6.9.2, with partially sectioned mucosa (pink), denture 

(white), screws (cyan), and full osseous tissue (orange); (f) heterogeneous material properties 

of osseous tissues assigned based on the HU values from the CT scan data. 

a. b.

c. d.

e. f.

Young’s Modulus
(MPa)
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c. d.
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Clinical treatment was conducted independently to the FE analysis in this study, 

and the subject chose the two-implant retained overdenture treatment. A follow-up scan 

was performed one year after the overdenture insertion. The second image stack was 

processed in the same manner as the initial one, after registration of their isosurfaces. 

Differences between these two sets of measurement data allowed us to determine bone 

remodeling and correlate the outcomes with the FEA results [11]. 

6.2.2 Material Property Interpretation and Assignment 

While linear elastic and homogenous material models have been widely assumed in 

most previous FE studies [21-23], such assumptions may not adequately replicate complex 

tissue responses or interaction [17]. In this study, the jaw bone was characterized with 

heterogeneous material properties as per the HU values to more precisely reflect the 

anatomical variation in density and modulus, which could potentially affect load-

deformation response. The jaw HU values vary from -300 to 1500. The associated mineral 

densities of 0.72 g/cm3 and 1.86 g/cm3 were adopted from literature for cancellous and 

cortical bones, respectively, corresponding to the maximum (HUmax) and minimum (HUmax) 

values [24]. The apparent mineral density appρ  is interpolated linearly against the HU 

value, and their relationship can be formulated as,  

min
app min diff

max min

( )
( )

HU HU
HU HU

ρ ρ ρ −
= + ×

−
      (1) 

where minρ  denotes the minimum density and diffρ  indicates the difference between the 

maximum and minimum densities. 

To correlate the Young’s modulus E to the apparent mineral density appρ  from CT 

data, Eq. (2) was adopted [25] considering the jaw bone as a two-phase porous material [26] 
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at a low strain rate ee . The determined heterogeneous material properties were assigned to 

the Gaussian integration point in each element (Figure 6-1f). 

0.06 3
e app3790E e ρ=           (2) 

The mucosa has been reported to have a nonlinear response under mechanical 

loading [10, 27, 28]. The hyperelastic constitutive material model was adopted in this study, 

which defines the strain energy (Ue ) stored in a unit volume as a function of the strain at a 

point in the material. This strain energy driven behaviour was derived via a least-square 

fitting of the clinical data [28], as plotted in Figure 6-2 (solid dots with dash lines), and a 

third order (N = 3) Ogden strain energy equation [29] provides the closest match (Eq. (3), a 

solid curve in Figure 6-2). The material parameters are summarised in Table 1. Other 

materials adopt linear elastic and homogeneous properties from previous studies [21, 30, 

31]. 
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Figure 6-2 Determination of the non-linear hyperelastic behaviour of mucosa based on 

clinical data: the blue dash line indicates clinical measurements of mucosa deformation under 
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various loading magnitudes with a range across a group of patients [28], and the red solid line 

presents the fitting curve of the 3rd order Ogden strain energy equation with respect to these 

data. 

Table 6-1 Material Parameters for 3rd Order Ogden Strain Energy Equation 

i iµ  iα  iD  
1 3.26E-02 8.41 12.47 
2 7.88E-04 25.00 0 
3 1.03E-03 -18.94 0 

 

6.2.3 Mastication Scenario 

For the implant retained overdentures, the screw threads were assumed to be fully 

locked with the surrounding bone through osseointegration [21, 23, 32, 33]. The 

Augmented Lagrangian algorithm was adopted to simulate the denture-mucosa contact, 

with a low frictional coefficient assumed as 0.1 to mimic lubrication in the oral 

environment [34]. A pair of localized masticatory loads was applied to both sides of the 

denture in the vicinity of the first molar, along the tooth root direction (nearly vertical in 

this subject). This loading scenario is referred to as isometric bilateral biting in literature 

[35], by assuming a nearly symmetric loading condition. The average voluntary biting 

force (63 N) was measured clinically, and was applied onto the dentures; and similar 

magnitudes have been reported for mandibular loading in other FE studies [36-39]. The 

kinematic boundary conditions were prescribed to the distal ends of the condyles [35, 40].  
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6.3 Results  

6.3.1 Hydrostatic Pressure in Mucosa 

The hydrostatic pressure contours on the mucosa are plotted in Figure 6-3, 

comparing all three different denture configurations, on both the external surface (between 

denture base and mucosa, (a) - (c)) and the periosteal surface (between mucosa and bone, 

sectioned views through axial planes (d) - (f)). The heterogeneous residual ridge led to 

non-uniform distribution of hydrostatic stress for local stiffness variances, even under a 

well-fitted denture base of the patient. These pressure contours exhibit a bilateral profile 

due to the biting activity considered, but the distribution patterns differed noticeably 

between the complete denture and the implant retained ones, particularly in the anterior-

posterior direction, as the implants generated more cantilever effects.  

 

Figure 6-3 The hydrostatic pressure contours on the mucosa mandibular contact surfaces ((a) 

- (c)) and periosteal surfaces ((d) - (f)) induced by three different denture treatments 
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(complete, 2-implant retained, 4-implant retained): blue - low pressures; green - around 

systolic pressure; red - high pressures. 

The occlusal load was transferred to the entire residual ridge under the complete 

denture with a contact surface area of 1926 mm2 and the volume average of hydrostatic 

pressure at 10.6 ± 0.8 kPa (Figure 6-3a). For the implant retained configurations, the 

contact areas reduced to 73.4% (two implants, 1412.9 mm2) and 60.1% (four implants, 

1155.8 mm2), respectively; and the corresponding volume average of hydrostatic pressures 

were 14.3 ± 0.9 kPa and 13.3 ± 0.9 kPa (Figure 6-3b & c).  

The peak hydrostatic stress in the complete denture was 33.4 kPa, whereas it was 

43.6 kPa for the two-implant retained overdenture and 39.9 kPa for the four-implant one. 

More severe stress concentration can be observed at the posterior ends of the mandible in 

the two implant cases, resulting from substantial cantilever deflection during mastication. 

With two extra implants, the structure became more rigid, leading to slight pressure 

reduction on the mucosa by 8.6%.  

6.3.2 Occlusal load distribution 

Compared to the complete denture, the implants played important roles in 

supporting the overdenture and transferring load directly to the bone. Due to the bone 

morphology and internal heterogeneity, the left and right implants also contributed to 

different extents of load bearing. Figure 6-4 depicts the calculated load proportions 

distributed onto the mucosa and implants. For a complete denture, the mastication load was 

entirely transferred to the mucosa, whilst for the two- and four-implant retained 

overdentures, only 63.9% and 62.1% of the mastication load were respectively borne by 

the mucosa.  
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Figure 6-4 This figure compares the load distributions for each denture case, as induced by 

mastication (63 N). Blue - compressive load entirely supported by the mucosa; red - 

compressive load shared by the left implant(s); orange - compressive load borne by the right 

implant(s), as well as their individual components for four-implant one.  

In the two-implant case, the left implant carried nearly twice load of the right one 

(15.3 vs 7.5 N) in this specific patient, opposite to the pressure pattern developed on the 

mucosa as shown in Figure 6-3b. This difference was reduced by an extra pair of implants 

in the four-implant case, showing an improved balance along the sagittal plane (net loads 

of 14.1 N at left and 9.7 N at right). Due to the cantilever effect and associated bending 

moment incurred in the four-implant retained overdenture, the anterior implants experience 

tensile pull-out forces to balance the bending moment at the posterior end of denture, 

whereas the posterior pair carried more than 3 times the compressive load than the two-

implant case. The force balance in the anterior and posterior pairs increased the structural 

rigidity, transferring less occlusal load directly to the posterior end of mandible, as seen in 

the reduction of hydrostatic pressure in the mucosa (Figure 6-3c). 

6.3.3 Denture stability 

The vertical displacements along the cusps of the dentures were plotted in Figure 6-

5 to examine stability of the dentures. The minimum vertical displacement was found as 
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1.66 mm (complete), 1.91 mm (two implants), and 1.34 mm (four implants), respectively. 

The left posterior regions of all these three configurations exhibited more displacements 

than the right hand side.  

 

Figure 6-5 The vertical displacement of each denture configuration is plotted along the 

normalized arch path distance consisting of all artificial tooth cusps and posterior ends of 

denture cushion, as indicated by the red line on the top of the denture model. The 

corresponding denture regions are labelled over the normalized distance. 

The minimum deformation of the complete denture occurred around the canine on 

the right-side, reflecting a non-symmetrical deflection in the given jaw, consistent with the 

non-symmetric hydrostatic pressure contours (Figure 6-3a).  

Reduced denture deformation was found around the anterior region of the denture 

retained with more implants. The implant-retained configurations also demonstrated much 

smaller differences between the left and right sides, as well as between the posterior and 

anterior ridges. Lower displacement levels and more symmetric deflection and stress 

patterns indicated better stability during mastication.  
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6.4 Discussion 

6.4.1 Correlation to Clinical Outcomes 

In the course of clinical treatment, this specific subject received the two-implant 

retained overdenture with a follow-up scan after one year [11]. These two scans were 

registered based on their isosurfaces that have the same HU values. The density difference 

between these two scans was plotted in Figure 6-6a, as a measure of bone remodeling 

activity [41]. The cyan-blue regions indicated bone resorption, whereas the yellow-red 

regions suggested bone apposition. The grey regions showed that the bone density 

increases by more than 0.7 g/cm2 (the two grey circular areas on the anterior ridge were 

replaced by the implants after a year). The black region at the posterior end of the right 

mandible arm was the site of most severe bone resorption with the maximum density 

reduction of 0.92 g/cm2. 
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Figure 6-6 (a) The density differences between the initial and 1-year follow-up scans plotted 

in 3D manner, as determined by Eq. (1); (b) A 2D cross-sectional view of the CT scans were 

extracted at the posterior end of patient’s mandible, where the most severe bone resorption 

occurred, as indicated by region A-A in (b), grey scale - the initial scan, cyan scale - the 

follow-up scan, red lines - isolines of HU thresholds for the cortical bone from the follow-up 

scan; (c) Left: the deformed and original (dashed) surface profiles are compared in the region 

A-A, orange - bone, red - mucosa, grey - denture; Right: the schematic hydrostatic pressure 

distribution over the periosteal membrane on the bone surface, as interpolated from the FE 

modeling. 

As the region of major interest is the posterior mandible, 2D coronal slice of the CT 

scans was selected in Section A-A (Figure 6-6b), in which the grey scale represented the 

initial scan, and the overlapping cyan was the second scan after one year. The red profiles 

were the isolines presenting the HU thresholds (i.e. 0-700-1300 HU) of the second scan, to 

highlight the borders between each region. On both the buccal and lingual sides of the 
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residual ridge, the bone surface profile was well preserved. In contrast, the bone profile 

dropped along the contacting mucosal surface at the upper profile of the residual ridge, 

where three white arrows identify the region of most extensive bone resorption. At the 

middle arrow, the bone density decreased sharply along the periosteal-mucosal surface the 

bone profile was substantially lowered. 

The deformed mucosa profile in Section A-A was depicted on the left hand side of 

Figure 6-6c (in black), to compare with the original shape (in dashed blue). The resultant 

hydrostatic pressure acting on the periosteal membrane was plotted on the right hand side 

in Figure 6-6c, where the longest vector (peak pressure) located at the same place as where 

the most severe bone resorption occurred (Figure 6-6a). It is found that the simulated 

hydrostatic pressure in the mucosa was a good predictive indicator of bone resorption at 

the posterior end. 

Comparison of the FE modeling with clinical outcomes exhibited excellent 

correlation between the magnitude of hydrostatic pressure in the surrounding soft tissue 

and the underlying bone density changes, with consequent the bone profile variance 

(Figure 6-6). While most researchers have agreed that mastication forces were mainly 

responsible for bone remodeling beneath dental prosthesis [41-45], the associated 

biological mechanisms have remained inconclusive. Some studies suggested that bone 

resorption may be triggered mechanically by either low or overly high stress levels inside 

the jaw bone [16, 22, 46], while others have suggested that the soft tissue mucosa could 

play a much more critical role in driving bone resorption [9, 27, 37, 47]. In the present 

study, the regions concerned most with severe bone resorption (e.g. Section A-A in Figure 

6-6), the hard-tissue driven bone remodeling stimulus, e.g. the effective strain [16, 48] or 

strain energy density [32, 33], was unable to be correlated with the observed bone 

resorption; instead, the stimulus in the surrounding fluid-rich vascular mucosa tissue, such 
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as hydrostatic pressure (Figure 6-3), appeared to be more relevant to the bone’s turnover 

responses. 

6.4.2 Increasing Occlusal Loads 

Previous clinical studies have also reported higher bite forces in implant-retained 

overdentures compared with the complete dentures. Two independent studies by Geckili et 

al.[49] and Ahmad et al.[11] measured the maximum biting force (MBF) on average 

around 110 N for the patients with two implants; and comparable results (150 N) were 

obtained by Fontijin-Tekamp et al. [50]. Increased voluntary biting forces were also 

observed with more implants, reaching above 400 N on average [51], while lower MBFs 

were also reported in clinical trials from very elderly subjects with implant-retained 

overdentures [52].  

Akin to the diverse range of MBFs reported in the literature, different conclusions 

were drawn on the effects of implants. Despite observed rising MBF with the increasing 

number of implants [51], there was little difference demonstrated with or without implants 

after 4-year adaptation [49]. Wismeijer et al. [53] claimed a simple overdenture retained by 

two implants was sufficient to improve functionality. 

To understand the role of the number of implants at different force levels, the 

effects of increasing biting forces were explored within a conservative range (up to 140 N). 

Figure 6-7 plots the implant contribution to load sharing in the implant-retained 

overdentures. It was found that the implants were carrying nearly half of the mastication 

force at 140 N, rising from about one third, for both treatment cases. Meanwhile, the peak 

hydrostatic pressures in the mucosa increased much less significantly. Both trends 

plateaued at the higher forces, and the increased load-bearing capacity of implants was 

gradually compromised. 
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Figure 6-7 This figure compares the contributions of load sharing between two- and four-

implant retained overdentures, as well as the peak hydrostatic pressure, at different force 

levels ranging from 63 N, measured in this study, to a conservative maximum value (140 N). 

6.4.3 Clinical Implications 

In this study, the complete denture exhibited the most uniform distribution of the 

occlusion load, with the maximum contact surface of all the three different designs. The 

implant-retained overdentures transferred less than two thirds of the 63N load to the 

mucosa, with significantly reduced contact areas, consistent with previous clinical findings 

[10, 11]. Although implant-retained cases delivered improved stability during mastication 

[11, 54], as shown in more symmetric hydrostatic pressures and deflections, the downside 

was the stress concentrated more posteriorly [7, 55, 56], where the cantilever effect was 

revealed to be a major cause [29, 43, 47].  

Despite their appealing benefits, implant-retained overdentures are not free of 

accompanying clinical complications that require specific attention. Shortening the denture 
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arms was considered to reduce the posterior bone resorption [43]. Adding metal frame or 

wires in the denture can increase the overall rigidity of dentures [57]. These ideas can be 

further explored by using the FE procedure established in this study, thereby examining the 

overall biomechanical effectiveness of implant-retained overdentures and developing a 

patient specific optimized design. 
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6.5 Conclusions 

This study explored the biomechanical basis associated with bone remodeling 

utilizing different denture treatments; namely complete dentures, and two or four implant 

retained overdentures in a patient-specific case. The 3D heterogeneous jaw bone model 

was created based on the patient’s CT data, and a hyperelastic model of mucosa derived 

from the in-vivo data. The FE modeling results for one of these denture systems (two 

implant-retained) was correlated to our one year clinical follow-up study.  
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Chapter 7: Three-Dimensional Contact Shape Optimisation and 

Free-Form Fabrication for Removable Partial Dentures: A New 

Paradigm for Prosthetic CAD/CAM 

 

This chapter aims to develop a fully automatic procedure for shape optimisation of 

a removable partial denture (RPD) base, to minimize the contact pressure on the mucosa 

and avoid associated clinical complications. A contact optimisation algorithm was 

developed based on the bi-directional evolutionary structural optimisation (BESO) 

technique. Both initial and optimized dentures were prototyped by 3D printing and tested 

with fitting silicone and pressure sensitive film. Despite the commonality of clinical 

complications induced by dentures, there has, as yet, been no quantitative method available 

for appropriate denture base adaptation. Our procedure provides a novel CAD-CAM 

method for digitalised denture adjustment. The integration of digitalized modelling, 

optimisation and free-form fabrication enables more efficient clinical adaptation. The 

customized optimal denture design is expected to have considerable clinical benefits 

including minimizing pain/discomfort and potentially reduce long-term residual ridge 

resorption. 
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7.1 Introduction  

Denture treatments have been widely applied in dental practice to restore oral 

function of the edentulous group [1-3]. Mal-adapted dentures can induce clinical 

complications associated with the inappropriate load transfer from the dental prosthesis to 

oral tissues, leading to pain and discomfort in patients [4-6], thus compromising their 

quality of life [7-9]. In more severe cases, subsequent residual ridge bone resorption may 

develop [1, 10, 11]. 

During mastication, the oral mucosa plays a critical role in distributing occlusal 

loads from the denture to the underlying bony ridge [12-15]. The contact pressure 

developed over this highly vascular tissue is one of the most important etiological factors 

causing the clinical complications [5, 15-19]. With aging, the mandibular arches are found 

to become even more susceptible to the excessive contact pressure under the denture, 

which disturbs local blood supply to the underlying bone, triggering nerve pain [20] and 

potentially resulting in bone resorption [21].  

Conventionally, clinical denture fabrication is performed using either a cast/press 

mould or an artificial model [22-25], followed by time-consuming manual correction and 

adjustment [26]. Early studies have shown that bone is a heterogeneous material with local 

anatomical property variations, affecting load transfer and strain [3, 16]. The soft tissue 

also influences the denture masticatory load distribution [13-15]. Meanwhile, the accuracy 

of denture adaptation may vary significantly with different fabrication techniques [23]. 

Recent developments of in vivo measurement techniques allow determining the contact 

pressure beneath dentures [27], providing more insight into clinical adaptation. However, 

its accuracy essentially relies on the tactile sensor, and the clinical practicability remains 

unclear because of its complex setup. 
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The finite element (FE) method has demonstrated compelling advantages for 

biomechanical analysis and surgical planning [28-31]. When combined with clinical cone 

beam computed tomography (CBCT), precise 3D morphologies can be modeled accurately 

with both anatomical and physiological features of an individual patient [3]. In addition, 

increasing computational power enables more realistic models of tissue behaviour, 

including complex nonlinear biomaterial responses [28]. Furthermore, computational 

design allows one to optimize the shape of an engineering structure based on FE models 

and has been applied for addressing design issues involving sophisticated contact problems 

[32-36]. Following the success achieved in engineering, the denture shape can potentially 

be optimized to minimize clinical complications induced by contact pressure [37]. This 

numerical approach also provides compatibility with digital manufacturing, known as a 

computer-aided design and computer-aided manufacturing (CAD-CAM) system, for 

ensuring controllable consistency and standardized accuracy [38-40]. 

This study aims to develop a fully automatic algorithm for denture-mucosa contact 

optimisation in a patient-specific removable partial denture by minimizing the peak contact 

pressure developed. A 3D heterogeneous FE model is first created based on clinical CT 

data, with the mucosa modeled as a nonlinear (hyperelastic) material in response to 

mastication. Both pressure-induced pain and hydrostatic pressure in the mucosa are 

examined with the initial and optimal contact surfaces. Both dentures were prototyped 

using a 3D printer, and further tested with existing clinical examination methods, to verify 

the effectiveness of the proposed procedure in vitro. From an engineering perspective, this 

study develops a novel procedure by the integration of FE based automatic design 

optimisation and the digital free-form fabrication (3D printing). From a clinical perspective, 

this novel technique automates patient-specific denture adaptation with quantitative 

guidelines for denture adjustment and correction in less time, subject to mastication. From 
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a patient’s perspective, the optimized denture would potentially minimize pain/discomfort 

and reduce long-term residual ridge resorption, thereby maximising intervals between 

subsequent denture adjustments.  
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7.2 Materials and Methods 

7.2.1 Patient Data Acquisition and Modelling  

The CT image was segmented in ScanIP Ver. 4.3 (Simpleware Ltd, Exeter, UK) 

based on Hounsfield unit (HU) thresholds, to form polygonal surface meshes for two sets 

of models. Using non-uniform rational B-splines (NURBS), free-form parametric surfaces 

were reconstructed from these meshes, and geometric models were solidified in the 3D 

parametric modelling software Rhinoceros 3.0 (Robert McNeel & Associates, Seattle USA) 

(Figure 7-1a).  

 

Figure 7-1 The model is created based on patient’s clinical data. (a) Two sets of masks 

created separately (Set 1: white - teeth, orange - bone, transparent pink - mucosa, grey - teeth; 

Set 2: grey - artificial teeth, transparent cyan - denture base, blue - denture frame); (b) Both 

models are solidified by using NURBS after visual insertion of RPD; (c) Assignment of 

heterogeneous material property of the bone based on HU value; (d) The nodes highlighted in 
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red on the denture base are allowed to be modified during bi-directional evolutionary shape 

optimisation (BESO), and the orange ones are fixed to maintain the denture functionality. 

The prescribed RPD of the subject was duplicated with a titanium frame, a 

scanning resin denture base, and radiopaque artificial teeth, for the scanning purpose. The 

RPD image stack was initially processed in the same manner as the subject’s jaw. The 

virtual insertion was then performed utilizing the surface contour registration between the 

supporting crowns and the denture rest in this software (Figure 7-1b). The denture base 

was further modified to create an exact match to the jaw bone surface by Boolean 

operations in Rhinoceros 3.0. Through this approach, the 3D baseline model optimisation 

commences with an initial ‘perfect-surface-match’ (without mastication).  

The final model was meshed in ABAQUS 6.9.2 (Dassault Systèmes, Waltham 

USA), with the built-in global adaptive mesh. To ensure sufficient numerical accuracy, a 

mesh convergence test was performed on this model as in our previous studies [41, 42]. 

The final mesh contains 186,213 degrees of freedom (D.O.F.) with 328,066 tetrahedral 

elements in the hybrid formulation (C3D4H) to preserve the continuity and smoothness of 

the contact pressure in the nonlinear analysis.  

Clinical treatment was conducted independently to the FE analysis in this study, 

and the subject chose the two-implant retained overdenture treatment. A follow-up scan 

was performed one year after the overdenture insertion. The second image stack was 

processed in the same manner as the initial one, after registration of their isosurfaces. 

Differences between these two sets of measurement data allowed us to determine bone 

remodelling and correlate the outcomes with the FEA results [14]. 

7.2.2 Material Assignment and Masticatory Scenario 

Although linear elastic and homogenous material models have been widely 

assumed in most FE studies [43-46], such assumptions may not adequately replicate 
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complex tissue responses [28]. In this study the mandibular bone was characterized as a 

heterogeneous material based on the HU values, reflecting the variation of localized 

modulus and load deflection [43, 45]. The apparent bone density appρ  is interpolated 

linearly against the HU value as in Eq. (1), with the thresholds of 1.86 g/cm3 and 0.72 

g/cm3 for cortical and cancellous bones, respectively [47] (the resultant bone density 

contour in Figure 7-1c). 
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Eq. (2) established by Carter and Hayes [48] was adopted here to correlate the 

Young’s modulus E to the apparent density appρ , A FORTRAN subroutine in the User 

Defined Field (USDFLD) was employed to assign these heterogeneous material properties 

to the individual material integration point of every element in ABAQUS. 

A hyperelastic constitutive material model was adopted for the mucosa to better 

represent its nonlinear response under mechanical loading [13, 49, 50]. This material 

model depends upon the strain energy (Ue ) stored per unit volume as a function of the 

instantaneous strain at a point of the material, and was derived from the clinical data 

documented by Kishi [50] via least-squares fitting. A third order Ogden strain energy 

constitutive model equation [51] was determined to provide the closest match (Eq. (3)), 

where il  are the deviatoric principal stretches obtained from the principal stretches, M (= 3 



Chapter 7 - Automatic Denture-Mucosa Contact Surface Optimisation Page | 177 

in this case) is the order of the fitting equation. Table 1 summarizes all the material 

properties, including iµ , iα , and iD  for the hyperelastic model [3, 43, 46].  

Table 7-1 Material properties of the implant screws and denture 

 Material Young's Modulus (MPa) Poisson’s Ratio 

Bone Heterogeneous 0.3 

Denture Frame 110, 000 0.35 

Denture Base 2,650 0.30 

Artificial Tooth 140, 000 0.28 

Tooth 84, 100 0.20 

Mucosa Hyperelastic 0.47 

 (Ogden 3rd) i iµ  iα  iD  

 1 3.26E-02 8.41 12.47 

 2 7.88E-04 25.00 0 

 3 1.03E-03 -18.94 0 

A localized masticatory force was applied in the vicinity of the first molar 

approximately in a vertical direction with a magnitude of 130 N [52]. The Augmented 

Lagrangian algorithm was adopted to simulate the denture-mucosa contact, with a low 

frictional coefficient assumed at 0.1 to mimic typical lubrication in the oral environment 

[53, 54]. The boundary conditions were prescribed to the distal condyle with full kinematic 

constraints and the sagittal plane with symmetric constraints [55, 56]. 

7.2.3 Bi-directional Evolutionary Structural Optimisation Algorithm 

The evolutionary structural optimisation (ESO) algorithm is a heuristic and non-

gradient approach that mimics the adaptability of natural structures iteratively, and has 

proven effective to handle both nonlinear and non-differentiable contact problems [32]. As 

its further development, bi-directional evolutionary structural optimisation (BESO) allows 
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material addition to where it is most needed, and material removal from where it is most 

redundant concurrently. The BESO method has been demonstrated to be more robust and 

efficient than ESO [32, 57]. Treating individual elements as design variables, BESO 

creates non-smooth zigzag boundaries in the design domain that prevents it from creating a 

functional shape providing meaningful and realistic contact [32, 58].  

To tackle this problem, the conventional BESO approach is significantly modified 

here, in which the cloud of surface nodes is utilized to define the design domain for 

implementing the optimisation. The surface mesh in Figure 7-1d indicates where these 

boundary nodes are in the initial design domain, and two groups of these nodes are 

highlighted in red (i.e. free-to-move nodes and capable of being optimized) and black 

(constrained to maintain the functionality of a denture) groups, respectively. 

The clinical expectation is to optimize the denture-mucosa contact surface thereby 

avoiding undesirable concentrations of contact pressure over the entire contact profile 

(denoted as g(x,y,z)). Mathematically, this may be simply formulated as in Eq. (4). In order 

to implement an effective BESO approach, this objective function is further revised by 

reducing the overall deviation of the contact pressure shown in Eq. (5), which reduces the 

magnitude of the upper extremes and improves the effectiveness of the lower extremes 

over the entire contact region.  

maxmin ( ( , , )) min ( ( , , ))f g x y z g x y zσ=       (4) 
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σ σ =
=

′ = −∑     (5) 

where N denotes the total nodal number in the design domain; iσ  is the nodal 

contact pressure. Target contact pressure σ  is obtained from the average at the initial step 

(virgin model with Iter = 0), to balance material removal and addition. The convergence 
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criterion is set so that the average of 5 contiguous objective function changes ( f∆ ) is less 

than 1% (Eq. (6)). 
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The interfacial contact surface g is modified by implementing nodal movement 

δ(x,y,z) in Eq. (7), to effectively redistribute the contact pressure. Increasing the initial 

distance between the contact pairs will reduce the pressure, whilst reducing the initial 

distance will enable them to share more load. While the surface nodes are kept the same to 

maintain both the functional group and design domain, the internal domain is remeshed 

every iteration based on the modified surface nodes, to avoid over-stretched elements.  

As in Eq. (7), the magnitude of modification is proportional to the relative 

deviation between nodal contact pressures and target average pressure. The direction of the 

nodal movement is determined by the normal vector of each individual surface node in a 

three-dimensional space. The change speed is controlled by the modification rate, denoted 

as MR here. Four different constant modification rates, 0.01, 0.005, 0.002, and 0.001, are 

first attempted. An adaptive modification rate controlled by the maximum contact pressure 

ratio as defined in Eq. (8) is also proposed to improve the convergence, where the initial 

modification rate is set to 1%InitialMR =  in the case below. For clarification, the complete 

contact based BESO procedure is depicted in the flowchart shown in Figure 7-2.  
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Figure 7-2 The flow chart illustrates the contact-based BESO procedure for optimisation of 

removable partial denture contact surface. 
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7.2.4 Design Prototype and in vitro Test 

Conventional subtractive manufacturing has been widely applied to fabricate 

dentures and there have been several reports describing its usage [38]. The other option 

available using CAD-CAM is additive manufacturing, with 3D printing technology, and its 

novel potential is gradually being recognized [59], but few reports are currently available 

for dental prosthetic RPD. In this study, the subject’s jaw model and both the initial and 

optimized RPDs were prototyped using 3D printing to demonstrate the complete 

integration of CAD with CAM through additive fabrication. Finally, the prototypes were 

used for in vitro tests to explore the outcomes of this computational design and 

manufacturing procedure. It is noted however, the precise in vivo mechanical behaviour 

cannot be obtained with these in vitro models; however, these in vitro tests can provide the 

same physical baseline without being influenced by physiological factors.  

The jaw bone was printed with a stereolithography machine (Projet HD 3000, 

3dsystems, Melbourne Australia) with 16 µm building layer thickness in Shore 90D 

polyurethane. The mucosa layer was moulded onto the rigid bone model, with Shore 15AF 

polyurethane. The metal frames of both dentures were printed with stainless steel 316 GP1 

by direct metal laser sintering (EOSINT M 270, EOS, Ingleburn Australia) at 20 µm per 

building layer. The artificial crowns and cushion base were also over-moulded with Shore 

30D polyurethane. 

The loading test was performed with a universal testing machine (Instron 3360, 

Melbourne Australia) (resolution at 0.1N, ± 0.5 % accuracy). The loading rate was set to 

0.1 mm/min, and the sampling frequency was at 20 Hz. Two typical clinical methods were 

used to examine the contact between the denture prototype and the jaw model. The first 

was to apply white silicone (GC Corporation, Tokyo Japan) for checking the fit, and the 

other one was using a pressure sensitive film (model 4LW, Fuji Film, Tokyo Japan).  
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7.3 Results  

7.3.1 Modification Rate (MR) and Optimisation Convergence 

MR is a critical parameter for determining whether or not and how fast the shape 

optimisation converges. A balance must be achieved between the rate of convergence and 

computational efficiency. Four different constant MRs and an adaptive MR (starting at 0.01) 

were attempted. Both the maximum contact pressure (MAX) and the standard deviation 

(SD) are plotted in Figure 7-3a and 3b against the iteration number. 

 

Figure 7-3 Convergence history, (a) the maximum contact pressure; (b) the contact pressure 

deviation (as objective function Eq. (5));  (c) the contact area, and (d) the load transferred 

from denture base through the optimisation with different modification rates (0.01: red cross, 

0.005: blue square, 0.002: green triangle, 0.001: orange diamond, adaptive: black dot). 

The larger modification rates (0.01 and 0.005) bring down both MAX and SD 

faster than the smaller ones (0.002 and 0.001) in the early iterations. However, the larger 
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the MR, the greater the oscillations in the objective curves. A non-smooth contact surface 

was finally generated by MR=0.01, leading to a singularity resulting in termination at 

Iteration 53. Two smaller MRs (0.005, and 0.002) still fluctuate substantially beyond 80 

iterations and barely show SD convergence. The smallest MR (0.001) provides the 

smoothest trend in both MAX and SD; however, it takes many more iterations to approach 

convergence.  

The adaptive MR demonstrated a better balance by taking advantages from both 

large and small MRs to provide the best efficiency and robustness of convergence. Within 

the first 10 iterations, the adaptive MR enables the reduction of both MAX and SD by over 

50% from the initial design. The subsequent iterations go through a smooth convergence 

trend, meeting the criterion (Eq. (6)) at Iteration 93. At the end of optimisation, the 

maximum contact pressure is reduced from 209.2 kPa to 65.6 kPa (that is by 69%), and the 

uniformity is improved from ± 50.3 kPa to ± 18.4 kPa (by 63%). 

Meanwhile, the other concerns associated with optimisation reside in the variation 

of the contact area and the total load transferred from the denture base to mucosa tissue, as 

plotted in Figure 7-3c and 3d, respectively. All five MRs exhibit small increases in the 

contact area, as the nature of the BESO algorithm attempts to balance material removal and 

deposition. Besides, some proportion of the load is shifted from the denture base in the 

initial design onto the supportive abutment teeth (premolars) via the clasps in the optimal 

design. All MRs converge to a similar level around 70 N out of the total load (130 N), with 

about 13% reduction from the initial design. 

7.3.2 Denture Modification and Contact Pressure 

Figure 7-4a presents the optimal denture shape generated from the adaptive MR, 

where the maximum extent of material addition amounts to 382 um and the maximum 
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material removal is 224 um. In the case of a cantilever, most material is added near the 

denture clasp end, whereas the thickness is reduced at the distal end, to reduce the 

overloading. In addition, the buccal side of the denture is optimized to share more load 

than the lingual side in this specific patient case. 

 

Figure 7-4 (a) The modification made to the denture base through the evolutionary shape 

optimisation with an adaptive modification rate; the maximum material deposition and 

removal are 382 and 224 um respectively; (b) The contact pressure contours on the initial 

denture base (left) and the optimized denture base (right). 

Figure 7-4b shows the contact pressure contours on the denture base before and 

after the optimisation, which clearly exhibit the reduction of pressure concentration 

severity and improvement in its uniformity. The initial high pressure region is largely 

redistributed more uniformly over the entire contact region. It is seen that not just the 

mesial area, but also the edges of the denture base achieve the improved contact conditions 

after the optimisation, allowing more effective and smoother load transfer to the mucosa. 

7.3.3 in vitro Loading Test  

Figure 7-5a shows the prototyped jaw (upper) alone and with the optimal denture 

fitted (lower). Figure 7-5b illustrates the loading setup for the in vitro test, and in this 

figure, the pressure film was inserted between the jaw model and the denture prototype. 
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The in vitro test aimed only to verify the effectiveness of the shape optimisation and 

additive fabrication for these models. 

 

Figure 7-5 Prototypes and in vitro test. a) The subject jaw model (upper) and the optimized 

denture (lower); b) in vitro loading test performed under Instron, with a pressure sensitive 

firm between the denture and the jaw; c) the fitting white silicone test; d) the pressure 

sensitive film test. 

The white silicone fitting outcomes are shown in Figure 7-5c, and a tight contact in 

this test squeezed silicone out to create a blank area (black dash line) under loading. In the 

initial denture, a medium layer of silicone indicated insufficient use on the mesial end, as 

highlighted by the yellow triangles. Through optimisation, the supportive contact area was 

expanded in the mesial direction, while some distal areas became less effective, indicated 

by the blue triangles, in these models. Consistent trends were observed with the pressure 

sensitive film test in Figure 7-5d. The initial denture led to stress concentration at the distal 

end, and this load was re-distributed towards the mesial direction through the optimisation. 



Chapter 7 - Automatic Denture-Mucosa Contact Surface Optimisation Page | 186 

7.4 Discussion 

The oral mucosa, being a supportive tissue, is found to be mechanically and 

physiologically responsive to functional pressure during mastication. While the 

biomechanics underpinning its behaviour is not fully understood [60], previous research 

has revealed that high contact pressure can trigger pain in the oral mucosa [27, 61, 62]. To 

quantify this, a pressure-pain threshold (PPT) relationship was defined as a lowest pressure 

that causes pain, which links the objective stimulus (contact pressure) to the subjective 

response (pain). The validity and reliability of this in vivo approach using pressure 

algometers have been developed [60, 63], showing a positive outcome associated with this 

technique.  

Figure 7-6a compares the maximum contact pressure obtained from clinical PPT 

data reported in the literature along with our FE modelling. All the literature data showed a 

moderate range of standard deviations, which reflects the consistency and reliability of 

using the pressure algometers in the individual tests [60, 63]. As Ogimoto et al. suggested, 

PPT depends on the loading rate; and slower loading rates generally result in the lowest 

threshold [60], which agrees with other in vivo studies [61, 63]. The mucosa is a fluid-rich 

tissue and its viscoelasticity generates nonlinear responses, in which a faster impact 

stiffens the tissue and develops higher pressures [13, 49, 50, 64, 65]. For a conservative 

estimate of pressure, all literature data adopted in Figure 7-6a were tested under a low 

loading rate less than 0.05N/sec. 
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Figure 7-6 (a) The maximum contact pressures induced by both initial and optimised 

dentures are compared to clinical pressure-pain thresholds (PPTs) over the distal region of 

the mandible. The maximum contact pressure (*) under the optimised denture is significantly 

lower than available PPTs from literature (p < 0.01). (b) Hydrostatic pressure induced by the 

removable partial denture insertion through the optimisation procedure, which indicates the 

reduction of disturbance severity to the blood circulation. 
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Other factors, such as loading position [60, 61, 66, 67] and pre-loading history [6] 

[20], also affect PPT. We considered that the distal region is of major interest in the 

location of RPD. A short-term loading history caused insignificant change in PPT [6], but 

the tolerance ramps up with longer loading time [20]. Age is another factor, and it may 

influence PPT. A general trend indicates that younger people have higher PPT, whereas the 

oral mechanosensitivity was found to decrease with age [68] though exceptions were found 

in both young and old age groups [20, 61]. For this reason, data from various age groups 

have been shown in Figure 7-6a. 

Although the initial FE denture model (baseline) provides a ‘perfect’ morphological 

match to the mucosa, the maximum contact pressure (209.2 kPa) lies in the mid-range of 

PPTs. After the optimisation, the maximum contact pressure is reduced by nearly 70% to 

65.6 kPa, which falls well below most PPTs (p < 0.01, ANOVA [69]). 

Apart from the immediate pain and discomfort, the long term concern with high 

contact pressure is the consequential bone resorption, caused by raised interstitial fluid 

pressure (IFP) or hydrostatic pressure [15, 17, 18]. The aging edentulous mandible is 

mainly supported by the periosteal plexus of blood vessels and therefore are very sensitive 

to a diminished level of circulation under occlusal load, resulting in reduced nutrient 

supply to and metabolite removal from the supporting mandibular bone [70]. The resultant 

hydrostatic pressure, which may exceed the local systolic pressure, disturbs local blood 

supply to the surrounding periosteal tissue, potentially leading to bone resorption [21]. 

Experimental observations have shown that 50 kPa pressure can reduce the blood flow rate 

to only 21% within 5 seconds, and further reduction to 15% after 30 seconds [71]. The 

recovery time can be four times longer than the loading time, and the ratio of biting to 

recovering time increases with more frequent mastication [71]. The continuously loaded 

epithelial cells and surrounding tissues, undergoing an inflammatory response, contribute 
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to a variation in permeability of the mucosal tissue, and further compromising circulation 

[49, 72]. More recent studies have shown that hydrostatic pressure controls osteogenesis 

and osteoclastogenesis [73, 74], and bone resorption has been observed at high hydrostatic 

pressure regions under certain types of dentures [14]. 

Figure 7-6b shows the hydrostatic pressure distribution on the mucosa through the 

optimisation process. The maximum hydrostatic pressure was 29.5 kPa for the initial 

denture, and it decreased to 19.6 kPa (33.5% reduction) after optimisation, where the 

green-red colour (medium to severe disturbance) disappears. More importantly, the 

distribution has become more uniform on the residual ridge and along both mesial-distal 

and lingual-buccal directions, indicated by the expanded light blue (low disturbance) 

regions. The magnitude of the hydrostatic pressure indicates the severity of induced 

disturbance to local blood circulation, and shows in the above figure that the initial high 

disturbance along the lingual side is eased and more evenly disturbed over the entire 

contact surface with optimisation. Within the defined contact area and the maximum 

voluntary occlusal force, the average pressure cannot decrease below the systolic pressure 

(16 kPa). Further expanding the contact area or modifying the denture fixation design may 

more effectively reduce the hydrostatic pressure to a lower level; these alternative 

approaches are the basis for further study. 

The conventional fabrication method has shown its effectiveness with clinical 

predictability for more than a century [75]. With the growing aging group and the 

increasing demand for denture treatments [2, 76], this approach is facing severe challenges 

because of its labour-intensive nature, especially with the shortage of dentists and dental 

laboratory staff [76]. Its disadvantages are being gradually exposed, such as the need for a 

minimum of 4 or 5 treatment visits with additional post-insertion follow-ups, high 

laboratory expenses and time cost, lack of intimate iteration with soft tissues, and reliance 
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on technique and experience [38]. The proposed computer based optimisation and additive 

fabrication procedure may ameliorate these downsides with quantitative guidelines, 

customized optimal treatment, standardized accuracy, reliable reproducibility, and reduced 

cost, through a computationally automatic process of scan-design-manufacturing. 

Apart from BESO, there may be other shape optimisation algorithms available to 

minimize contact stress concentration. From a design perspective, configuration with softer 

or stiffer materials has also been applied in the modification for denture adaptation [77], 

and gradient materials may have potential to provide further improved pressure contours 

over the contact morphology. While the effectiveness of these methods is worth testing for 

comparison; it is beyond the scope of this study. 

3D additive manufacturing for multiple materials was adopted in the prototyping 

stage. The prototypes have a certain manufacturing error involving thermal shrinkage, 

relative low resolution (16µm) and differences between real human oral tissue and 

printable surrogate materials in the jaw model. The in-vitro validation tests were performed 

with such prototype models and the results of the contact conditions could have been 

affected. Nevertheless, this study showcased a feasible new approach from diagnosed scan, 

computational design to additive manufacturing of removable partial dentures (RPD), 

thereby providing technological potential for other dental prosthetic treatments in the 

future. 
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7.5 Conclusions 

This study proposed a fully automatic design optimisation and additive fabrication 

procedure for removable partial dentures (RPD). The bi-directional evolutionary structural 

optimisation (BESO) technique was revised to accommodate contact optimisation 

problems, in which the material is removed from the high contact pressure region to lessen 

the stress concentration and added to under-loaded regions to enhance loading-bearing 

capacity.  In this study, the contact pressure is related to the pressure-pain threshold (PPT) 

associated with patients’ denture usage. It is found that the optimized denture base is able 

to deliver a more even pressure distribution and reduce the pressure well below all PPTs 

available from clinical studies in the literature (with sufficient statistical significance). 

More importantly, the overloaded region was largely reduced via the optimisation and a 

lower hydrostatic pressure was generated, which could potentially reduce associated long 

term bone resorption. This proposed computational contact optimisation and additive 

fabrication procedure is of considerable promise for other dental prostheses, thereby 

providing quantitative guidelines and computer aided design and manufacturing in the 

dental clinic for an individual patient. 
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Chapter 8: A Periodontal Ligament Driven Remodelling 

Algorithm for Orthodontic Tooth Movement 

 

While orthodontic tooth movement (OTM) gains considerable popularity and 

clinical success, the roles played by relevant tissues involved, particularly periodontal 

ligament (PDL), remain an open question in biomechanics. This study develops a soft-

tissue induced external (surface) remodelling procedure in a form of power law 

formulation by correlating time-dependent simulation in-silico with clinical data in-vivo 

(p<0.05), thereby providing a systematic approach for further understanding and prediction 

of OTM. The biomechanical stimuli, namely hydrostatic stress and displacement vectors 

experienced in PDL, are proposed to drive tooth movement through an iterative 

hyperelastic finite element analysis (FEA) procedure. This algorithm was found rather 

indicative and effective to simulate OTM under different loading conditions, which is of 

considerable potential to predict therapeutical outcomes and develop a surgical plan for 

sophisticated orthodontic treatment. 

 

Associated Publications: 

1. Junning Chen, Wei Li, Michael V. Swain, Ali M. Darendeliler, and Qing Li. A periodontal 

ligament driven remodeling algorithm for orthodontic tooth movement. Journal of 

biomechanics, 2014. 47(7): p. 1689-1695. 
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8.1 Introduction  

Orthodontic tooth movement (OTM) is based upon the ability of periodontal 

ligament (PDL) reaction to appropriate mechanical loading for a remodelling process 

within dental alveolar bone. OTM relies on a complex set of mechanical stimuli that 

triggers specific biological reactions in the tissues around the targeted tooth, thereby 

moving the tooth to a more desired position [1]. The ‘pressure-tension theory’ [2, 3] 

suggests that tooth movement is a consequence of generating mechanical compression on 

one side of PDL for bone resorption, and tension on the other side for bone apposition [3], 

in which normal strain in PDL was taken as the mechanical stimulus. The studies 

confirmed the critical role played by PDL [4, 5], which enabled the evaluation of clinical 

outcomes under a range of orthodontic forces. Nevertheless, the biomechanics behind 

OTM remains an open question.  

Finite element (FE) methods have shown compelling advantages in biomechanical 

analysis for OTM process [2, 6, 7], which allows incorporating anatomical, physiological, 

heterogeneous variance of individuals [3]. Middleton et al. (1996), Boucauel et al. (1999, 

2000) and others [8] pointed out that the mechanical stimuli within PDL were more 

relevant to OTM than those in the surrounding bones, as the mechanical responses to 

orthodontic force in alveolar bone are far below typical thresholds for remodelling to occur. 

With advances in clinical computerized tomography (CT), sophisticated 3D FE models can 

be created to precisely quantify biomechanical responses to the initial application of 

orthodontic force. However, it remains under-studied as to the understanding of how such 

responses change during tooth movement and how to simulate OTM in a time-dependent 

fashion.  

This article aims to address the abovementioned issues through developing an 

iterative FE procedure driven by a new remodelling rule, in which hydrostatic stress within 
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the PDL and the resultant interfacial displacement are considered as remodelling stimuli to 

account for tooth movement. To determine the remodelling parameters, the proposed 

remodelling simulation is correlated with the clinical data. The remodelling procedure 

established enables us to gain biomechanical insights into the time-dependent process and 

explore the effects of different orthodontic loading in silico. 
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8.2 Materials and Methods 

8.2.1 Clinical Data Acquisition  

14 healthy teenagers (5 boys, 9 girls; mean age, 15.8 years; range from 13.0 to 19.5 

years old) who required bilateral extraction of the maxillary first premolars and retraction 

of the maxillary canines during their orthodontic treatment were recruited. All subjects and 

their parents or guardians consented to participation after receiving verbal and written 

explanations (ethics approval: SSWAHS X06-0062 and EK: 358). All the participants had 

no previous orthodontic or orthopedic treatment histories, no craniofacial anomalies, no 

previously reported or observed dental treatment on the canine, or any existing medical 

conditions. After a minimum 3-month consolidation of post-extraction, the distal retraction 

of maxillary canines was performed with a force of either 0.5 N (namely 50 grams in 

orthodontics, a light force) or 3.0 N (300 grams, a heavy force) for each subject, 

respectively. Measurements were made from the orthodontic impression moulds every 28 

days from beginning of canine retraction and 4 impressions per patient were obtained at 

different time points for assessments.  

8.2.2 Finite Element Modelling 

CT images (in DICOM format) were captured on one average subject (0.2 mm per 

pixel resolution) through standard orthodontic measurement. The images were segmented 

in ScanIP 4.3 (Simpleware Ltd, Exeter UK) (Figure 8-1a). Masks of teeth, PDLs, cortical 

bone, and cancellous bone were created based on their respective Hounsfield unit (HU) 

(Figure 8-1b). Half of the maxilla was set as the region of interest (ROI) for its 

approximate symmetry in the sagittal plane. 14 masks (STL format) were further processed 

in Rhinoceros 4.0 (Robert McNeel & Associates, Seattle USA), to create geometric models 

with free-form surfaces in non-uniform rational B-splines (NURBs) (Figure 8-1c). The 
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solidified models were imported to ABAQUS 6.9.2 (Dassault Systèmes, Tokyo Japan) as 

IGES files. The unstructured quadratic tetrahedral elements (C3D10H) were used to 

smoothly capture the anatomical sophistication with an adaptive mesh in a seed size of 2 

mm, where mesh-refinement was applied to all 6 PDL regions involved (Figure 8-1d). 

Unlike an initial analysis, the remodelling required updating mesh to follow tooth 

movement. The average number of elements was 250,000, of which around 40,000 were 

dedicated to the PDLs. The mesh density was validated through a convergence test as per 

our previous studies [9, 10] . 

 

Figure 8-1 (a) CT images captured in DICOM format; (b) Masks created for each individual 

component in ScanIP; (c) NURBS surfaces created in Rhinoceros to form solidified geometric 

models; (d) Meshed FE models in ABAQUS for analysis 

 

a. b.

c. d.
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8.2.3 Material Property and Loading Scenario 

The non-linear hyperelastic model was adopted for PDL by fitting the strain-stress 

curve [2], in which the strain energy potential equation (Marlow Model) was interpolated 

in ABAQUS. The retracted canine was simplified as a rigid body for its negligible 

deformation compared to PDL. Elastic properties (Table 1) were assigned to the remaining 

regions in the model [7, 11, 12].  

Symmetric boundary conditions were prescribed to the sagittal plane; and full 

constraints were applied to the coronal and transverse sectional planes (Figure 8-2a). The 

orthodontic force (every 0.5 N from 0.5 N to 3 N, individually) was directly applied 

through the bracket on the canine surface, pointing towards the second premolar bracket 

(Figure 8-2b). The load direction kept updating step-wise but the magnitude remained 

constant to simulate an ideal orthodontic spring [13]. Other factors, such as friction and 

slipping in the arch wire, or variations in other teeth, have not been considered here for 

simplification.  

 

Figure 8-2 (a) Boundary conditions assigned to the final assembly; (b) orthodontic force 

applied onto the canine pointing towards the 2nd pre-molar 

8.2.4 Mechanical Stimulus and Remodelling Algorithm 

Physiologically, blood capillaries in the PDL region are exposed to stress and strain 

induced by orthodontic forces. A certain level of hydrostatic pressure Hσ  (Eq. (1)) could 
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collapse capillaries partially or completely, affecting periodontal interstitial fluid [14] and 

causing dysfunction of PDL [11]. Therefore, sustained exposure to compression instigates 

osteoclast recruitment, leading to bone resorption on the compression side [15]. During 

orthodontic treatment, the volume-averaged hydrostatic pressure Hσ  (Eq. (2)) in PDL 

indicates the degree of overall disturbance to blood supply [16, 17]. The previous studies 

showed that the capillary pressure varies in the root [18]. The upper range of capillary 

blood pressure, *
Lσ  = 4.7 kPa (35 mmHg) [14, 19], was adopted here as a threshold to 

trigger the remodelling activities [11].  
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Furthermore, the localized PDL displacement at the interface between the tooth and 

PDL was considered to direct tooth movement [8, 15, 20], in which the unit vector n was 

computed as Eq. (3). In this equation, u was the nodal displacement and umax indicated the 

maximum. The unit vectors on the surface nodes preserved a constant tooth profile.  

|| maxu
un =          (3) 

A power law model is proposed in Eq. (4) to determine tooth movement vector d∆  

over a time interval ∆t [1, 21, 22], in which the hydrostatic pressure above the threshold 

*
Lσ  quantifies the magnitude of tooth movement and the displacement vector determines 

the movement direction. Coefficient a and exponent b, in the formula, denote the 

remodelling parameters, determined by correlating with the clinical measurements using 

the least-square technique. 
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8.2.5 Computer Simulation 

Each loop of simulation consists of two steps. (1) The initial meshed model was 

assigned specific loading condition through ABAQUS pre-processing, followed by FE 

simulation in ABAQUS kernel, in which the mechanical stimulus is determined in post-

processing; (2) If the stimulus is above the threshold, the tooth moves by the distance 

determined in Eq. (4). If the maximum number of loops (M = 12 weeks here) is not 

reached, the geometry of the model should be updated and a re-meshing be performed to 

assure the mesh quality for the next loop. This iterative procedure is depicted as a 

flowchart in Figure 8-3. 

 

Figure 8-3 Flow chart of tooth movement algorithm consisting of two stages: (1) meshing, 

loading and finite element analysis; (2) hydrostatic stress, strain to determine tooth 

movement and update model geometry 
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The translation was measured at the tooth centroid, taken as the approximate centre 

of resistance (CR), as the physical CR kept changing as the tooth moved. The rotation was 

calculated around the central axis (CA) pointing from the apex to centre of canine cusp. 

The tipping angles were calculated from this CA relative to lingual and posterior directions 

on the transverse plane. 
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8.3 Results  

8.3.1 Tooth Movement under Light Force (0.5 N) 

As shown on the left side of Figure 8-4, clinical measurements were performed 

from the impression moulds at Weeks 0, 4, 8, and 12 for this average subject modeled 

under the light orthodontic force of 0.5 N. The right hand side images in Figure 8-4 are the 

snapshots of tooth movement simulated at the corresponding time points. Clinical and 

computational results exhibit very good agreement in translation towards the posterior 

direction. 

 

Figure 8-4 Visualisation of orthodontic tooth movement with correlation to clinical data at 

different time points (Initial, Week 4, Week 8, and Week 12) 

The translational and rotational rates of movement are plotted against time in 

Figure 8-5 (a) and (b), respectively. The crosses on the blue dashed line indicate the 

average speed over every four-week interval (denoting in T1, T2, and T3 respectively) in 

our clinical study, and the error bars present the standard deviation of these 14 patients’ 

data. The translation (normality test, p < 0.001) slowed down from 0.175 ± 0.094 
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mm/week in T1 to 0.143 ± 0.072 mm/week in T2, and remains almost constant in T3 

(0.148 ± 0.083 mm/week). The rotational speeds also slowed down from 0.323 ± 0.543 

º/week (normality test, p < 0.05) in T1, to 0.073 ± 0.255 º/week and 0.063 ± 0.178 º/week 

in T2 and T3 (normality test, p < 0.001), respectively. 

 

Figure 8-5 Comparison between clinical (blue dash line) and computational (red line) results 

in the resultant translational (a) and rotational (b) movement; average hydrostatic pressure 

change during 12 weeks (c); hydrostatic pressure contour of canine PDL and resultant nodal 

displacement of canine surface in Week 0, 4, 8, and 12 (d), all under the light force of 50 g 

The simulation showed the similar trend to the clinical observation, under one-

sample t test (single-tailed). The dominant movement occurred in the posterior translation 

with 12-week average at 0.147 ± 0.008 mm/week (p < 0.01 for Week 4, p < 0.005 for 

Week 8 &12), with the small transverse movement towards the buccal side (-0.013 ± 0.009 

mm/week). Neither intrusion nor extrusion is significant (0.001 ± 0.015 mm/week). On the 

a. b.

c. d.
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other hand, the simulated canine underwent more rotation and tipping than clinical 

scenarios. The rotation along the central axis turned the canine bracket further facing the 

second premolar (from buccal towards posterior, 0.33 ± 0.07 º/week), and the tipping rate 

towards the posterior direction (the second premolar) was 0.52 ± 0.04 º/week, which was 

more substantial than the buccal direction (-0.20 ± 0.10 º/week). While the simulated 

translation agreed well with the averages from our clinical measurements, the simulated 

rotation rates were at the upper range of those clinically measured (p < 0.01 for Week 4, p 

< 0.05 for Weeks 8 and 12). 

The average hydrostatic pressure was plotted in Figure 8-5 (c), and it decreased 

slightly (8.24 ± 0.41 kPa) under a constant orthodontic force over the time. While the 

canine PDL profile changed over Weeks 1, 4, 8, and 12 as exhibited in Figure 8-5 (c) (the 

upper row), the hydrostatic pressure did not decay during tooth movement. Figure 8-5 (c) 

(the lower row) also shows the normalized displacement profile on the canine surface at 

eight representative points, where the arrow length and direction indicate the magnitude 

and direction of movement. During the early stage of OTM, displacements on the buccal 

surface were larger than that on the lingual surface, leading to rotation, but this difference 

reduced over time. Meanwhile, larger displacements in the crown than those around the 

root lead to tipping, which accumulated through the 12 weeks, as reflected in the change of 

PDL orientation (more tilting by week 12). 

8.3.2 Tooth Movement under Heavy Forces (1-3 N) 

A range of heavier orthodontic forces was also applied to the same model to 

examine the effects of force magnitudes on OTM. In Figure 8-6 (a) and (b), the absolute 

distances to the original canine location and the average speeds are plotted. Increasing 

forces raised the OTM rates, but our model indicated that the rise was gradually 

compromised. At 0.5 N, the average speed was 0.148 mm/week, leading to the final 
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movement of 1.77 mm over the 12 weeks. A doubled load (1 N) boosts the speed to 0.227 

mm/week (1.53 times faster) with a final distance of 2.72 mm. Whereas, 3 N force (6 times) 

only increased the moving rate to 0.324 mm/week (2.19 times), yielding final movement 

3.88 mm. Comparing the heavier forces, 2.5 and 3 N, there was very marginal difference 

(0.15 mm) by the end of 12 weeks.  

 

Figure 8-6 (a) Total displacements of the canine under various orthodontic loadings (50-300 

gram) in 12 weeks; (b) available clinical data of orthodontic tooth movement speed against 

different loadings 

a. b.
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8.4 Discussion 

This subject also received a 3 N orthodontic force on the contralateral side, as part 

of the clinical experiment, which allows us to focus on biomechanics by excluding gene, 

biology and life style variance from patient to patient. The outcome is graphed in Figure 8-

5(d) together with the simulated prediction for a validation purpose, which showed a good 

agreement. The difference during the first 4 weeks was suspected to be caused by dental 

arch wire slipping, leading to insufficient load transfer at heavy force scenarios [23]. 

Early studies suggested anisotropic nature of bone [24, 25], thus a sensitivity 

analysis was performed to quantify the effects on approximation from the isotropy to 

anisotropy (scaled to the same average modulus) [26]. Figure 8-5(c) compared the volume-

averaged hydrostatic pressures from the orthotropic model with those from the isotropic 

model, indicating an average difference of 5.7 %. Upon more specific anisotropic data 

available, this gap can be minimized by tweaking the remodelling parameters.  

To make the remodelling parameters more applicable, six other human studies with 

similar conditions were considered for general orthodontic treatment. 42 data points were 

taken collectively from these reports as plotted in Figure 8-6 (b). The remodelling 

parameters were derived by the least square fitting (black dashed) for Eq. (4), i.e. 

coefficient a = 1.45 and exponent b= 0.249, by which the simulated tooth movement rates 

were plotted with a blue line in Figure 8-6 (b). Note that while the fitting curve provided a 

relatively weak match to these scattered clinical data (R2 = 0.13), as the individual 

variances and separate studies could have affected the outcomes dramatically; the general 

trend can be still observed, and the correlation was stronger than suggested in the literature 

(R2 = 0.06) [27].  
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In the literature, a wide range of optimal forces have been documented. Lee [28] 

suggested a range from 1.5 to 2.6 N (150 - 260 grams), leading to the maximum rate of 

0.61 mm/week. Whereas 3.54 to 3.75 N was found in another clinic report, with a resultant 

movement rate from 0.86 to 1.37 mm/week [29]. Similar to our simulation, several other 

studies showed less significant effect with increasing orthodontic forces [22, 30]. Non-

linear regression analysis by Ren et al. [27] even showed a decreased movement rate at 

extremely large forces. Within a conservative force range considered in this study (≤ 3 N), 

the OTM rate showed a similar trend to the abovementioned clinical studies and the early 

mathematical model [1]. Although the force range adopted in this study has not appeared 

to make movement rates achieve a plateau, the movement rates delivered by the heavier 

forces (e.g. 2.5 and 3 N) were fairly close to each other. Nevertheless, the highest force 

exhibited the fastest tooth movement rate and peaked at 0.340 mm/week.  

While this study addressed the critical biomechanical determinants and 

appropriately modeled OTM process, there are limitations. First, the model provides a 

phenomenological link of orthodontic force to OTM on an anatomical level. Biological 

events at the molecular level and corresponding pathways have not been considered [31, 

32]. Biochemical activities and genomic regulation [31, 33, 34] on the cellular level, 

including bone remodelling induced by cellular activities during OTM [35, 36], were 

important but beyond the scope of this study. Second, applied forces beyond the range in 

this study may induce more complications with respect to cell mechanics and physiology 

[3, 37-41], requiring further investigation for a more in-depth understanding so as to 

modify the procedure established. Third, while the average subject from a group of 14 

patients was modeled to establish a conceptual framework accounting for soft-tissue driven 

remodelling with a considerable statistical significance, it has not particularly 

differentiated anatomical and physiological variances between individual patients. The 
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clinical studies, including ours, have however shown notable differences between subjects 

[42, 43], due to various factors [44-47]. Thus it would be more indicative and statistically 

meaningful to create all individual patients’ models for remodelling analyses. With further 

understanding of biomechanics from the in-vivo studies [48, 49], the proposed OTM 

algorithm can be refined and potentially used for patient-specific analysis and development 

of a surgical treatment plan. 
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8.5 Conclusions 

In this study, a procedure of soft-tissue driven bone remodelling has been 

established for simulating orthodontic tooth movement (OTM) in a time-dependent manner. 

A novel 3D finite element (FE) based surface remodelling algorithm is proposed through a 

power law formulation, in which the hydrostatic stress within periodontal ligament (PDL) 

triggers tooth movement. A specific in vivo study was conducted for deriving the 

remodelling parameters, enabling the model to have a statistically meaningful correlation. 

Increasing orthodontic force was found to raise remodelling rate but its effect was 

compromised at heavier forces. The proposed soft tissue driven surface remodelling 

algorithm provides a novel means for understanding the biomechanical responses 

associated with OTM. It should be noted that the 3D FE model adopted herein was created 

directly from human CBCT data in-vivo, and the remodelling parameters were derived 

from a combined source of the clinical maxillary data reported in the literature and our 

own specific human study. Within the limitations, it is anticipated that this approach has 

relevant clinical implications for OTM prediction and surgical planning, potentially 

optimizing the procedure of orthodontic force application, while minimizing side effects 

(e.g. orthodontic root resorption induced by heavy force). 
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Chapter 9: Multiscale design of surface morphological gradient 

for osseointegration 

 

Rapid and stable osseointegration has become of major concern for the design of 

implantable prostheses, which in turn has stimulated continuous development of new 

implantable materials and structures. This chapter promotes a graded configuration of a 

bead/particle coated porous surface for implants by exploring how its micromechanical 

features determine osseointegration through a multiscale modelling technique. A typical 

dental implantation setting is exemplified for investigation, using the remodelling 

parameters determined from a systematic review of bone-implant-contact (BIC) ratio 

published in the literature. The global responses of a macroscale model are obtained 

through 48 month remodelling simulation, which form the basis for the 27 graded 

microscopic models created with different particle diameters of 30, 50 and 70 µm. The 

osseointegration responses are evaluated in terms of BIC ratio and averaged 10% peak 

Tresca shear stress (PTS). The multiobjective optimisation was performed to 

simultaneously maximize BIC ratio and minimize PTS for achieving the best possible 

overall outcome. Due to strong competition between these two design objectives, a Pareto 

front is generated. In order to make a proper trade-off, the minimum distance (optimal-to-

Utopia) selection criterion is considered. This study provides a novel surface configuration 

and design methodology for an individual patient that allows optimizing the topographical 

gradient for a desirable patient-specific biomechanical environment to promote 

osseointegration. 
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9.1 Introduction  

Over the last two decades, titanium endosseous implants have become well 

accepted as effective management devices for restoring oral functions in the orofacial 

structures [1-3]. Titanium and its alloys are of proven mechanical properties and 

biocompatibility favoured by osseointegration that is the key for implants to anchor into 

the host bone [2-4]. Nevertheless, there are still some biomechanical drawbacks for 

titanium implants, such as limited or delayed bone growth into or around the implant 

surface [2, 3, 5]. In order to enhance osseointegration, various physical and chemical 

surface treatment technologies have been developed to achieve desirable surface 

morphologies [3, 6]. A porous implant surface provides considerably more space to 

promote cell attachment and tissue ingrowth, thereby facilitating a higher level of bone-

implant interaction for cell migration and osteoblast adhesion to the implant surfaces [3, 5, 

7]. As a result, a more even shear stress can be transferred across the interface, leading to a 

more uniform stimulation of the surrounding tissues for the establishment of 

osseointegration and biomechanical binding. The performance of porous surface relies on a 

number of topographical features, including porosity, pore/particle size, pore orientation, 

etc. 

Various in vivo empirical studies have been carried out to determine the effects of 

these factors [2, 3, 7-10]. In general, increasing porosity to a certain extent can provide a 

greater space to enable more efficient nutrient delivery and metabolite removal for cellular 

activities, thereby better promoting bone mineralisation and stabilisation over a shorter 

period [2, 6, 11-13]. Shen and Brinson developed computational models to determine the 

effects of porosity and particle sizes of porous titanium [2, 6, 13] and their subsequent 

study modelled the bone’s responses to surface morphology [14]. Rungsiyakull et al. found 

the combinations of particle sizes and porosities at 100 µm - 65% and 38 µm - 82.5% 
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could be favoured for cortical and cancellous bone remodelling under uniform surface 

morphology settings, respectively [15].  

Nevertheless, these existing studies have considered nearly uniform morphology 

across the porous thickness, in which there is no systematic variation in pore or particle 

size and porosity except for microscopic randomness. Beside this, there is a new 

opportunity to improve bone osseointegration and remodelling by adopting graded surface 

morphology that has been proposed as a potential upgrade to existing uniform coated 

implants [3]. Over the past decade, material scientists and engineers have been attempting 

to develop different morphological gradients to lower the mismatch of mechanical 

properties, especially the elastic modulus, and thereby improve osseointegration between 

bone and implant [16-20]. A few empirical studies have been carried out to evaluate 

biocompatibilities and advantages of graded surfaces in promoting bone ingrowth [5, 18]. 

Computational models of axially graded hydroxyapatite-titanium solid implants were 

proposed by Lin et al for a macroscopic level of material design [5, 19-21], and some 

rather indicative results were generated to achieve an optimal gradient for osseointegration 

[18]. However, all these studies focused on macroscopic responses and considered only the 

axial gradients with solid composites. Very few reports have been available to model a 

graded porous surface morphology in the radial direction through examination of the 

microscopic responses and none has genuinely searched for an optimal radial gradient to 

date.  

This study aims to provide a multiscale study for bone remodelling responses and 

provide an approach to examining the effects of different combinations of particles/beads 

for a graded surface morphology, with sizes varying from 30 to 70 µm. As one of the most 

critical indicators for implant success, osseointegration is measured in terms of ongoing 

Bone-Implant Contact (BIC) ratio and an averaged level of top 10% Tresca shear stress 
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(PTS) in the peri-implant regions. Based on the remodelling results obtained, the response 

surface method is adopted to formulate the osseointegration outcomes in terms of gradient 

parameters, thereby determining an optimal gradient configuration of the particle coating. 
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9.2 Materials and Methods 

9.2.1 Multiscale Finite Element (FE) Modelling  

With rapid development of fabrication technologies for micro- and/or 

nanostructured materials, traditional monoscale finite element analysis (FEA) became 

inadequate to capture detailed interaction between biomaterials and tissues effectively. In 

order to tackle this problem, multiscale analysis techniques have been developed by 

bridging macroscale (global) homogenized materials to microscale (local) heterogeneous 

structures, enabling more insightful analysis [16, 18, 22]. Multiscale modelling has been 

used to simulate how bone is related to internal structures and implant compositions [23, 

24], how trabecular bone remodels for correlating to empirical data [25], and how surface 

morphology affects local cancellous and cortical osseointegration [26].  

This paper concerns a non-threaded implant to better restrict our attention on the 

specific effect of surface morphology gradient rather than other geometric features on 

osseointegration. To avoid the structural complexity of the 3D multiscale model and 

associative high computational costs for remodelling analyses [3], a 2D model capable of 

capturing the major biomechanical features in the occlusal loading scenario of mandible 

section is adopted in this study [27]. As a preliminary study on topographical gradients, the 

2D model facilitates capturing many randomly-located particles/beads and pores in a 

reasonably dense mesh, requiring relatively lower computational cost for iterative 

remodelling simulations compared to the 3D version of multiscale models. Other 

computational pros and cons between 2D and 3D models can be consulted from literature 

[3].  

The implant considered herein is coated through sintering dense beads and has a 5 

degree taper angle [27] (Figure 9-1). This global model comprised an abutment and a 

ceramic crown as a typical dental implantation setting. A 202.23 N load was applied 
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vertically to the crown cusp with 2 mm horizontal offset from the centre to the buccal side 

[6]. Note that the details of microscopic morphology were not considered in the global 

model. 

Microscale models were created by selecting a representative region of 1 mm × 1 

mm in the cortical region, consisting of bone, implant, and a 300 µm transitional region 

between them, which presents a mixture of pores due to the bead morphology and 

connective tissues growing from host bone [3, 16]. To explore the effect of the coating 

gradient on osseointegration, this transitional area was separated into three layers with 

different combinations of particle sizes (specifically, 30, 50, and 70 µm in diameter [9, 28]) 

to form a graded surface morphology. Each layer has 3 candidate particle sizes, leading to 

3×3×3=27 different surface morphologies, including 24 graded and 3 uniform 

configurations. Note that current fabrication technologies have been capable of providing 

various porosities across a range from 30% to 70%, with which these implants can still 

have adequate mechanical properties for load-bearing and other biomechanical 

requirements [3, 29]. Thereby, the volume fraction (counted as area fraction in 2D) of 

implant beads was kept constant at 30% (highest available porosity) to focus more on the 

effects due to particle sizes and morphological gradient. Thus, 27 microscopic sample 

models were created to represent all possible gradients determined by the given design 

parameters. Linear triangular element was chosen to mesh macroscale and microscale 

models after a convergence test based on total strain energy [1].  

9.2.2 Material Properties 

In the macroscale model, the implant core adopted the properties of commercial 

titanium alloy, Ti6A14V [30], and the abutment and crown are zirconia [31]. The initial 

properties of the cortical and cancellous bones follow the empirical test done by Carr and 

O’Brien [32]. The first major assumption regarding materials properties was that the 
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Poisson’s ratio of the same type of tissue does not vary with Young’s modulus to simplify 

the analysis. Similarly in the micro models, the implant region and the cortical bone region 

adopt the same properties as those in the macro models, and the second assumption is that 

the transitional region is fully filled by a blood clot within 30 minutes of implantation [31, 

33] and forms its initial status. All the material properties used in this simulation are 

summarized in Table 1, and were assumed to be linearly elastic and isotropic to simplify 

the remodelling analysis [34]. The minimum bone Young’s modulus was set as 870 MPa 

and minimum density as 0.85 g/cm3 to allow potential remodelling to low density tissues. 

Following the literature [3], the average density of cortical bone is allowed to approach its 

upper limit of 2.0 g/cm3 [32]. 

Table 9-1 Initial Properties of Multiscale Models for Remodelling Simulation 

Macroscale Model  

  Implant Core Abutment/Crown Cortical 
Bone 

Cancellous 
Bone  

Young's 
Modulus 
(MPa) 

 110,000[35]  201,000[31, 32]  1,970[32]  14.8 [33] 
 

Poisson 
Ratio  0.35[31]  0.28[31]  0.33[32]  0.33 [33]  

       

Microscale Model 

  

Native 
Bone 
(Cortical) 

Implant 

Hosting 
Tissue 
(Blood 
Clots) 

Mature 
Bone 

Immature 
Bone 

Soft 
Tissues 

Young's 
Modulus 
(MPa) 

 1,970[31] 110,000[33] 0.001[31] 6000[34] 1000[36] 1[36] 

Poisson 
Ratio  0.33[36]  0.3[33, 37]  0.33[31]  0.33[33, 

34] 
 0.33[33, 

37] 
 0.167[33, 

37] 
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9.2.3 Multiscale Simulation 

The empirical Wolff’s rule forms the major governing equations for modelling the 

turnovers of cortical, cancellous bone, and connective tissues [3, 38]. In this simulation, the 

time increment was set to be a month, and the mechanical stimuli is the difference between 

an instant strain energy density (SED) per unit mass ( ρ2)( σε/U i = ) and either an upper or 

lower reference SED per unit mass (Ul, Uu), which are 10% offset from their mean [3, 38-

40]. The rates of bone apposition and resorption were presented by Ca and Cr, respectively 

[32, 38, 39]. Mechanical overload is also taken into account in this study, which can induce 

bone loss by presenting osteolysis if it exceeds the physiological limit [32, 38]. A quadratic 

term is added to the remodelling equation for such an adjusted Wolff’s rule (see Figure 9-1) 

[7, 41-43]. 
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Figure 9-1 Remodelling Algorithm with the Adjusted Wolff’s Law as the Major Governing 

Equation. 

The upper and lower reference SED per unit mass were set at 0.000021 and 

0.000033 J·cm3/g, respectively [38, 44-46]. The remodelling rate coefficients, Ca, Co, and 

Cr, were determined by matching the simulation results to the in-vivo data in terms of 

bone-implant-contact (BIC) ratios from the literature. The new bone density determined by 

the Wolff’s rule updated Young’s modulus of bony tissues [3]. In this study, the connective 

tissue will follow the cancellous remodelling equation because its Young’s modulus is 

much lower than the threshold of cortical bone (6 GPa). Displacement fields generated in 

the macroscale model remodelling are mapped to the microscale models as the inputs. Both 

macroscale and microscale remodelling procedures were implemented in FORTRAN code 

through the ABAQUS user subroutine.  

9.2.4 Design Optimisation 

First, the bone-implant-contact (BIC) ratio is considered one of the primary 

measures of osseointegration, which measures the degree to which bone ingrows into and 

becomes mature within the pore space of the transitional region [3]. The BIC ratio can be 

determined by the proportion of elemental areas with Young’s modulus higher than the 

threshold of mature bone (MB) to the total element area (AE) of connecting tissues as 

follows. 

%100%100
AreasElementalAll
AreaBoneMatureBIC%

1

1 ×=×==
∑
∑

=

=
AE
i i

MB
i i

BIC A
A

f
  (1)

 

The other concern lies in whether the implant-bone interface can withstand 

mechanical loading without debonding failure. Indeed, the pull-out test has been an 

important method to test the extent of osseointegration in terms of shear resistance [36, 47]. 

For this reason, Tresca stress is adopted as another key measure of implant topography, 
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assessing how well the surface morphological gradient avoids the shear stress 

concentration. Note that the maximum Tresca stress in a single element may not be 

appropriate to determine the shear failure for an entire region, and to make it more 

statistically meaningful, the elemental Tresca stresses averaged out over 10% of the total 

volume with the highest stress concentration adopted. Therefore the overall risk of shear 

failure is measured as 

∑
∑∑
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= n
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where n is the number of elements required to sum 10% of the total volume.  

To seek an optimal design, the particle sizes in the three layers, α1, α2, and α3, will 

be varied to determine if an optimal osseointegration outcome can be attained. To do so we 

introduce a multiobjective optimisation technique to maximize BIC and minimize PTS by 

using linearly weighted average (LWA) and multiple objective particle swarm optimisation 

(MOPSO) approaches, respectively. 

The LWA method [29, 48-50] formulates a cost function comprised of the 

individual objectives in terms of the selected weighting factors ω1 and ω2 as, 

BIC PTS
LWA 1 2 3 1 2

BIC PTS

1 2 1 2

1 2 3

f fmin F ( , , )
f f

s.t. 1, ( 0, 0)
30 m , , 70 m

α α α ω ω

ω ω ω ω
m α α α m

°

°

 = +


 + = ≥ ≥


≤ ≤

    (3) 

To eliminate the dimensional difference in combining these two individual 

objective functions, a normalisation procedure was applied by using minimum ƒ𝐵𝐵𝐵°   and 

maximum ƒ𝑇𝑇𝑇° . 
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The particle swarm optimisation (PSO) [3, 22, 51] method utilises the concept of 

crowding distance, which is of specific benefit on the basis of global best selection of 

dominated solutions from an external reference archive. This method allows a fast 

convergence, and has been successfully applied in a broad range of problems [52].  

T1
MOPSO 1 2 3 BIC PTS

1 2 3

min F ( , , ) f , f

s.t. 30 m , , 70 m

α α α

m α α α m

− =   

 ≤ ≤

     (4) 

9.2.5 Response Surface Method (RSM) 

It is non-trivial to establish the objective functions mentioned above. Surrogate 

modelling techniques such as RSM is considered an effective, and sometimes unique, 

alternative [3, 51-53]. Since the knowledge of the objective functions is rather limited; we 

attempted several different polynomial models to capture sophisticated mutual 

consequences from multiple variables [3, 22, 51]. As such, the most suitable response 

surface (RS) function was finally determined.   
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9.3 Results  

In this study, bone remodelling response was simulated by using different pre-

selected surface morphological gradients and their consequences over 48 months of 

healing, during which the host bone can ingrow into the void space and the corresponding 

osseointegration performance is measured by the BIC ratios and averaged peak Tresca 

stress (10% volume), respectively. After a certain period of initial healing, during which 

the bone could gradually achieve a dynamic equilibrium between apposition and resorption, 

the design parameters are considered less significant. The results in Month 6 and Month 48 

were chosen as two critical indicators to measure short-term and long-term performance, 

respectively. 

9.3.1 Bone-Implant-Contact (BIC) Ratio 

The porosities of each layer in the graded surfaces were kept constant at 70% in 

this study. In other words, all the models in different layers had the same void space to 

allow tissue ingrowth. The BIC ratios are presented in units of %. All gradient 

configurations are presented in a form of (α1-α2-α3), representing the particle sizes in 

different layers, in which α1 is the layer closest to the implant core and α3 is next to the 

host bone. 
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Figure 9-2  Highest/Lowest Bone-Implant Contact Ratios (a) and Average Peak Tresca 

Stresses in 27 Samples (b) Compared to Three Uniform Morphologies Over 48 Month Period. 

Figure 9-2 (a) compares the two gradients having the highest and the lowest BIC 

ratios to the three uniform surface morphologies consisting of 30, 50 and 70 µm particles, 

and obviously they clearly demonstrate the effect of gradients on osseointegration rate. 

Gradient 50-30-30 shows superior bone mass gain over the entire simulation period than 

others, and it has 6.41% more bone mass than configuration 70-70-70 by Month 48, which 

is the best performer of all three uniform options. However, it is noted that not all graded 

surface morphologies increase the extent of osseointegration. Gradient 70-30-50 shows a 

reverse effect on osseous tissue ingrowth, although its initial gain over the first 8 months is 

higher than uniform configuration 50-50-50, which has the worst outcome of the uniform 

morphologies.  

As shown in Figure 9-2 (a), all five surface morphologies presented have similar 

rates of mature bone deposition during the first three months of acute healing. However, 

there has been a significant difference in BIC outcomes after Month 6. Gradient 50-30-30 

maintained a steep initial growth rate till the end of the first year and then commenced to 

plateau more quickly. In comparison the growth in Gradient 70-30-50, has a delayed 

commencement and a decrease at an earlier time point, but its growth is more gradual and 

smoother than Gradient 50-30-30, as it lasts for more than 3 years till the mature bone 

apposition comes into equilibrium. At the end of 48 months, the best and worst gradients 

ended up with around 20% difference in the BIC ratios.  

9.3.2 Averaged Peak Tresca Stress (PTS) 

The averaged PTS (10% of the total volume) is adopted as the other important 

indicator to measure the success of implantation in this study. Figure 9-2 (b) plots the 

overall highest and lowest Tresca stress evolutions of all the 27 gradients compared to 
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those induced by the three uniform morphologies. It is evident that Gradient 70-30-30 

delivers the lowest stress concentration over 48 months. Note that the highest shear failure 

possibility appears to be in Gradient 50-30-30, and their similar gradients lead to a small 

difference of only 0.02 MPa at Month 48.  

Considering the overall trend, the significant drops of PTS in the first 6 months 

indicate the rapid growth of osseous tissues, and the reductions are 86.9% for Gradient 70-

30-30 and 58.5% for Gradient 50-30-30. Subsequently, these two gradients gradually 

converge by Month 48. A similar pattern occurs in the uniform surface morphologies 

which fall between the best and worst, having similar average shear stress at the 

equilibrium status (< 0.02 MPa at Month 48). The final difference between Gradients 70-

30-30 and 50-30-30 at Month 48 is 0.17 MPa, which is approximately 10% of the initial 

stress concentration.  

In contrast to the BIC outcomes, all gradients show a slower and more gradual 

convergence for PTS. From Figure 9-2 (b), the PTS rises after the sharp drops and then 

towards an equilibrium with time, instead of directly approaching steady state as in BIC 

(Figure 9-2 (a)). Based on the monthly data obtained, however, it is not possible to draw a 

direct relationship between BIC and PTS. 
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9.4 Discussion 

9.4.1 Bone Remodelling Responses 

Previous in vivo studies have been carried out to explore bone-implant contact 

problems, and the associated empirical data provides an approximate guide for 

determination of bone remodelling ratio, by interpreting the solid bone deposition through 

the object lifespan. Kim et al. performed an in vivo study on 30 implants in dog mandibles 

with three groups of materials with different surface finish [13]. In the roughest surface 

group, BIC reached 81.2% over 10 weeks. Since the test subjects were dogs, ten weeks is 

roughly equivalent to a year and an half of human life in their study. Similarly, Deporter et 

al investigated a porous-coated dental implant and showed 50% and 65% BIC in the buccal 

and lingual sides of dog mandible [17] (at 2.5 year equivalent human life). Beside dogs, 

rabbits are also popular animal models. Suzuki et al conducted a time-dependent study of 

implants into rabbit femurs separating them into smooth and rough surface groups [13]. 

BIC in the rough surface group reached 37%, 62%, and 78% in 6, 16, and 42 weeks, 

corresponding to human life of approximately 1, 2.5, and 7 years, respectively. Abron et al. 

also performed a study on rat tibiae and indicated an averaged BIC of 54% in 3 weeks [11], 

corresponding to 1.5 years of human life. Morra et al.’s in vivo study on rabbits’ femoral 

diaphysis presented an averaged BIC of 62.75% in 12 weeks (2 year human life) [48]. BIC 

has also been considered in computational remodelling, for example, Lian et al. tested four 

different initial BICs (25, 50, 75 and 100%) without surface morphology [2]. After 

equilibrium, the final outcomes all lay in a range from 58 to 60% BIC.  

A summary graph plot of BIC ratios from the literature against time (Figure 9-3) 

shows a rough progression trend for human osseointegration, in which fits a logarithmic 

function. It is noted that with the same set of correlated bone remodelling parameters, the 

comparison between individual graded and uniform surface morphologies becomes valid 
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and meaningful. The BIC outcomes for Gradients 50-30-30 and 70-30-50 show reasonable 

consistency with literature data; the former (best) exhibits improved performance above 

the fitting line and the latter (worst) fall below it for most of the time.  

 

Figure 9-3 Interpreted Bone-Implant Contact Ratios from Empirical Studies for a Trend 

Line Compared to the Best (50-30-30) and the Worst (70-30-50) Remodelling Simulation 

Outcomes in Two Surface Gradients. 

The bone conditions of individual patients may vary considerably, and the 

corresponding remodelling parameters will certainly affect the simulation outcomes. 

However, the main focus of this paper resides in establishing a new computational 

procedure and revealing a fact that different surface gradients lead to different 

osseointegration outcomes under the same external loading condition. Using the design 

protocol established here, a study can be performed to create a patient-specific surface 

gradient, meeting individual needs. Meanwhile, this approach can be extended to a 3D 

model by including a peripheral gradient for an implant with more sophisticated coating 

variables. 

9.4.2 Response Surface Functions 

The sample data provides the essential information to extrapolate design analysis 

and optimisation. Based on the above remodelling results, the assessment criteria, BIC and 



Chapter 9 - Multiscale Design of Implant Surface Morphological Gradient Page | 235 

PTS, are related to the design variables of coating parameters in each layer as (α1, α2, α3,). 

In order to evaluate the fitness of response surface (RS) models, 3 different orders (linear, 

quadratic, and cubic) of polynomial functions were attempted by the least-square method. 

The R2 and root mean square error (RMSE) between simulation and RS functions (Max & 

Min) are used to assess which polynomial is most accurate. As summarized in Table 2, the 

cubic polynomial function provides the best fits to both BIC and PTS for the two selected 

time points indicative of short and long term osseointegration (Months 6 and 48, 

respectively).  

Table 9-2 Response Surface Models (Polynomial) for Month 6 and 48 
 

  Time RS Model R-sqr Max RSM* 
Max Min RSM* 

Min 
RMSE*

* 

BIC 
(%) 

Month 
6 

Linear 0.8828 

60.59 

45.79 

21.51 

27.33 8.69 

Quadratic 0.9035 50.54 23.02 6.21 

Cubic 0.9536 59.15 21.83 4.30 

 
    

     
Month 

48 

Linear 0.9950 

77.25 

71.92 

58.36 

63.23 4.88 

Quadratic 0.9968 73.69 57.90 3.88 

Cubic 0.9983 76.95 56.66 2.88 

PTS    
(105 Pa) 

Month 
6 

Linear 0.9417 

9.14 

6.50 

2.38 

4.09 1.35 

Quadratic 0.9572 8.05 3.15 1.16 

Cubic 0.9647 8.89 2.84 1.06 

 
    

     
Month 

48 

Linear 0.9810 

4.96 

4.03 

2.85 

3.64 0.54 

Quadratic 0.9888 4.55 3.21 0.42 

Cubic 0.9942 4.83 3.04 0.31 
RSM* Response Surface Method Result 

    RMSE** Root Mean Square Error 

     To clearly show the response surfaces, α3 is set to 50 um representing an 

intermediate size of particles as an example for RSM. Figure 9-4(a)-(d) plots the BIC and 

PTS for Months 6 and 48, respectively. From the BIC perspective, the combinations of 
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medium particles in the inner layer (α1) with large sizes in the mid layer (α2) shows their 

advantages over the other configuration in both short term (Month 6 as in Figure 9-4(a)) 

and long term (Month 48 as in Figure 9-4(b)). Also the trend is affected by α2 (mid layer) 

more significantly than α1 (inner layer), and it declines rapidly in the reverse direction of 

α2 axis, with a short term plateau for the medium size range. The benefit of using a 

medium-large combination becomes amplified in BIC as healing time progresses. Figure 9-

4(a) and (b) also reflects that Gradient 70-30-50 (right bottom corner in the plots) is the 

worst performer in the design range over the simulation time considered.  

 

Figure 9-4 Response Surfaces Showing the Effects of Gradient Input α1 and α2 when α3 is Set 

to 50 µm on BIC (a, b) and Averaged Peak Tresca Stress (c, d) at Month 6 and 48, 

respectively. 

On the other hand, PTS shows more distinct patterns than BIC. From Figure 9-4(c), 

α2 plays a more important role in the short term osseointegration than α1; however, this is 

reversed in the long term as seen in Figure 9-4(d). The minimum PTS appears in the case 
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when small particles in the inner layer are combined with the large ones in the mid layer in 

Month 6, while it occurs at large-medium combinations at month 48. Similarly to BIC, the 

lowest PTS occurs around Gradient 70-30-50 which is close to Gradient 70-30-30 having 

the least failure chance.  

Based on the RS functions obtained, we can determine the gradients for either 

maximum BIC or minimum PTS outcomes at both Month 6 and 48, respectively. It is 

noted that the gradient 62-70-50 has the highest BIC ratio of 61.4% by Month 6, at the 

same time with a high PTS of 0.54 MPa. In contrast, Gradient 70-30-70 has the lowest PTS 

of 0.29 MPa accompanied by least bone mass gain, leading to a BIC ratio of 29.8%. In 

Month 48, Gradient 30-30-32 leads to the maximum BIC ratio of 76.9% (0.34 MPa PTS), 

while Gradient 70-45-41 promotes the least PTS of 0.28 MPa (40.7% BIC). It appears that 

these two design criteria cannot be achieved concurrently. 

9.4.3 Multiobjective Optimisation 

Here we attempt to adopt multiobjective optimisation for maximizing BIC and 

minimizing PTS by using both linearly weighted average (LWA) and direct multiple 

objective particle swarm optimisation (MOPSO) methods. 

In the LWA method, one of the weighting factors is raised by a small increment of 

0.0005 in order to obtain the Pareto frontier, and resulting in 80, 000 Pareto points. From 

these 80 of them at uniform intervals are selected to plot Pareto fronts in Figure 9-5 (a) and 

(b) for 6 and 48 Months, respectively. The Pareto set is supposed to span the entire optimal 

solution space. It is observed, however, that highly concentrated regions appear for both 

Month 6 and Month 48 solutions, with a few isolated aggregates.  

To tackle the non-uniform distribution problem that occurred in the LWA solutions, 

the multiobjective Particle Swarm Optimisation (MOPSO) method is adopted in line with 
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its special feature of generating a well-distributed Pareto solution [54]. Some 2, 000 Pareto 

points are generated through 1, 000 iterations, and 80 of them at uniform intervals are 

plotted in the same graph as that from the LWA method. Obviously, MOPSO is more 

effective than LWA in terms of the smoothness of the Pareto frontier and extent of 

uniformity in this design problem. As expected, MOPSO is much more widely distributed 

and all the LWA results are well located in the MOPSO Pareto frontier, which also reflects 

the effectiveness of these two approaches, although they differ as to integrity of outcomes.  

 

Figure 9-5 Pareto Set of Optimal Surface Gradient Parameters Based on Two Multiobjective 

Optimisation Schemes at Month 6 and 48. Any Point on the Pareto Frontiers Represents a 

Feasible Choice, and the MOPSO Method is More Effective than the LWA Method to Depict 

the Pareto Frontiers. 

From the Pareto frontier generated by MOPSO, the maximum BIC ratio and the 

minimum PTS fall into the same outcomes as determined in Section 9.4.2. It is noted that 

to further improve either BIC or PTS one must sacrifice the corresponding counterpart 

along the Pareto frontier. For example, more acute and faster bone growth during early 

stages will be accompanied by higher peak stresses, and vice versa.  

There is a Utopia point where the maximum BIC ratio and the minimum PTS occur 

at the same time; however this point was unable to be achieved in most design cases 

presented [3]. In theory, any point in the Pareto frontier can be a solution to a specific 
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morphological design providing different BIC ratio and PTS, and a full range of optima 

provides multiple choices for various balances between BIC ratio and PTS for clinical 

decision making. Based on the given selection criteria, a decision can be made for the most 

“satisfactory” solution, known as a knee point, in the Pareto set [3]. In this study, the 

minimum distance selection method (MDSM) is adopted for an optimal selection, as stated 

in Eq. (5). 
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In this equation, fBIC and fPTS are the objective functions, while Lf  and Uf  are 

their corresponding upper and lower thresholds in the design space concerned. An optimal 

gradient can thus be selected by minimising the distance between the point itself and the 

Utopia point. Within the limitations of this study, it is found that the coating with a 

moderate gradient near the largest particle size (70-70-62) represents an optimal solution to 

initial healing up to Month 6, giving a BIC outcome of 41.5% and PTS of 0.40 MPa. But 

for the long term healing, a graded coating with a combination of particle size of 37-70-68 

is preferred, leading to a BIC ratio of 54.3% and PTS of 0.31 MPa. Note that with other 

selection criteria, such as “the maximum BIC ratio within a tolerated PTS range”, it can 

lead to a different conclusion on the optimal choice. 

9.4.4 Patient-Specific Design and Future Applications 

Osseointegration process can be affected by both implant surface morphology and 

physiological conditions. For the latter, age, sex, race, genetics and other medical factors 

all contribute and have a bearing on bone responses to the implantation, leading to 

different osseointegration outcomes. This paper considers a particular set of remodelling 

parameters derived from literature to demonstrate how the surface topographical gradient 
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of an implant can be optimized for the same given mechanical and biological conditions. 

With sufficient patient data (e.g. from interval CT/MRI scans), this approach can be 

applied to individual subjects with their own remodelling parameters, aiming for a patient-

specific design. To each patient, the predicted Pareto optima consists of a series of 

solutions at different balancing points between BIC ratio and PTS, and a clinic decision 

can be made based upon individual needs of a patient and clinical expectations. 

Although this study considers a loaded dental implant as an example, the graded 

topographical configuration and corresponding design procedure can be extended to other 

applications of prosthetic fixation, such as orthopaedic osseointegration. A recent study has 

examined the macroscopic remodelling outcomes in terms of bone mass density and failure 

possibility of different prosthetic designs in hip replacements [55]. By applying the design 

procedure for graded topography proposed in this paper, the microscopic surface 

morphology could also be optimized for the hip prosthesis to meet individual patient needs. 

Topology optimisation has proven an effective tool for microstructural design 

aiming to regulate effective material properties for bone remodelling applications [56]. 

Recent studies [57-59] demonstrated how to optimize the microstructural gradient of a hip 

replacement implant for achieving minimum bone resorption and clinical failure 

probability. Nevertheless, the technique presented in those studies is restricted to periodic 

microstructures and may be of limited relevance to random morphology as shown in this 

paper. 
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9.5 Conclusions 

A novel application of multiscale modelling and remodelling analyses has been 

implemented in this study to optimize a graded porous surface morphology, by evaluating 

osseointegration outcomes in terms of bone-implant-contact (BIC) and averaged peak 

Tresca stress (PTS). The simulation results suggested that the size of particles in each 

surface layer determines bone ingrowth and shear stress distribution, and the optimized 

surface gradient can outperform uniform surface morphologies that have conventionally 

been adopted in most traditional implants. A cubic surrogate model is found to best 

correlate BIC and PTS with gradient parameters in this problem, and the RS plots are in 

good agreement with the sample simulation results, leading to different gradient optima for 

the highest BIC ratio or the minimum PTS at Month 6 and 48, respectively. Since the 

maximisation of BIC and minimisation of PTS cannot be achieved simultaneously, a 

multiobjective optimisation procedure was adopted here. Two different approaches, 

namely LWA and MOPSO, were used to generate Pareto solutions, from which MOPSO 

demonstrates its capability of dealing with concentrated regions of optimal solutions. By 

adopting the minimum distance selection method (TMDSM), Gradients 70-70-62 and 37-

70-68 are selected by minimising the distance to the Utopia point as the most “satisfactory” 

solutions for short term and long term healing, respectively. With sufficient patient 

information, a private case study can be done by following this procedure to generate a 

range of optimal solutions, allowing a material engineer and clinician to choose a patient-

specific surface morphology for clinic application. With different optimal selection criteria, 

a different solution may be obtained. Prior to such clinical application further animal 

studies need to be performed to verify the multiscale model and graded porous implant 

surface approach proposed. These future investigations can also be used to optimize 
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porosity gradients under other design criteria [60] or with other materials, thereby 

providing different implant-tissue interaction (e.g. [61]). 

 

Acknowledgement 

This work is supported by Australian Research Council (ARC) and Australian 

Postgraduate Award (APA). 

  



Chapter 9 - Multiscale Design of Implant Surface Morphological Gradient Page | 244 

9.6 References 

1. Dewidar, M.M. and J.K. Lim, Properties of solid core and porous surface Ti-6Al-
4V implants manufactured by powder metallurgy. Journal of Alloys and 
Compounds, 2008. 454(1-2): p. 442-446. 

2. Morra, M., et al., Surface engineering of titanium by collagen immobilization. 
Surface characterization and in vitro and in vivo studies. Biomaterials, 2003. 
24(25): p. 4639-4654. 

3. Rungsiyakull, C., et al., Surface morphology optimization for osseointegration of 
coated implants. Biomaterials, 2010. 31(27): p. 7196-7204. 

4. O'Brien, W.J., Dental materials and their selection. 4th ed. 2008, Hanover Park, IL: 
Quintessence Pub. Co. xiii, 425 p. 

5. Kunzler, T.P., et al., Systematic study of osteoblast and fibroblast response to 
roughness by means of surface-morphology gradients. Biomaterials, 2007. 28(13): 
p. 2175-2182. 

6. Vaillancourt, H., R.M. Pilliar, and D. McCammond, Finite element analysis of 
crestal bone loss around porous-coated dental implants. Journal of Applied 
Biomaterials, 1995. 6(4): p. 267-282. 

7. Esposito, M., et al., Biological factors contributing to failures of osseointegrated 
oral implants (I). Success criteria and epidemiology. European Journal of Oral 
Sciences, 1998. 106(1): p. 527-551. 

8. Okazaki, K., et al., Physical characteristics of Ti-6Al-4V implants fabricated by 
electrodischarge compaction. Journal of Biomedical Materials Research, 1991. 
25(12): p. 1417-1429. 

9. Xue, W., et al., Processing and biocompatibility evaluation of laser processed 
porous titanium. Acta Biomaterialia, 2007. 3(6): p. 1007-1018. 

10. Anil, S., et al., Chapter 4: Dental implant surface enhancement and 
osseointegration, in Implant dentistry - a rapidly evolving practice, I. Turkyilmaz, 
Editor. 2011, InTech: Rijeka. p. 86-90. 

11. Suzuki, K., K. Aoki, and K. Ohya, Effects of surface roughness of titanium 
implants on bone remodeling activity of femur in rabbits. Bone, 1997. 21(6): p. 
507-514. 

12. Itala, A.I., et al., Pore diameter of more than 100 mu m is not requisite for bone 
ingrowth in rabbits. Journal of Biomedical Materials Research, 2001. 58(6): p. 679-
683. 

13. Bradley, N., The response surface methodology, in Department of Mathematical 
Sciences. 2007, Indiana University: South Bend. p. 36-38. 

14. Shen, H., H. Li, and L.C. Brinson, Effect of microstructural configurations on the 
mechanical responses of porous titanium: A numerical design of experiment 
analysis for orthopedic applications. Mechanics of Materials, 2008. 40(9): p. 708-
720. 

15. Shen, H. and L.C. Brinson, A numerical investigation of porous titanium as 
orthopedic implant material. Mechanics of Materials, 2011. 43(8): p. 420-430. 



Chapter 9 - Multiscale Design of Implant Surface Morphological Gradient Page | 245 

16. Lin, D., et al., Bone remodeling induced by dental implants of functionally graded 
materials. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 
2010. 92B(2): p. 430-438. 

17. Kim, S.J., et al., Comparison of implant stability after different implant surface 
treatments in dog bone. Journal of Applied Oral Science, 2010. 18(4): p. 415-420. 

18. Yang, J. and H.-J. Xiang, A three-dimensional finite element study on the 
biomechanical behavior of an FGBM dental implant in surrounding bone. Journal 
of Biomechanics, 2007. 40(11): p. 2377-2385. 

19. Yang, Y.Z., et al., Morphological behavior of osteoblast-like cells on surface-
modified titanium in vitro. Biomaterials, 2002. 23(5): p. 1383-1389. 

20. Yang, Y.Z., et al., Preparation of graded porous titanium coatings on titanium 
implant materials by plasma spraying. Journal of Biomedical Materials Research, 
2000. 52(2): p. 333-337. 

21. Chen, C.C., et al., Characterization of functionally graded hydroxyapatite/titanium 
composite coatings plasma-sprayed on Ti alloys. Journal of Biomedical Materials 
Research Part B-Applied Biomaterials, 2006. 78B(1): p. 146-152. 

22. Lin, D., et al., Design optimization of functionally graded dental implant for bone 
remodeling. Composites Part B-Engineering, 2009. 40(7): p. 668-675. 

23. Podshivalov, L., A. Fischer, and P.Z. Bar-Yoseph, 3D hierarchical geometric 
modeling and multiscale FE analysis as a base for individualized medical 
diagnosis of bone structure. Bone, 2011. 48(4): p. 693-703. 

24. Podshivalov, L., A. Fischer, and P.Z. Bar-Yoseph, Multiscale FE method for 
analysis of bone micro-structures. Journal of the Mechanical Behavior of 
Biomedical Materials, 2011. 4(6): p. 888-899. 

25. Fritsch, A., C. Hellmich, and L. Dormieux, Ductile sliding between mineral 
crystals followed by rupture of collagen crosslinks: Experimentally supported 
micromechanical explanation of bone strength. Journal of Theoretical Biology, 
2009. 260(2): p. 230-252. 

26. Buti, F., et al., Bone Remodelling in BioShape. Electronic Notes in Theoretical 
Computer Science, 2010. 268: p. 17-29. 

27. Romeed, S.A., S.L. Fok, and N.H.F. Wilson, A comparison of 2D and 3D finite 
element analysis of a restored tooth. Journal of Oral Rehabilitation, 2006. 33(3): p. 
209-215. 

28. Traini, T., et al., Direct laser metal sintering as a new approach to fabrication of 
an isoelastic functionally graded material for manufacture of porous titanium 
dental implants. Dental Materials, 2008. 24(11): p. 1525-1533. 

29. Bobyn, J.D., et al., The optimum pore size for the fixation of porous-surfaced metal 
implants by the ingrowth of bone. Clin Orthop Relat Res, 1980(150): p. 263-70. 

30. Li, W., et al., Towards automated 3D finite element modeling of direct fiber 
reinforced composite dental bridge. Journal of Biomedical Materials Research Part 
B: Applied Biomaterials, 2005. 74B(1): p. 520-528. 

31. O’Brien, W.J., Dental Materials and Their Selection. 2008, Quintessence 
Publishing Co, Inc: Michigan. 



Chapter 9 - Multiscale Design of Implant Surface Morphological Gradient Page | 246 

32. Lin, D., et al., Mandibular bone remodeling induced by dental implant. Journal of 
Biomechanics, 2010. 43(2): p. 287-293. 

33. Carr, M.E. and S.L. Carr, Fibrin structure and cocentration alter clot elastic-
modulus but do not alter platelet-mediated force development. Blood Coagulation 
& Fibrinolysis, 1995. 6(1): p. 79-86. 

34. Riha, P., et al., Elasticity and fracture strain of whole blood clots. Clinical 
Hemorheology and Microcirculation, 1999. 21(1): p. 45-49. 

35. Chen, Y., S. Zhou, and Q. Li, Microstructure design of biodegradable scaffold and 
its effect on tissue regeneration. Biomaterials, 2011. 32(22): p. 5003-5014. 

36. Liu, X.Y. and G.L. Niebur, Bone ingrowth into a porous coated implant predicted 
by a mechano-regulatory tissue differentiation algorithm. Biomechanics and 
Modeling in Mechanobiology, 2008. 7(4): p. 335-344. 

37. Isaksson, H., C.C. van Donkelaar, and K. Ito, Sensitivity of tissue differentiation 
and bone healing predictions to tissue properties. Journal of Biomechanics, 2009. 
42(5): p. 555-564. 

38. Lin, D., et al., Dental implant induced bone remodeling and associated algorithms. 
Journal of the Mechanical Behavior of Biomedical Materials, 2009. 2(5): p. 410-
432. 

39. Keaveny, T.M., Strength of Trabecular Bone, in Bone Mechanics Handbook, S.C. 
Cowin, Editor. 2001, CRC Press LLC: Danvers. p. 7. 

40. Frost, H.M., Bone's mechanostat: A 2003 update. The Anatomical Record Part A: 
Discoveries in Molecular, Cellular, and Evolutionary Biology, 2003. 275A(2): p. 
1081-1101. 

41. Noble, B.S. and J. Reeve, Osteocyte function, osteocyte death and bone fracture 
resistance. Molecular and Cellular Endocrinology, 2000. 159(1-2): p. 7-13. 

42. Wernig, F. and Q. Xu, Mechanical stress-induced apoptosis in the cardiovascular 
system. Progress in Biophysics and Molecular Biology, 2000. 78(2-3): p. 105-137. 

43. Xie, M., et al., Rabbit Annulus Fibrosus Cell Apoptosis Induced by Mechanical 
Overload via a Mitochondrial Apoptotic Pathway. Journal of Huazhong University 
of Science and Technology-Medical Sciences, 2010. 30(3): p. 379-384. 

44. Tanaka, E., et al., A mathematical model of bone remodelling under overload and 
its application to evaluation of bone resportion around dental implants. Acta of 
Bioengineering and Biomechanics, 1999. 1(1): p. 117-121. 

45. Field, C., et al., A comparative mechanical and bone remodelling study of all-
ceramic posterior inlay and onlay fixed partial dentures. Journal of Dentistry, 2012. 
40(1): p. 48-56. 

46. Field, C., et al., Prediction of mandibular bone remodelling induced by fixed 
partial dentures. Journal of Biomechanics, 2010. 43(9): p. 1771-1779. 

47. Sollazzo, V., et al., Zirconium oxide coating improves implant osseointegration in 
vivo. Dental Materials, 2008. 24(3): p. 357-361. 

48. Abron, A., et al., Evaluation of a predictive model for implant surface topography 
effects on early osseointegration in the rat tibia model. Journal of Prosthetic 
Dentistry, 2001. 85(1): p. 40-46. 



Chapter 9 - Multiscale Design of Implant Surface Morphological Gradient Page | 247 

49. Anderson, R.C., et al., An evaluation of skeletal attachment to LTI pyrolytic carbon, 
porous titanium, and carbon-coated porous titanium implants. Clin Orthop Relat 
Res, 1984(182): p. 242-57. 

50. Feighan, J.E., et al., The influence of surface-blasting on the incorporation of 
titanium-alloy implants in a rabbit intramedullary model. J Bone Joint Surg Am, 
1995. 77(9): p. 1380-95. 

51. Hou, S.J., et al., Multiobjective optimization of multi-cell sections for the 
crashworthiness design. International Journal of Impact Engineering, 2008. 35(11): 
p. 1355-1367. 

52. Raquel, C.R. and P.C. Naval, An effective use of crowding distance in 
multiobjective particle swarm optimization, in GECCO 2005: Genetic and 
Evolutionary Computation Conference, Vols 1 and 2, H.G. Beyer, Editor. 2005, 
Assoc Computing Machinery: New York. p. 257-264. 

53. Padhye, N., et al., Empirical comparison of MOPSO methods - guide selection and 
diversity preservation, in 2009 Ieee Congress on Evolutionary Computation, Vols 
1-5. 2009, Ieee: New York. p. 2516-2523. 

54. Lian, Z., et al., Effect of bone to implant contact percentage on bone remodelling 
surrounding a dental implant. International Journal of Oral and Maxillofacial 
Surgery, 2010. 39(7): p. 690-698. 

55. Sun, G.Y., et al., Crashworthiness design of vehicle by using multiobjective robust 
optimization. Structural and Multidisciplinary Optimization, 2011. 44(1): p. 99-110. 

56. Tomaszewski, P.K., et al., Numerical analysis of an osseointegrated prosthesis 
fixation with reduced bone failure risk and periprosthetic bone loss. Journal of 
Biomechanics, 2012. 45(11): p. 1875-1880. 

57. Adachi, T., et al., Framework for optimal design of porous scaffold microstructure 
by computational simulation of bone regeneration. Biomaterials, 2006. 27(21): p. 
3964-3972. 

58. Chen, Y., S. Zhou, and Q. Li, Computational design for multifunctional 
microstructural composites. International Journal of Modern Physics B, 2009. 
23(6-7): p. 1345-1351. 

59. Sturm, S., et al., On stiffness of scaffolds for bone tissue engineering-a numerical 
study. Journal of Biomechanics, 2010. 43(9): p. 1738-1744. 

60. Arabnejad Khanoki, S. and D. Pasini, Multiscale design and multiobjective 
optimization of orthopedic hip implants with functionally graded cellular material. 
Journal of biomechanical engineering, 2012. 134(3): p. 031004. 

61. Natali, A.N., et al., Investigation of the integration process of dental implants by 
means of a numerical analysis. Dental Materials, 1997. 13(5-6): p. 325-332. 

 

 



 Page | 248 
 

 

 

Chapter 10: Characterisation of Anisotropic Elasticity and Diffusivity 

in Injection-Moulded Porous Titanium for Dental and Orthopaedic 

Application 

 

With the same target of enhancing osseointegration, as stated in Chapter 9, using a 

porous titanium implant has been shown as an alternative. This paper introduces the novel 

injection moulding fabrication technique and then systemically characterises the fabricated 

samples. Surface morphology is firstly examined using a scanning electron microscope 

(SEM) and then a micro-computational topology (µ-CT) scan is performed to non-

invasively capture its subsurface 3D microscopic features. The porosity and the pore sizes 

are determined statistically based on the µ-CT image analysis. The minimum size of a 

representative volume element (RVE) of the scans is determined by convergence tests. 

Based on FE models created from these RVEs, homogenisation methods determine the 

microscopic heterogeneity in their anisotropic elasticity and oxygen diffusivity. 

 

Associated Publications: 

1. Junning Chen, Zhongpu Zhang, Liangjian Chen, Wei Li, Michael V. Swain, Qing Li. Injection-
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2. Junning Chen, Liangjian Chen, Wei Li, Michael V. Swain, and Qing Li. Porous Titanium 

Implant and Micro-CT Based Characterization of Sub-Surface Morphology. PRICM – 8. John 

Wiley & Sons, Inc., 2013: p. 1579-1586.   
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10.1 Introduction  

Endosseous implants made of titanium and its alloys have been widely used for 

orthopaedic and dental application in load-bearing scenarios [1-3]. As the most prevalent 

materials, their proven biocompatibility is favoured by osseointegration [2, 4]. 

Sandblasting and acid etching are the current gold standard for the surface treatment, and 

have shown advantages in improving osseointegration with increased surface roughness [5, 

6]. However, these surface features are limited in several microns, and there are still some 

biomechanical drawbacks, including stress-shielding and insufficient bone-implant 

bonding, to prevent more satisfactory clinical outcomes [2, 7, 8]. A porous implant 

substrate is capable of reducing stress-shielding, by increasing the porosity and alternating 

the 3D microstructure to reduce the local material property mismatch [1, 2, 9]. It also 

provides considerably more space to promote cell attachment and tissue ingrowth with the 

increased contact surface area, thereby facilitating a higher level of bone-implant 

interaction for osteoblast adhesion [2, 8, 10]. Advanced technologies, such as microwave 

sintering and plasma spraying, have been developed for fabricating desired morphological 

surfaces for implants [1, 4, 8, 11, 12]. 

Although these technologies are able to create a highly porous implant surface with 

sufficient interconnection, they have limited control on the porosity and poor integrity with 

post-machining process [1, 9, 12, 13]. As a novel fabrication method in implant dentistry, 

metal injection moulding has been demonstrated to have superior control on porosity and 

pore size, giving a near-net-shape with a high open-pore ratio of 98% for mass scale 

production [9]. This type of porous structure was often found anisotropic and micro-

heterogeneous, of which the localised material properties are primarily determined by its 

microstructure [14-18]. The heavy laboratory expense of fabricating this novel material 

limits the repetitive testing on consistent samples to have statistic meaning, while 
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computational simulation accelerate the analysis with various mathematical models built in 

the last few decades [14-16, 19-21]. With the rapid evolution in micro-computational 

tomography (µCT) technology, imaging of the microstructure becomes available to 

provide precise and detailed finite element models for numerical analysis [14, 15].  

The principal elastic moduli are the critical indication of material property 

mismatch, for bone tissue ingrowth and mechanical stress-induced apoptosis [22-24]. The 

shear moduli are the key measurement to the micro motion of the implant with respect to 

the host bone, which may cause initial instability and lack of bone ingrowth [25]. The 

diffusivity has shown its critical role in initial wound healing and vascular formation [26-

28]. For the above reasons, these material properties are important factors in evaluating 

biomechanical potential of an implant media.  

This paper briefly introduces the novel fabrication technique of this porous titanium 

implant by injection moulding, and systemically examines the samples under scanning 

electron microscope (SEM) and micro-computational tomography (µCT), for its surface 

morphology and subsurface 3D micro structure. The CT images are further processed to 

determine its porosity and pore sizes statistically. The minimum size of a representative 

volume element (RVE) of this material is determined by a convergence tests. Finite 

element models are then created based on the CT scans for homogenisation analysis, to 

determine the microscopic heterogeneity in elasticity and diffusivity. The outcomes will be 

compared to literature data in both the mechanical and biological aspects, to reveal its 

potential for dental and orthopaedic application. 
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10.2 Materials and Methods 

10.2.1 Material Fabrication, Imaging, and Modelling  

The porous titanium substrate was created using hydrogenation-dehydrogenation 

titanium (HDH Ti) powder with particle sizes less than 77 µm and sodium chloride (NaCl) 

powder less than 290 µm, at a volume fraction ratio of 6:4. A multi-component binder 

consisted of high density polyethylene (HDPE), paraffin wax (PW), polyethylene glycol 

(PEG), and stearic acid (SA), and was used to mix the powders. The mixture at 155 ºC is 

injected into a 30 ºC mould at 100 MPa, around a solid titanium core inside (3 mm in 

diameter) (Figure 10-1a). Organic components in the formed compact are removed by 

methylene dichloride at 37 ºC, and the space holder (NaCl) is removed a water bath, 

followed by a thermal debinding at 720 ºC in argon gas. More details can be explored in 

the report by Chen et al. [9]. 

For the surface morphology characteristics, the finished samples are firstly 

examined under a scanning electron microscope, Hitachi S-4500 (Australia Centre for 

Microscopy & Microanalysis, Sydney Australia). The accelerating voltage is set to 15 kV, 

and the working distance is set to 17 mm. Three arch sections are cut from the porous 

implant samples (Figure 10-1a & b), with a radius of 1.5 mm, a base width of 1.2 mm, and 

a length of 2 mm. Each sample is scanned by µCT, MicroXCT-400 (Xradia Inc, USA) 

with a resolution at 4.02µm per pixel, and 988 slices of DICOM images are reconstructed 

for each scan. Preliminary image processing and feature recognition are performed in 

Avizo Fire (FEI Visualization Sciences Group, Burlington USA) for the pore size and 

porosity. All statistical analysis in this paper is performed in IBM SPSS Statistics Ver. 19 

(IBM Cor., New York USA). 

http://www.labx.com/v2/adsearch/detail3.cfm?adnumb=464179
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Figure 10-1 (a) Porous dental implant fabricated by injection moulding and a cut sample; (b) 

one cut sample reconstructed from CT images; (c) SEM image of the porous surface showing 

hierarchical features; (d) a RVE sample of 700 µm randomly selected from CT images, 

reconstructed and meshed into a finite element model. 

The 3D mask for each sample is further reconstructed from the DICOM images in 

ScanIP (Simpleware Ltd, UK), and the meshed finite element models are exported to 

ABAQUS 6.9.1 (Dassault Systèmes Australia Pty Ltd, AU) for analysis. The microscopic 

structure is likely to behave differently to the overall macroscopic entirety, especially in 

the heterogeneous real-world materials; therefore, a representative volume element (RVE) 

must be determined to be capable of reflecting the macroscopic characteristics and 

properties [14-16, 29-31]. The common approach is to create a representing model with the 

minimum volume that is adequate to show the effective material characteristics and 

properties as the entire model. Cubic representative models with edge length varying from 
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300 µm to 700 µm are selected for a convergence test [30] on their overall porosities 

(%Por), and the homogenized first principal elastic modulus (E11, along the radial 

direction). 8 non-overlapping subdivisions of the implant samples are randomly selected 

for each length. Meanwhile, the numerical accuracy is ensured by a numeric convergence 

test [2, 32], to ensure adequate mesh densities and present the complex geometry 

accurately. 

10.2.2 Effective Material Elastic Moduli 

Until the dramatic increase of computational power recently, the direct computation 

of micro-material responses was hard to achieve [33]. Accordingly, the Hills-Voigt-Reuss 

bounds were developed to estimate the effective responses of a mixture of two materials 

[30, 33], which were improved by Hashin and Shtrikman (known as HS-Bounds) [34, 35]. 

Following this theory, the randomly distributed void is reasonable to be taken as a type of 

material with a very low elastic modulus approaching to 0 GPa with no tendency of 

maintaining its volume (Poisson’s ratio =0). The two bounds for bulk and shear moduli can 

be stated in Eq. (1) to (4), where %Por is the same to void volume fraction, k and µ stand 

for bulk modulus and shear modulus, respectively. 

*
low void

Ti void void void

(1- %Por)= k +   1 3×%Por+
- 3 + 4

k

k k k μ

      (1) 

*
upper Ti

void Ti Ti Ti

%Por= k + 1 3×(1- %Por)+
- 3 + 4

k

k k k μ

      (2) 

*
low void

void void

Ti void void void void

(1- %Por)= + 1 6×%Por( 2 )+
- 5 (3 + 4 )

μ μ k μ
μ μ μ k μ

+
    (3) 
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*
upper Ti

void void

void Ti void Ti Ti)

%Por= + 1 6×(1- %Por)( 2 )+
- 5 (3 + 4

μ μ k μ
μ μ μ k μ

+     (4) 

The HS bounds provide a very wide range of estimation, and this approach does not 

consider other factors, such as microscopic geometry. Therefore, the homogenisation 

method based on the conservation of energy is adopted, which has shown successful 

predictions in numerical characterisations with experiments [34]. With an appropriate RVE 

volume selection, the effective micro-scale material properties should be able to describe 

the macroscopically homogeneous media with macro-stress and macro-strain fields [16].  

This method satisfies the conditions for the Hill’s energy theorem that the total stain 

energy U stored in an effective volume V´ must be equivalent to the strain energy U´ 

stored in the heterogeneous RVE volume V (Eq. (5)). Given a normal or shear load, the 

equivalent stress Ωσ  and strain Ωε  can be determined from FE simulations, and the 

constitutive tensor Φ*  can be inversely solved from the governing equation (Eq. (6)). In 

this equation, each independent loading case will lead to six equations, hence resulting in 

total 36 equations. 

ij ji Ω Ω

1 1: dV ( : ) V
2 2

=∫σ ε σ ε        (5) 

Ω Ω:= Φ*σ ε           (6) 

The general constitutive tensor contains 36 constants to illustrate the anisotropic 

material properties. As the major concerns are laid on the normal and shear moduli, this 

paper assumes that RVE model is orthotropic for the simplicity in solving, accepted by 

previous researches on cellular material or structure [14, 16, 33, 36-38]. The expanded 

constitutive equation can be expressed in Eq. (7) [38]. 
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     …     
     

=    
    
    …
    
    

    (7) 

To generate the six independent loads, the usual choices on loading cases are 

shown in Eq. (8) for the corresponding RVE surfaces, 

 

0 0 0 0 0 0 0 0
 or   0 0 0 , 0 0 , 0 0 0 ,

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
           0 0 , 0 0 0 , 0 0

0 0 0 0 0 0 0

β
β

β

β β
   β β

β β

     
     =      
          
     
     
     
          

σ ε

    (8) 

where β is a load parameter [30, 33, 39] to indicate the same magnitude or unit of 1 for the 

homogenisation purpose. Appropriate boundary conditions must be assigned to RVE 

models, and the effective responses calculated over a finite domain depend on the type of 

boundary conditions. Two basic types of boundary conditions are often adopted in analysis 

of heterogeneous material, with homogeneous boundary conditions in either controlled 

stress or strain fields [30, 40, 41]. One of them is to implement a uniform traction vector on 

the corresponding boundary ∂V according to  

( ) *

V

1σ   σ V     at        V
V

d = = ⋅ ∀ ∈∂ 
 

⋅ ∫x n n x
    (9) 

and is to be called static or Neumann uniform boundary condition (SUBC). The other one 

is to impose a displacement vector at all points belonging to the boundary ∂V according to  

( ) *

V

1ε   ε V      at        V 
V

d = ⋅ = ⋅ ∀ ∈∂ 
 

∫x x n x
    (10) 
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named as displacement or Dirichlet uniform boundary condition (KUBC). Both of these 

two methods have been performed in previous researches [14-16, 20, 36, 37, 40], and have 

a wide range of acceptance.  

10.2.3 Oxygen Diffusivity and Distribution 

Oxygen has been found to play a critical and rate-limiting role in wound healing 

and tissue growth [26-28]. The empirical studies have already shown that oxygen 

transportation and dissolution are complex problems in blood and tissues [42-45]. This 

paper aims to simulate how oxygen is transported by diffusion into the implant subsurface, 

before the vascular network forms in the porous voids. Two assumptions are made. Firstly, 

in the early stage of healing, the tissue and biofluid mixture in the voids can be considered 

as a uniform and homogenous material, which enables the analysis to focus on the implant 

microstructural effects [44, 46, 47]. Secondly, due to lack of vascular network and slow 

movement of biofluid, the transportation of oxygen by chemicals (metalloproteins, such as 

haemoglobin) and flow is negligible for the simplicity of diffusion analysis [28, 45]. 

A Kroghian model is employed to formulate the oxygen tension distribution at a 

steady-state [48], and the diffusion activity is driven by the gradient of its chemical 

potential [48, 49] that allows non-uniform diffusion in the base material. The mass 

conservation for the diffusing phase is stated as in Eq. (11), where V is the elemental 

volume whose surface is S, n is the outward normal to S, and J is the flux of concentration 

of the diffusion phase. 

  

V S

0dc dV dS
dt

+ ⋅ =∫ ∫n J         (11) 

Without driving fluid pressure or temperature, the concentration flux J can be 

simply defined as  
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J D
x
φ∂

= − ⋅
∂

          (12) 

where D(c, θ, f) is the diffusivity and φ  is the normalised concentration. The diffusion 

coefficient of oxygen in various tissues and biofluid varies in a wide range from 1.4 × 10-5 

to 3.6 × 10-5 cm2/sec in previous in vivo studies [46], and a moderate diffusion rate of 2.0 × 

10-5 cm2/sec is adopted at full saturation. Similar to the conservation of energy in 

determining mechanical moduli, the effective oxygen diffusivity of the RVE is determined 

in Eq. (13) based on the conversation of mass at a steady state, in which the mass flow rate 

(MFR) in the volume is the same between the RVE and the homogeneous model. In this 

equation, the sΩ is the equivalent solubility in the RVE and DΩ is the effective diffusivity 

of oxygen.  

( )
Ω iD D dA

x x
high low i

dA dAφ φ φ∂ − ∂
− ⋅ = − ⋅

∂ ∂
∫ ∫

∫
     (13) 

In the meantime, another well-known homogenisation method of determining 

diffusivity based on scaling is adopted, too. The effective diffusivity is the result of 

combining several geometrical features, such as pore shape, size, interconnectivity, 

porosity and specific surface area [50], which can be determined by homogenisation by 

asymptotic expansion [51]. Such formulation is also established on the same representative 

volume element concept that the structure of RVE is a lower level building block of the 

higher level organisation, which can be upscaled to obtain the effective properties of the 

upper level structure [51]. In this analysis, RVE represents the microscopic (y) level and 

the macroscopic (x) forms homogenised results for the entire material. This 

homogenisation method solves for flux correction driven by distributed nodal forces [51]. 

The governing equations (Eq. (14)-(16)) are as follows, 
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( )( )x, y 0     x Ω         a u f∇⋅ ∇ + = ∈      (14) 

( ) ( ) ( )x, y x ε yu u u= +         (15) 

xε
y

=           (16) 

where a is the conductivity matrix, u is the transport quality, x is the macroscopic scale, y 

is the microscopic scale, f is the driving force, and ε is the scaling ratio. The effective 

conductivity matrix is computed by solving the following equations (Eq. (17)-(19)): 

( ) ( )( ) ( )( )y y j y jy y ya w a e∇ ⋅ ∇ = −∇ ⋅       (17) 

( ) ( )( )
i

 

ij ij y j
y

y δ y dya a w= + ∂∫        (18) 

( )( ) ( )A x x 0u f∇⋅ ∇ + =        (19) 

where a(y) is the conductivity matrix of the material, w is the characteristic transport 

quality on a microscopic scale, e is an identity matrix with the same size as the number of 

modeling dimensions, x and y indicates it is a microscopic and a microscopic model 

respectively, ija  is the effective conductivity coefficient in the matrix A, and δ is the 

Kronecker delta.  

These equations are solved j times, each time for one column of e, to reconstruct 

the full effective conductivity matrix A. In a finite element analysis, the left hand side of 

Eq. (17) is treated as a body force while a(y) is taken as an identity matrix multiplied by 

the material conductivity coefficient. The simulation result is then ensembled by 

integration of w over the entire design domain according to Eq. (18). For a multi-scale 
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model, this upscaling process is repeated. Such procedure finally arrives at an uppermost 

level with a homogenised conductivity (Eq. (19)).  
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10.3 Result and Discussion 

10.3.1 Pore Size and Distribution 

Figure 10-1a shows the optical image of a fabricated implant and a section prepared 

for scanning, in which the macroscopic pores on surface are estimated from 0.20 to 0.45 

mm in diameter. Further SEM scans reveal more detailed microscopic features of this 

porous media showing richly porous network as indicated in Figure 10-1c. The µ-CT 

images are reconstructed to form a 3D view of the sample section as in Figure 10-1b. 

The feature recognition of the pores on the maximum internal distance (the largest 

diameter for irregular pore surfaces) is plotted in Figure 10-2 (ρ < 0.005). 100-200 µm 

pores are dominant in this porous media, and the major pore size distribution crosses a 

range from 50 to 400 µm. The average porosity in all three samples is 45.81 ± 3.02%.  

 

Figure 10-2 Pore size distribution in all scanned implant samples, varying from 50 to 400 µm, 

with 100 to 200 µm dominant. 

10.3.2 Representative Volume Element (RVE) 

Five sampling sizes (300 - 700 µm) are examined in the convergence test for the 

minimum size of RVE, based on the average and standard deviation of their first effective 
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principal modulus (E11) and porosity. Each sampling size has 8 non-overlapping samples. 

Figure 10-3a plots E11 and Figure 10-3b shows the porosity, against the total volumes of 

RVEs.  

For E11 with two types boundary conditions, SUBC shows an increasing trend and 

KUBC indicates a decreasing trend along the tendency of converging. This merging 

pattern with increasing RVE sizes falls into a good agreement with previous studies [15, 30, 

40], and the improved accuracy leads to the approach to a certain range of homogenised 

values. Both trend lines sit well in the range defined by HS bounds [34, 35, 38]. The 

porosity also shows well-settled trend towards 700 µm RVEs, close to the feature 

recognition result of all implant samples in Section 3.1. 700 µm RVE is adopted for further 

analysis with a sufficient geometric accuracy.  

 

Figure 10-3 (a) Convergence test of RVE models with different volume sizes on the first 

principal elastic modulus (E11)) with SUBC (blue triangle), KUBC (red dot), and (b) the 

porosity (green rhombus). 

a.

c.
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For the 8 RVE samples with 700 µm, there are 993, 557 ± 39, 616 linear tetrahedral 

elements in average. This is equivalent to a mesh density of 0.34 ± 0.01 element per voxel, 

which is higher than similar studies [14, 20] to ensure its numeric accuracy. 

10.3.3 Effective Elastic Moduli 

The results of the effective elastic moduli have been summaries in Table 1, and the 

individual results for each sample are plotted in Figure 10-4 against their porosities. As 

revealed by the early researches [29, 30, 40], SUBC often underestimate the material 

stiffness without considering the neighbour units of the model, while KUBC lead to an 

over-estimated stiffness as the model is over-constrained. Nevertheless, these two sets of 

material moduli indicate a refined range of possible material properties than the Hashin 

and Shtrikman (HS) Bounds. There are other numerical methods available for special cases, 

such as periodic boundary conditions [16, 29, 39]; however, the Hill’s energy theorem 

adopted in this paper suits the most general structures with high irregularity and 

complexity.  

Table 10-1 Effective Elastic Moduli Determined by Homogenisation Method   
                   with Static Uniform and Kinematic Uniform Boundary Conditions 

Modulus 
(GPa) 

Static Uniform 
Boundary Condition 

Kinematic Uniform 
Boundary Condition 

E11 16.99 ± 2.41 28.58 ± 1.96 

E22 15.89 ± 1.86 25.05 ± 1.21 

E33 13.39 ± 2.72 20.82 ± 4.15 

G44 4.64 ± 0.74 6.54 ± 0.51 
G55 4.22 ± 0.97 6.00 ± 0.99 

G66 4.06 ± 0.79 4.84 ± 0.92 

Porosity 46.91 ± 1.83 % 
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Figure 10-4 The effective principal moduli (a,b) and shear moduli (c,d) determined by the 

homogenisation method, with static uniform boundary conditions (left) and kinetic uniform 

boundary condition (right) over 8 REVs with 700 µm. 

Both effective elastic moduli determined with SUBC and KUBC indicate that this 

porous media is stiffer in the radial and circumferential directions (E11 & E22) than in the 

longitudinal direction (E33) (ρ < 0.005). This porous media is orthotropic with considerable 

differences between the radial directions and the longitudinal direction. On contrast, G44 

and G55 of the shear moduli are slightly larger than G66  with little difference (ρ > 0.05). 

Within a small range of porosity in the given samples, the variation of porosity could not 

demonstrate a clear effect on any elastic modulus difference (ρ-value > 0.05). 

Young’s modulus of cortical bone has been measured by various techniques, which 

varies from 14 to 25 GPa [52, 53], and cancellous bone has a broader range varying from 

0.5 to over 4 GPa [53, 54]. Cortical bone has directional differences in elastic moduli, that 

the longitudinal direction is about 40% stiffer than the transverse in long bone [53].  The 
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elastic moduli determined in this study show a great potential to reduce the mechanical 

property mismatch to the local cortical and cancellous bone for dental and orthopaedic 

application, which reduce the chance of stress-shielding around the implant to cause 

implant failure in mid or long term [23, 24]. The current sample has a close match to the 

cortical bone, and the injection-moulding technique allows a wide range of porosity from 

10 to 70%  [9], which can further reduce the stiffness of this material with increasing 

porosity. The orthotropic behaviour of this porous media can be optimised by varying the 

microscopic structure to match the directional stiffness as the native bone, which will 

require further investigation and study. 

10.3.4 Oxygen Diffusivity 

Table 2 has summarised the average oxygen diffusivities of all 8 samples in the 

three directions and their standard deviations. Both methods by using conservation of mass 

and multi-scale homogenisation have come up with similar results. Different to the moduli 

found in Section 3.2, the oxygen diffusivity along the radial direction (D11) is higher than 

the circumferential and longitudinal directions (ρ-value < 0.001).  This trend can also be 

seen in the individual plots of Figure 10-5, where the trend line of the diffusivity along the 

radial direction sits well above the other two. Within a consistent range of porosity, the 

porosity could not demonstrate a clear effect on the diffusivity variation (ρ-value > 0.05), 

similar to the findings in the effective moduli. 

Table 10-2 Effective Diffusivity Determined by Conservation of Mass and  
                   Multi-Scale Homogenisation 

Diffusivity   
 (10-6 cm2/sec) Conversation of Mass Multi-Scale 

Homogenisation 

D11 3.08 ± 0.20 4.32 ± 0.28 

D22 2.04 ± 0.31 2.58 ± 0.25 

D33 1.99 ± 0.13 2.51 ± 0.34 
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Figure 10-5 Diffusivity determined on RVE models of 700 µm based on conservation of mass 

method and multi-scale homogenisation method 

Oxygen supply is always one of primal concerns in bone healing, growth and 

remodeling. In cortical bone, oxygen is transported through the vascular system in the 

Haversian and Volkmann’s canals; however, there are very few reports addressing the 

oxygen diffusivity in either cortical or cancellous bone after implantation [48]. The in vivo 

oxygen diffusivity through a fresh bone was found at 2.31 × 10-5 cm2/sec (0.02 mm2/day) 

by using stain  [55]. The conservation of mass method estimates that the initial oxygen 

diffusivity in this porous titanium media after implantation varies from the 8.7% to 13.3% 

of the native bone’s diffusivity in different directions, and the multi-scale homogenisation 

finds that it varies from 10.9% to 18.7%.  The directional differences have a potential to be 

further optimised for a higher radial diffusivity, which can reduce the change of necrosis 

caused by insufficient oxygen [56] and also benefit pre-vascular network formation with 

improved oxygen and nutrients delivery as well as waste removal [57]. Meanwhile, the 

majority of the void space is larger than 150 um as indicated in Figure 10-2, which 

provides sufficient space for vascular network ingrowth to assist further migration of 

osteoid and fibroblast [58]. These benefits may lead to early establish of bone-implant lock 

mechanism after implantation, and increase the long-term success rate. 

  

1.50

2.50

3.50

4.50

5.50

43% 45% 47% 49%

D
iff

us
iv

ity
 (1

0-6
 cm

2 /
se

c)

Porosity
D11 D22 D33

1.25

1.75

2.25

2.75

3.25

43% 45% 47% 49%

D
iff

us
iv

ity
 (1

0-6
 cm

2 /
se

c)

Porosity
D11 D22 D33

a. b.



Chapter 10 – Characterisation for Injection-Moulded Porous Titanium  Page | 266 

10.4 Conclusions 

A novel injection-moulding technique has been applied to fabricate a highly porous 

titanium media for orthopaedic and dental application. This paper has examined its 

macroscopic and microscopic features by CT and SEM scanning, and estimated its 

effective elastic moduli and oxygen diffusivity based on a representative element volume 

(RVE) in a finite element analysis. 8 cubic models with 700 µm length are created from the 

CT scans as the representative volumes after a convergence test based on the porosity and 

the first principal elastic modulus. The porosity of these RVE models falls into a good 

agreement with the SEM images and 3D feature analysis of the CT scans. By applying the 

two different types of boundary conditions (SUBC & KUBC), the strain energy 

equivalence provides a refined range of possible elastic moduli as a homogeneous media. 

The results suggest that this porous media can have a close-match to the mechanical 

property of local bones to reduce the chance of stress-shielding. Meanwhile, this material 

shows orthotropic behaviours which can be utilised to mimic native bone behaviours. The 

diffusivity, on the other hand, is determined by two different homogenisation methods 

showing similar results, and it is about 10 to 18% of the native bone which provides 

considerable oxygen transport for the initial pre-vascular network formation within 

sufficient spaces revealed by CT image analysis. Similarly, the diffusivity also 

demonstrates its orthotropic characteristics, where the radial direction oxygen transport can 

be further reinforced to promote cell migration and tissue ingrowth. The next stage of 

investigation can be done to link the fabrication inputs (particle size, ratio, etc.) to the 

mechanical and biological features of this type of media [59], and the optimisation of the 

gradients to trace the optimal strength and diffusivity is also an important direction [2]. 

Furthermore, the cellular response and local bone remodelling is an attractive region of 
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study, where both finite element analysis and medical study can be perform on this porous 

media [2, 59-61]. 
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Chapter 11: Conclusion 

 

This chapter provides a closure to the PhD studies by summarising the findings and 

outcomes in prosthodontics, orthodontics, and dental implantology, with recommendations 

for future studies in the associated areas. 
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This PhD thesis explored a broad range of diverse projects covering three major 

clinical areas, prosthodontics, orthodontics and dental implantology. All these projects 

focused on the design analysis and optimisation of dental prostheses. The basis for the 

analysis depended upon understanding the fundamental biomechanics and potential bone 

remodelling induced by the prosthetic devices, thereby promoting improved success rate of 

treatments and outcome for patients’ healthcare (Figure 11-1). 

 

Figure 11-1 Overview of this thesis, which explored dental prosthetic design and optimisation 

driven by tissue remodelling for improving success rate and outcome of clinical treatment. 

The bone remodelling investigated in this thesis can occur directly as a 

consequence of mechanical stimuli transferred from an implant-bone interface, or 

indirectly through soft tissue complex, such as periodontal ligament and oral mucosa. The 

discovery and knowledge learnt in the tissue responses are further applied to design and 
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optimisation of dental prostheses and treatment planning. Nevertheless, each individual 

chapter included in this thesis explored distinct aspects of biomedical engineering and their 

relevance to dentistry, and their outcomes delivered specific contributions to the oral 

biomechanics and biomaterials. This summary aims to provide a brief conclusion and 

fundamental interconnection of three clinical areas, thereby providing recommendations 

for the corresponding future studies which are beyond the scopes and time frame of this 

PhD candidature. 

11.1 Prosthodontics (Chapters 2-7) 

The oral mucosa plays an important role in protection, sensation, secretion and 

thermal regulation of and from the oral environment. Despite these existing understandings, 

its critical contributions to occlusal loading distribution and residual ridge resorption 

induced by denture treatments remains understudied, and has recently drawn increasing 

attention with respect to prosthodontic treatment and assessment. Through several research 

projects during the course of this candidature, a number of highly relevant outcomes have 

been discovered in this area. 

11.1.1 Key Outcomes 

• The mucosa is shown to act like a buffering layer to transfer occlusal forces 

from the denture to the bony sub-structure beneath, and the stress distribution 

decreases along the mucosa thickness from the epithelial surface to the 

mucoperiosteal complex. The complicated anatomy, along with the nonlinear 

physiological and biomechanical response additionally alters the stress 

distribution on the same surface significantly. (Chapters 2 & 6) 

• Besides the well-studied static response, the time-dependent, volumetric, and 

interactive responses of the mucosa are also important in understanding the 
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potential effects induced by the dental prostheses, which remain understudied 

and the associated material models are preliminary. (Chapter 2) 

• Both the mucosal friction coefficient with the denture and its Poisson’s ratio 

depend on the physiological conditions of a subject, and reflect the interactive 

and volumetric behaviours when loaded. Based on an inverse approach, the 

friction coefficient was determined as 0.213 and the Poisson’s ratio at 0.402 for 

an elderly patient from her biting force induced in vivo contact pressure contour 

beneath a removable partial denture. (Chapters 2 & 3) 

• Introducing dental prosthesis will to a certain extent alter the biomechanical 

environment of the oral cavity, and the tissue metabolism will be thus changed 

due to the variation in pathway and stimulation. Positive emission computerized 

tomography (PET) allows detection of current bone metabolic and remodelling 

activity rate associated with a functioning denture by the accumulation of 18F-

fluoride tracer in a much shorter duration than X-Ray measurement. The PET 

technique has shown good correlation with mechanical stimulus distributions, 

such as equivalent stress and strain energy density. (Chapters 2 & 4) 

• Hydrostatic pressure, often known as the interstitial fluid pressure, has been 

found as an effective indicator to residual ridge resorption induced by various 

types of dentures. The bone volume reduction over 1 year after denture 

insertion is well correlated with the hydrostatic pressure distribution in the 

mucosa beneath the denture, while the equivalent stress or strain energy density 

inside the bone poorly reflected the same pattern. (Chapters 2, 5 & 6) 

• In a patient-specific manner, implant-retained overdentures are likely to have 

more than twice the stress concentration of conventional complete dentures due 
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to the implant related cantilever effect. On the other hand, the contact area 

under an implant-retained overdenture is about half that of a complete denture. 

(Chapters 5 & 6) 

• With increased occlusal loading associated with implant-retained overdenture 

treatments, a greater proportion of the load is transmitted through the implants. 

However with more implants or their placement further toward the distal end of 

the dental arch, the cantilever effect can be reduced, but not avoided. Other 

methods, such as enhancing the denture stiffness by embedding metal wires and 

beams, are also available to ease this clinical complication. (Chapter 6) 

• The contact interface between the denture base and the mucosal surface can be 

optimised to reduce stress concentration and the consequent bone resorption, 

based on the contact pressure distribution. This optimisation can be achieved 

based on a bi-direction evolutionary shape optimisation (BESO) method 

automatically, from the CT scan of the patient, to the direct material additive 

fabrication (3D printing). Through this approach, the maximum hydrostatic 

pressure within the mucosa can be further reduced by 34% from a 

conventionally moulded denture (the initial denture base), and the uniformity 

can be improved to nearly 65%, to reduce the cantilever effect at the distal edge. 

(Chapter 7) 

11.1.2 Recommendations for Future Study 

1. The existing material constitutive models for the mucosa responses are based 

on the macroscopic phenomena observed in clinical studies, which barely 

connect either microscopic or cellular responses, thereby limiting the 

biomechanical insights of the physiological observations. Consideration of the 
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heterogeneous and multi-phase (solid and fluid) structure within the mucosa  

will enhance understanding future studies of this area, and provide more 

information for both dentistry and biomedical engineering (e.g. biomechanics 

for other soft tissues). 

2. Some fundamental factors, such as morphology and thickness variations, have 

not yet been investigated for their effects on the mucosal effects. Meanwhile, 

the maxilla is also very different to the mandible in this respect, and it 

responses to occlusal loading in a more complex manner for its thinner mucosa 

with more significant variations. 

3. Although hydrostatic pressure has been revealed to be associated with potential 

residual ridge resorption, no study has clinically simulated this process to 

provide a numerical guideline, or validated this hypothesis in a time dependent 

fashion against clinical data acquired at multiple time points. 

4. The accumulation of 18F-fluoride tracer through PET is only linked to the static 

mechanical stimuli at the two time points in this thesis, and it would be 

interesting to correlate this technique to a time-dependent analysis through bone 

remodelling. 

11.2 Orthodontics (Chapter 8) 

Similar to the oral mucosa, the periodontal ligament (PDL) has supportive, sensory, 

and nutritive functions to the tooth. Its role in the tooth eruption and re-alignment has been 

gradually recognised. In orthodontic tooth movement (OTM), stresses developed in the 

PDL leads cells in surrounding bone to respond by apposition and resorption. Specialized 

cells, such as osteoblasts, cementum and fibroblasts can evolve from undifferentiated ecto-

mesenchymal cells upon in vivo loading situations. On the other hand, bone and tooth 
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resorbing cells, such as osteoclasts and odontoclasts, derive from blood-borne 

macrophages. 

11.2.1 Key Outcomes 

• The tooth movement speed is dependent on the magnitude of hydrostatic 

pressure within the PDL, and the direction determined from the displacement 

vectors in this tissue. 

• The higher the PDL hydrostatic pressure, the faster the tooth will move; 

however, this effect is compromised with increasing orthodontic load, 

eventually reaching a plateau, at constant speed.  

11.2.2 Recommendations for Future Study 

1. The orthodontic root resorption (ORR) is one of the critical side effects of 

orthodontic treatment. The connection between hydrostatic pressure within the 

PDL and ORR remains unclear. It would be of considerable clinical interest to 

explore their relationship, and search for an optimal solution to balance the 

resorption and the treatment timeframe. 

11.3 Dental Implantology (Chapters 9-10) 

The use of dental implants has revolutionised modern dentistry, and dental 

implantology serves in multiple areas of dentistry as an effective, sometimes unique, 

solution. Even though implant research has been ongoing for more than half a century, 

there are still several challenges ahead, such as stress shielding and osseointegration. 

11.3.1 Key Outcomes 

• Among the titanium implants with particle sintered surfaces, a functionally 

graded implant surface morphology by design can lead to a maximum with two 



Chapter 11 - Conclusion Page | 279 

times more osseointegration in the short term and 24% in the long term than a 

uniform implant surface morphology. (Chapter 9) 

• Through an multiobjective optimisation procedure to increase the bone-implant 

contact (BIC) and reduce the peak Tresca stress (PTS), an optimal solution can 

be achieved with a balance between these two criteria. (Chapter 9) 

• A fully porous titanium surface morphology provides four times more contact 

surface for the cell attachment than a solid surface, and simultaneously reduces 

the material property mismatch between the implant and the native bone to 

avoid stress-shielding. This type of sub-surface morphology can be achieved 

using injection-moulding manufacture. (Chapters 9 & 10) 

11.3.2 Recommendations for Future Study 

1. The fully porous titanium remains at the fabrication stage, and limited studies 

have been performed on the investigation of its osseointegration in vivo and in 

silico. By applying the existing knowledge of Wolff’s rule in bone remodelling, 

numerical analysis can provide effective predictions as to tissue ingrowth, and 

enable further optimising of the structure to the maximum strength with 

sufficient oxygen diffusion and metabolite removal. 
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