10,970 research outputs found

    Analysis and operational challenges of dynamic ride sharing demand responsive transportation models

    Get PDF
    There is a wide body of evidence that suggests sustainable mobility is not only a technological question, but that automotive technology will be a part of the solution in becoming a necessary albeit insufficient condition. Sufficiency is emerging as a paradigm shift from car ownership to vehicle usage, which is a consequence of socio-economic changes. Information and Communication Technologies (ICT) now make it possible for a user to access a mobility service to go anywhere at any time. Among the many emerging mobility services, Multiple Passenger Ridesharing and its variants look the most promising. However, challenges arise in implementing these systems while accounting specifically for time dependencies and time windows that reflect users’ needs, specifically in terms of real-time fleet dispatching and dynamic route calculation. On the other hand, we must consider the feasibility and impact analysis of the many factors influencing the behavior of the system – as, for example, service demand, the size of the service fleet, the capacity of the shared vehicles and whether the time window requirements are soft or tight. This paper analyzes - a Decision Support System that computes solutions with ad hoc heuristics applied to variants of Pick Up and Delivery Problems with Time Windows, as well as to Feasibility and Profitability criteria rooted in Dynamic Insertion Heuristics. To evaluate the applications, a Simulation Framework is proposed. It is based on a microscopic simulation model that emulates real-time traffic conditions and a real traffic information system. It also interacts with the Decision Support System by feeding it with the required data for making decisions in the simulation that emulate the behavior of the shared fleet. The proposed simulation framework has been implemented in a model of Barcelona’s Central Business District. The obtained results prove the potential feasibility of the mobility concept.Postprint (published version

    On the interaction between Autonomous Mobility-on-Demand systems and the power network: models and coordination algorithms

    Get PDF
    We study the interaction between a fleet of electric, self-driving vehicles servicing on-demand transportation requests (referred to as Autonomous Mobility-on-Demand, or AMoD, system) and the electric power network. We propose a model that captures the coupling between the two systems stemming from the vehicles' charging requirements and captures time-varying customer demand and power generation costs, road congestion, battery depreciation, and power transmission and distribution constraints. We then leverage the model to jointly optimize the operation of both systems. We devise an algorithmic procedure to losslessly reduce the problem size by bundling customer requests, allowing it to be efficiently solved by off-the-shelf linear programming solvers. Next, we show that the socially optimal solution to the joint problem can be enforced as a general equilibrium, and we provide a dual decomposition algorithm that allows self-interested agents to compute the market clearing prices without sharing private information. We assess the performance of the mode by studying a hypothetical AMoD system in Dallas-Fort Worth and its impact on the Texas power network. Lack of coordination between the AMoD system and the power network can cause a 4.4% increase in the price of electricity in Dallas-Fort Worth; conversely, coordination between the AMoD system and the power network could reduce electricity expenditure compared to the case where no cars are present (despite the increased demand for electricity) and yield savings of up $147M/year. Finally, we provide a receding-horizon implementation and assess its performance with agent-based simulations. Collectively, the results of this paper provide a first-of-a-kind characterization of the interaction between electric-powered AMoD systems and the power network, and shed additional light on the economic and societal value of AMoD.Comment: Extended version of the paper presented at Robotics: Science and Systems XIV, in prep. for journal submission. In V3, we add a proof that the socially-optimal solution can be enforced as a general equilibrium, a privacy-preserving distributed optimization algorithm, a description of the receding-horizon implementation and additional numerical results, and proofs of all theorem

    On the interaction between Autonomous Mobility-on-Demand systems and the power network: models and coordination algorithms

    Full text link
    We study the interaction between a fleet of electric, self-driving vehicles servicing on-demand transportation requests (referred to as Autonomous Mobility-on-Demand, or AMoD, system) and the electric power network. We propose a model that captures the coupling between the two systems stemming from the vehicles' charging requirements and captures time-varying customer demand and power generation costs, road congestion, battery depreciation, and power transmission and distribution constraints. We then leverage the model to jointly optimize the operation of both systems. We devise an algorithmic procedure to losslessly reduce the problem size by bundling customer requests, allowing it to be efficiently solved by off-the-shelf linear programming solvers. Next, we show that the socially optimal solution to the joint problem can be enforced as a general equilibrium, and we provide a dual decomposition algorithm that allows self-interested agents to compute the market clearing prices without sharing private information. We assess the performance of the mode by studying a hypothetical AMoD system in Dallas-Fort Worth and its impact on the Texas power network. Lack of coordination between the AMoD system and the power network can cause a 4.4% increase in the price of electricity in Dallas-Fort Worth; conversely, coordination between the AMoD system and the power network could reduce electricity expenditure compared to the case where no cars are present (despite the increased demand for electricity) and yield savings of up $147M/year. Finally, we provide a receding-horizon implementation and assess its performance with agent-based simulations. Collectively, the results of this paper provide a first-of-a-kind characterization of the interaction between electric-powered AMoD systems and the power network, and shed additional light on the economic and societal value of AMoD.Comment: Extended version of the paper presented at Robotics: Science and Systems XIV and accepted by TCNS. In Version 4, the body of the paper is largely rewritten for clarity and consistency, and new numerical simulations are presented. All source code is available (MIT) at https://dx.doi.org/10.5281/zenodo.324165

    Synergies between app-based car-related shared mobility services for the development of more profitable business models

    Get PDF
    Purpose: Emerging shared mobility services are an opportunity for cities to reduce the number of car single trips to both improve traffic congestion and the environment. Users of shared mobility services, such as carsharing, ridesharing and singular and shared ride-hailing services, often need to be customers of more than one service to cover all their transport needs, since few mobility providers offer more than one of these services from a single platform. On the other hand, providers offering these services separately do not optimize costly resources and activities, such as the vehicles or the technology. Hence, the aim of this paper is to find synergies between the different app-based car-related shared mobility services that foster the development of new business models, to increase the profitability of these services. Design/methodology/approach: The research approach is built on the literature of car-related shared mobility services business models, supported by the review of certain outstanding services websites, and face-to-face interviews with users and drivers of these transport services. The analysis is presented by means of the Business Model Canvas methodology. Findings: Based on the synergies found, this paper suggests a few different approaches for services to share some resources and activities. Originality/value: This study identifies the common features of carsharing, ridesharing and singular and shared ride-hailing services to develop more profitable business models, based on providing the services in aggregated form, or outsourcing activities and resources. In addition, the implications of these proposals are discussed as advantages and drawbacks from a business perspectivePeer ReviewedPostprint (published version

    Developing and Evaluating Intermodal E-Sharing Services – A Multi-method Approach

    Get PDF
    Different studies assume that travel behavior and mobility patterns of people may change within the next years: multimodal and intermodal usage of transport modes are getting more and more important. We expect a great potential for sharing services especially on intermodal trips. We aim at developing and evaluating intermodal electric mobility management concepts from the customer perspective. Since conventional approaches and singular methods are not appropriate, we adopted a multi-method approach consisting of five parts: (1) supply concepts are developed, (2) vehicle requirements for intermodal sharing are identified, (3) intermodal trip information is collected, (4) an agent based model and a macroscopic demand model are developed further in order to represent intermodal trips and e-vehicles and to evaluate several supply concepts, and (5) the impact and acceptance of modern and flexible mobility services like carsharing, bikesharing or new electric vehicle concepts (e.g. segways or light cars) is assessed and evaluated. The proposed methodology can be used for the development of customer oriented and attractive intermodal sharing services. Hence, the model results are essential for the evaluation and economic appraisal of e-sharing services from the supplier perspective. The proposed methodology can be applied to other cities and regions

    Contributions to sustainable urban transport : decision support for alternative mobility and logistics concepts

    Get PDF
    Increasing transport activities in cities are a substantial driver for congestion and pollution, influencing urban populations’ health and quality of life. These effects are consequences of ongoing urbanization in combination with rising individual demand for mobility, goods, and services. With the goal of increased environmental sustainability in urban areas, city authorities and politics aim for reduced traffic and minimized transport emissions. To support more efficient and sustainable urban transport, this cumulative dissertation focuses on alternative transport concepts. For this purpose, scientific methods and models of the interdisciplinary information systems domain combined with elements of operations research, transportation, and logistics are developed and investigated in multiple research contributions. Different transport concepts are examined in terms of optimization and acceptance to provide decision support for relevant stakeholders. In more detail, the overarching topic of urban transport in this dissertation is divided into the complexes urban mobility (part A) in terms of passenger transport and urban logistics (part B) with a focus on the delivery of goods and services. Within part A, approaches to carsharing optimization are presented at various planning levels. Furthermore, the user acceptance of ridepooling is investigated. Part B outlines several optimization models for alternative urban parcel and e-grocery delivery concepts by proposing different network structures and transport vehicles. Conducted surveys on intentional use of urban logistics concepts give valuable hints to providers and decision makers. The introduced approaches with their corresponding results provide target-oriented support to facilitate decision making based on quantitative data. Due to the continuous growth of urban transport, the relevance of decision support in this regard, but also the understanding of the key drivers for people to use certain services will further increase in the future. By providing decision support for urban mobility as well as urban logistics concepts, this dissertation contributes to enhanced economic, social, and environmental sustainability in urban areas

    TOWARD A SYSTEMATIC APPROACH TO THE FLEET SIZE ESTIMATION OF AUTONOMOUS MOBILITY-ON-DEMAND SYSTEMS

    Full text link
    The objective of this study is to provide analytical guidelines for the design of shared-vehicle Autonomous Mobility-on-Demand (AMoD) systems. Specifically, we consider the fundamental issue of determining the appropriate fleet size from operational perspectives. In this study, we model and analyze the AMoD system, whereby all modes of personal transportation in a city are replaced by one centralized controlled fleet of automated vehicles. A framework which integrates traffic assignment, vehicles routing and automated vehicles rebalancing is provided to estimate fleet size. Experimental results, based on simulations, are provided using actual demand data obtained from NYC Taxi and Limousine Commission. Results reveal that in midtown Manhattan during weekday morning peak hours, an AMoD fleet whose size is 63% of that currently in operation can satisfy all travel demands with the passenger waiting time less than 6 minutes

    An integrated assignment, routing, and speed model for roadway mobility and transportation with environmental, efficiency, and service goals

    Full text link
    Managing all the mobility and transportation services with autonomous vehicles for users of a smart city requires determining the assignment of the vehicles to the users and their routing in conjunction with their speed. Such decisions must ensure low emission, efficiency, and high service quality by also considering the impact on traffic congestion caused by other vehicles in the transportation network. In this paper, we first propose an abstract trilevel multi-objective formulation architecture to model all vehicle routing problems with assignment, routing, and speed decision variables and conflicting objective functions. Such an architecture guides the development of subproblems, relaxations, and solution methods. We also propose a way of integrating the various urban transportation services by introducing a constraint on the speed variables that takes into account the traffic volume caused across the different services. Based on the formulation architecture, we introduce a (bilevel) problem where assignment and routing are at the upper level and speed is at the lower level. To address the challenge of dealing with routing problems on urban road networks, we develop an algorithm that alternates between the assignment-routing problem on an auxiliary complete graph and the speed optimization problem on the original non-complete graph. The computational experiments show the effectiveness of the proposed approach in determining approximate Pareto fronts among the conflicting objectives
    • …
    corecore