212 research outputs found

    A coordinate system on a surface: definition, properties and applications

    Get PDF
    Coordinate systems associated to a finite set of sample points have been extensively studied, especially in the context of interpolation of multivariate scattered data. Notably, Sibson proposed the so-called natural neighbor coordinates that are defined from the Voronoi diagram of the sample points. A drawback of those coordinate systems is that their definition domain is restricted to the convex hull of the sample points. This makes them difficult to use when the sample points belong to a surface. To overcome this difficulty, we propose a new system of coordinates. Given a closed surface SS, i.e. a (d−1)(d-1)-manifold of Rd\mathbb{R} ^d, the coordinate system is defined everywhere on the surface, is continuous, and is local even if the sampling density is finite. Moreover, it is inherently (d−1)(d-1)-dimensional while the previous systems are dd-dimensional. No assumption is made about the ordering, the connectivity or topology of the sample points nor of the surface. We illustrate our results with an application to interpolation over a surface

    Entropie‐dominierte Selbstorganisationsprozesse birnenförmiger Teilchensysteme

    Get PDF
    The ambition to recreate highly complex and functional nanostructures found in living organisms marks one of the pillars of today‘s research in bio- and soft matter physics. Here, self-assembly has evolved into a prominent strategy in nanostructure formation and has proven to be a useful tool for many complex structures. However, it is still a challenge to design and realise particle properties such that they self-organise into a desired target configuration. One of the key design parameters is the shape of the constituent particles. This thesis focuses in particular on the shape sensitivity of liquid crystal phases by addressing the entropically driven colloidal self-assembly of tapered ellipsoids, reminiscent of „pear-shaped“ particles. Therefore, we analyse the formation of the gyroid and of the accompanying bilayer architecture, reported earlier in the so-called pear hard Gaussian overlap (PHGO) approximation, by applying various geometrical tools like Set-Voronoi tessellation and clustering algorithms. Using computational simulations, we also indicate a method to stabilise other bicontinuous structures like the diamond phase. Moreover, we investigate both computationally and theoretically(density functional theory) the influence of minor variations in shape on different pearshaped particle systems, including the stability of the PHGO gyroid phase. We show that the formation of the gyroid is due to small non-additive properties of the PHGO potential. This phase does not form in pears with a „true“ hard pear-shaped potential. Overall our results allow for a better general understanding of necessity and sufficiency of particle shape in regards to colloidal self-assembly processes. Furthermore, the pear-shaped particle system sheds light on a unique collective mechanism to generate bicontinuous phases. It suggests a new alternative pathway which might help us to solve still unknown characteristics and properties of naturally occurring gyroid-like nano- and microstructures.Ein wichtiger Bestandteil der heutigen Forschung in Bio- und Soft Matter Physik besteht daraus, Technologien zu entwickeln, um hoch komplexe und funktionelle Strukturen, die uns aus der Natur bekannt sind, nachzubilden. Hinsichtlich dessen ist vor allem die Methode der Selbstorganisation von Mikro- und Nanoteilchen hervorzuheben, durch die eine Vielzahl verschiedener Strukturen erzeugt werden konnten. Jedoch stehen wir bei diesem Verfahren noch immer vor der Herausforderung, Teilchen mit bestimmten Eigenschaften zu entwerfen, welche die spontane Anordnung der Teilchen in eine gewĂŒnschte Struktur bewirken. Einer der wichtigsten Designparameter ist dabei die Form der Bausteinteilchen. In dieser Dissertation konzentrieren wir uns besonders auf die AnfĂ€lligkeit von FlĂŒssigkristallphasen bezĂŒglich kleiner Änderungen der Teilchenform und nutzen dabei das Beispiel der Selbstorganisation von Entropie-dominierter Kolloide, die dem Umriss nach verjĂŒngten Ellipsoiden oder "Birnen" Ă€hneln. Mit Hilfe von geometrischen Werkzeugen wie z.B. Set-Voronoi Tessellation oder Cluster-Algorithmen analysieren wir insbesondere die Entstehung der Gyroidphase und der dazugehörigen Bilagenformation, welche bereits in Systemen von harten Birnen, die durch das pear hard Gaussian overlap (PHGO) Potential angenĂ€hert werden, entdeckt wurden. Des Weiteren zeigen wir durch Computersimulationen eine Strategie auf, um andere bikontinuierliche Strukturen, wie die Diamentenphase, zu stabilisieren. Schlussendlich betrachten wir sowohl rechnerisch (durch Simulationen) als auch theoretisch (durch Dichtefunktionaltheorie) die Auswirkungen kleiner Abweichungen der Teilchenform auf das Verhalten des kolloiden, birnenförmigen Teilchensystems, inklusive der StabilitĂ€t der PHGO Gyroidphase. Wir zeigen, dass die Entstehung des Gyroids auf kleinen nicht-additiven Eigenschaften des PHGO Birnenmodells beruhen. In ''echten'' harten Teilchensystemen entwickelt sich diese Struktur nicht. Insgesamt ermöglichen unsere Ergebnisse einen besseren Einblick auf das Konzept von notwendiger und hinreichender Teilchenform in Selbstorganistationsprozessen. Die birnenförmigen Teilchensysteme geben außerdem Aufschluss ĂŒber einen ungewöhnlichen, kollektiven Mechanismus, um bikontinuierliche Phasen zu erzeugen. Dies deutet auf einen neuen, alternativen Konstruktionsweg hin, der uns möglicherweise hilft, noch unbekannte Eigenschaften natĂŒrlich vorkommender, gyroidĂ€hnlicher Nano- und Mikrostrukturen zu erklĂ€ren

    Vector Graphics for Real-time 3D Rendering

    Get PDF
    Algorithms are presented that enable the use of vector graphics representations of images in texture maps for 3D real time rendering. Vector graphics images are resolution independent and can be zoomed arbitrarily without losing detail or crispness. Many important types of images, including text and other symbolic information, are best represented in vector form. Vector graphics textures can also be used as transparency mattes to augment geometric detail in models via trim curves. Spline curves are used to represent boundaries around regions in standard vector graphics representations, such as PDF and SVG. Antialiased rendering of such content can be obtained by thresholding implicit representations of these curves. The distance function is an especially useful implicit representation. Accurate distance function computations would also allow the implementation of special effects such as embossing. Unfortunately, computing the true distance to higher order spline curves is too expensive for real time rendering. Therefore, normally either the distance is approximated by normalizing some other implicit representation or the spline curves are approximated with simpler primitives. In this thesis, three methods for rendering vector graphics textures in real time are introduced, based on various approximations of the distance computation. The first and simplest approach to the distance computation approximates curves with line segments. Unfortunately, approximation with line segments gives only C0 continuity. In order to improve smoothness, spline curves can also be approximated with circular arcs. This approximation has C1 continuity and computing the distance to a circular arc is only slightly more expensive than computing the distance to a line segment. Finally an iterative algorithm is discussed that has good performance in practice and can compute the distance to any parametrically differentiable curve (including polynomial splines of any order) robustly. This algorithm is demonstrated in the context of a system capable of real-time rendering of SVG content in a texture map on a GPU. Data structures and acceleration algorithms in the context of massively parallel GPU architectures are also discussed. These data structures and acceleration structures allow arbitrary vector content (with space-variant complexity, and overlapping regions) to be represented in a random-access texture

    A virtual engineering framework to support progressive interaction in engineering design

    Get PDF
    Engineering design encompasses a series of non-trivial decision making phases in generating initial solutions, developing mathematical models, performing analysis, and optimizing designs. Engineering analysis and optimization are the phases that often significantly slow down the design process. Thorough designer exploration on the solution space increases the likelihood of determining the most feasible solution but, at the expense of longer lead times. The exploratory capabilities of the designer could be enhanced by creating an interactive virtual engineering framework. This research presents progressive interaction with the designer-in-the-loop whose intelligence is blended with the computational power to suitably control the optimization. Progressive interaction is a human-guided preference articulation method where the designer intelligence continuously controls the engineering analysis and optimization by visualization, modification and controlled re-optimization. Based on the designer\u27s knowledge and the knowledge available from the interaction system, the designer preferences can be modified anytime to expedite optimization. Progressive interaction not only helps the designer discover the hidden relationship between the decision variables but it also uncovers the implicit constraints and other performance limitations of the design. In summary, this research work proposes human-guided, progressive interaction as a solution to complex engineering optimization problems. The proposed solution is demonstrated using three test cases: (1) Interactive image segmentation and optimization, (2) Designer interaction to support shape optimization of a finned dissipater, and (3) Interactive analysis, optimization and design of hydraulic mixing nozzle

    A Virtual Grain Structure Representation System for Micromechanics Simulations

    Get PDF
    Representing a grain structure within a combined finite element computer aided engineering environment is essential for micromechanics simulations. Methods are required to effectively generate high-fidelity virtual grain structures for accurate studies. A high-fidelity virtual grain structure means a statistically equivalent structure in conjunction with desired grain size distribution features, and must be represented with realistic grain morphology. A family of controlled Poisson Voronoi tessellation (CPVT) models have been developed in this work for systematically generating virtual grain structures with the aforementioned properties. Three tasks have been accomplished in the development of the CPVT models: (i) defining the grain structure’s regularity that specifies the uniformity of a tessellation as well as deriving a control parameter based on the regularity; (ii) modelling the mapping from a grain structure’s regularity to its grain size distribution; and (iii) establishing the relation between a set of physical parameters and a distribution function. A one-gamma distribution function is used to describe a grain size distribution characteristic and a group of four physical parameters are employed to represent the metallographic measurements of a grain size distribution property. Mathematical proofs of the uniqueness of the determination of the distribution parameter from the proposed set of physical parameters have been studied, and an efficient numerical procedure is provided for computing the distribution parameter. Based on the general scheme, two- and three-dimensional CPVT models have been formulated, which respectively define the quantities of regularity and control parameters, and model the mapping between regularity and grain size distribution. For the 2D-CPVT model, statistical tests have been carried out to validate the accuracy and robustness of regularity and grain size distribution control. In addition, micrographs with different grain size distribution features are employed to examine the capability of the 2D-CPVT model to generate virtual grain structures that meet physical measurements. A crystal plasticity finite element (CPFE) simulation of plane strain uniaxial tension has been performed to show the effect of grain size distribution on local strain distribution. For the 3D-CPVT model, a set of CPFE analyses of micro-pillar compression have been run and the effects of both regularity and grain size on deformation responses investigated. Further to this, a multi-zone scheme is proposed for the CPVT models to generate virtual gradient grain structures. In conjunction with the CPVT model that controls the seed generating process within individual zones, the multi-zone CPVT model has been developed by incorporating a novel mechanism of controlling the seed generation for grains spanning different zones. This model has the flexibility of generating various gradient grain structures and the natural morphology for interfacial grains between adjacent zones. Both of the 2D- and 3D-CPVT models are capable of generating a virtual grain structure with a mean grain size gradient for the grain structure domain and grain size distribution control for individual zones. A true gradient grain structure, two simulated gradient grain structure, and a true gradient grain structure with an elongated zone have been used to examine the capability of the multi-zone CPVT model. To facilitate the CPFE analyses of inter-granular crack initiation and evolution using the cohesive zone models, a Voronoi tessellation model with non-zero thickness cohesive zone representation was developed. A grain boundary offsetting algorithm is proposed to efficiently produce the cohesive boundaries for a Voronoi tessellation. The most challenging issue of automatically meshing multiple junctions with quadrilateral elements has been resolved and a rule-based method is presented to perform the automatically partitioning of cohesive zone junctions, including data representation, edge event processing and cut-trim operations. In order to demonstrate the novelty of the proposed cohesive zone modelling and junction partitioning schemes, the CPFE simulations of plane strain uniaxial tension and three point bending have been studied. A software system, VGRAIN, was developed to implement the proposed virtual grain structure modelling methods. Via user-friendly interfaces and the well-organised functional modules a virtual grain structure can be automatically generated to a very large-scale with the desired grain morphology and grain size properties. As a pre-processing grain structure representation system, VGRAIN is also capable of defining crystallographic orientations and mechanical constants for a generated grain structure. A set of additional functions has also been developed for users to study a generated grain structure and verify the feasibility of the generated case for their simulation requirements. A well-built grain structure model in VGRAIN can be easily exported into the commercial FE/CAE platform, e.g. ABAQUS and DEFORM, via script input, whereby the VGRAIN system is seamlessly integrated into CPFE modelling and simulation processing

    The confluence of Gaussian process emulation and wavelets

    Get PDF
    We discuss two thriving research areas, emulation (in the statistical sense) and wavelet analysis, and explore ways in which the two areas can complement each other to tackle problems that both areas face. The Gaussian process, which is the popular choice in emulation, is used due to its ability to be a surrogate for a function when we are only able to make a limited number of observations from the function. The Gaussian process, however, does not perform well when the underlying function contains a discontinuity. Wavelet analysis, on the other hand, is known for its ability to model and analyse functions that contain discontinuities. Wavelet analysis tends to require a large number of datapoints to be able to model functions accurately, tending to struggle when the amount of data is limited. As it appears that one area’s strength is the other area’s weakness, this thesis is aimed at exploring the possible overlaps between the two methods, and the ways in which they could benefit each other. Particular attention in the thesis is paid to the challenges that are faced when the function that we are attempting to model contains discontinuities, or, areas of space in which there is a sharp increase/decrease in the value of our observations. We develop methods to select the location of additional design points after we have observed the function at our original design points with the objective of better defining the location of the discontinuity. We also develop novel methods to model the unknown function that we believe contains discontinuities, and look to accurately find our uncertainty in this function

    Random Laguerre Tessellations

    Get PDF

    Random Laguerre Tessellations

    Get PDF

    Microstructure modeling and crystal plasticity parameter identification for predicting the cyclic mechanical behavior of polycrystalline metals

    Get PDF
    Computational homogenization permits to capture the influence of the microstructure on the cyclic mechanical behavior of polycrystalline metals. In this work we investigate methods to compute Laguerre tessellations as computational cells of polycrystalline microstructures, propose a new method to assign crystallographic orientations to the Laguerre cells and use Bayesian optimization to find suitable parameters for the underlying micromechanical model from macroscopic experiments

    Incompressible Lagrangian fluid flow with thermal coupling

    Get PDF
    In this monograph is presented a method for the solution of an incompressible viscous fluid flow with heat transfer and solidification usin a fully Lagrangian description on the motion. The originality of this method consists in assembling various concepts and techniques which appear naturally due to the Lagrangian formulation.Postprint (published version
    • 

    corecore