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Philipp W. A. Schönhöfer

Entropically driven self-assembly of 
pear-shaped nanoparticles

The ambition to recreate highly complex and functional nanostructures found in living 
organisms marks one of the pillars of today‘s research in bio- and soft matter physics. 
Here, self-assembly has evolved into a prominent strategy in nanostructure formation 
and has proven to be a useful tool for many complex structures. However, it is still a 
challenge to design and realise particle properties such that they self-organise into a 
desired target configuration. One of the key design parameters is the shape of the 
constituent particles.

This thesis focuses in particular on the shape sensitivity of liquid crystal phases  
by addressing the entropically driven colloidal self-assembly of tapered ellipsoids,  
reminiscent of „pear-shaped“ particles. Therefore, we analyse the formation of the  
gyroid and of the accompanying bilayer architecture, reported earlier in the so-called 
pear hard Gaussian overlap (PHGO) approximation, by applying various geometrical 
tools like Set-Voronoi tessellation and clustering algorithms. Using computational  
simulations, we also indicate a method to stabilise other bicontinuous structures like 
the diamond phase. Moreover, we investigate both computationally and theoretically 
(density functional theory) the influence of minor variations in shape on different pear-
shaped particle systems, including the stability of the PHGO gyroid phase. We show 
that the formation of the gyroid is due to small non-additive properties of the PHGO 
potential. This phase does not form in pears with a „true“ hard pear-shaped potential.

Overall our results allow for a better general understanding of necessity and sufficiency 
of particle shape in regards to colloidal self-assembly processes. Furthermore, 
the pear-shaped particle system sheds light on a unique collective mechanism to  
generate bicontinuous phases. It suggests a new alternative pathway which might  
help us to solve still unknown characteristics and properties of naturally occurring  
gyroid-like nano- and microstructures.

FAU Forschungen, Reihe B, Medizin, Naturwissenschaft, Technik  32

 ISBN 978-3-96147-268-0





Philipp W. A. Schönhöfer 

Entropically driven self-assembly 
of pear-shaped nanoparticles 



FAU Forschungen, Reihe B 

Medizin, Naturwissenschaft, Technik 
Band 32 

Herausgeber der Reihe: 
Wissenschaftlicher Beirat der FAU University Press 



Philipp W. A. Schönhöfer 

Entropically driven self‐assembly of 
pear‐shaped nanoparticles

Erlangen 
FAU University Press 
2019 



Bibliografische Information der Deutschen Nationalbibliothek: 
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der 
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind 
im Internet über http://dnb.d-nb.de abrufbar. 

Bitte zitieren als 
Schönhöfer, Philipp W. A. 2019. Entropically driven self‐assembly of 
pear‐shaped nanoparticles. FAU Forschungen, Reihe B, Medizin, 
Naturwissenschaft, Technik Band 32.  
Erlangen: FAU University Press, DOI: 10.25593/978-3-96147-269-7. 

Das Werk, einschließlich seiner Teile, ist urheberrechtlich geschützt. 
Die Rechte an allen Inhalten liegen bei ihren jeweiligen Autoren. 
Sie sind nutzbar unter der Creative Commons Lizenz BY. 

Der vollständige Inhalt des Buchs ist als PDF über den OPUS Server 
der Friedrich-Alexander-Universität Erlangen-Nürnberg abrufbar:  
https://opus4.kobv.de/opus4-fau/home 

Verlag und Auslieferung: 

FAU University Press, Universitätsstraße 4, 91054 Erlangen 

Druck: docupoint GmbH 

ISBN:   978-3-96147-268-0 (Druckausgabe) 
eISBN: 978-3-96147-269-7 (Online-Ausgabe) 
ISSN:   2198-8102 
DOI:    10.25593/978-3-96147-269-7 



Entropically driven self‐assembly of
pear‐shaped nanoparticles

Entropie‐dominierte
Selbstorganisationsprozesse

birnenförmiger Teilchensysteme

Der Naturwissenschaftlichen Fakultät
der Friedrich‐Alexander‐Universität

Erlangen‐Nürnberg

zur

Erlangung des Doktorgrades Dr. rer. nat.

vorgelegt von

Philipp Wilhelm Albert Schönhöfer

aus Erlangen



Als Dissertation genehmigt

von der Naturwissenschaftlichen Fakultät
der Friedrich‐Alexander‐Universität Erlangen‐Nürnberg

Tag der mündlichen Prüfung: 25. Juli 2019
Vorsitzender des Promotionsorgans: Prof. Dr. Georg Kreimer
Gutachter: Prof. Dr. Klaus Mecke
Gutachter: Prof. Dr. Hartmut Löwen
Gutachter: Prof. Dr. Peter Harrowell



Diese Arbeit ist Teil eines Cotutelle Verfahrens

zwischen der Naturwissenschaftlichen Fakultät
der Friedrich‐Alexander‐Universität Erlangen‐Nürnberg

und der School of Engineering and Information Technology
der Murdoch University, Perth



blank!



Abstract

This thesis addresses the entropically driven colloidal self‐assembly of pear‐
shaped particle ensembles, including the formation of nanostructures based
on triply periodic minimal surfaces, in particular of the Ia3d gyroid. One of
the key results is that the formation of the Ia3d gyroid, reported earlier in the
so‐called pear hard Gaussian overlap (PHGO) approximation and confirmed
here, is due to a slight non‐additivity of that potential; this phase does not
form in pears with true hard‐core potential.

First, we computationally study the PHGO system and present the phase
diagram of pears with an aspect ratio of 3 in terms of global density and
particle shape (degree of taper), containing gyroid, isotropic, nematic and
smectic phases. We confirm that it is adequate to interpret the gyroid as
a warped smectic bilayer phase. The collective behaviour to arrange into
interdigitated sheets with negative Gauss curvature, from which the gyroid
results, is investigated through correlations of (Set‐)Voronoi cells and lo‐
cal curvature. This geometric arrangement within the bilayers suggests a
fundamentally different stabilisation mechanism of the pear gyroid phase
compared to those found in both lipid‐water and di‐block copolymer sys‐
tems forming the Ia3d gyroid.

The PHGOmodel is only an approximation for hard‐core interactions, and
we additionally investigate, by much slower simulations, pear‐assemblies
with true hard‐core interactions (HPR). We find that HPR phase diagram
only contains isotropic and nematic phases, but neither gyroid nor smectic
phases. To understand this shape sensitivity more profoundly, the deple‐
tion interactions of bothmodels are studied in two pear‐shaped colloids dis‐
solved in a hard sphere solvent. The HPR particles act as one would expect
from a geometric analysis of the excluded‐volume minimisation, whereas
the PHGO particles show deviations from this expectation. These differ‐
ences are attributed to the unusual angle dependency of the (non‐additive)
contact function and, more so, to small overlaps induced by the approxima‐
tion.
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For the PHGO model, we further demonstrate that the addition of a small
concentration of hard spheres (“solvent”) drives the system towards a Pn3m
diamond phase. This result is explained by the greater spatial heterogeneity
of the diamond geometry compared to the gyroid where additional material
is needed to relieve packing frustration. In contrast to copolymer systems,
however, the solvent mostly aggregates near the diamond minimal surface,
driven by the non‐additivity of the PHGO pears. At high solvent concentra‐
tions, the mixture phase separates into “inverse” micelle‐like structures with
the blunt ends at the micellar centres and thin ends pointing outwards. The
micelles themselves spontaneously cluster, indicative of a hierarchical self‐
assembly process for bicontinuous structures.

Finally, we develop a density functional for hard solids of revolution (in‐
cluding pears) within the framework of fundamental measure theory. It is
applied to low‐density ensembles of pear‐shaped particles, where we anal‐
yse their response near a hard substrate. A complex orientational ordering
close to the wall is predicted, which is directly linked to the particle shape
and gives insight into adsorption processes of asymmetric particles. This
predicted behaviour and the differences between the PHGO and HPR model
are confirmed by MC simulations.
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Zusammenfassung

Diese Doktorarbeit befasst sich mit der Selbstorganisation entropisch ge‐
triebener, birnen‐förmiger Kolloidteilchen. Hierbei wird besonders auf die
Bildung von Nanostrukturen eingegangen, die auf dreifach‐periodischen
Minimalflächen und insbesondere auf der Ia3d GyroidMinimalfläche fußen.
Eines unserer wichtigsten Ergebnisse besteht aus der Erkenntnis, dass die
spontane Bildung der Ia3d Gyroid Struktur, von welcher in früheren Studien
über die pear hard Gaussian overlap (PHGO) Annäherung berichtet wurde
und die hier bestätigt wurde, auf geringfügig nicht‐additive Eigenschaften
dieses Potentials zurückzuführen ist; in Systemen mit Teilchen von perfekt
harter Birnenform wird dieser dreifach‐periodische Flüssigkristallzustand
nicht beobachtet.

Zuerst untersuchen wir mit Hilfe von Computersimulationen das PHGO
System, bei demwir das Phasendiagram von Birnen‐Teilchenmit Aspektver‐
hältnis 3 präsentieren. Dieses ist in Abhängigkeit der globalen Dichte und
der Teilchenform (Teilchenverjüngung) angegeben und beinhaltet sowohl
gyroide, isotrope, nematische, als auch smektische Phasen. Wir bestäti‐
gen, dass die Gyroidphase als gekrümmte smektische Bilagenphase gedeutet
werden kann. Das kollektive Verhalten der Birnenteilchen, sich in verzahn‐
te Schichten mit negativer Gausskrümmung, aus der der Gyroid resultiert,
anzuordnen, wird erkundet, indem ein Zusammenhang zwischen den zu‐
grundeliegenden Mengen Voronoi Zellen und den lokal Krümmungen gezo‐
gen wird. Die geometrische Anordnung in den Bilagen weist auf fundamen‐
tal unterschiedliche Stabilisierungsmechanismen zwischen der von birnen‐
förmigen Teilchen erzeugten Ia3dGyroidstruktur und derer, welche in Lipid‐
Wasser Mischungen oder in Diblockcopolymeren beobachtet wurden.

Da es sich bei dem PHGO‐Modell um eine Näherung der Birnenform
handelt, untersuchen wir zusätzlich in viel langsameren Simulationen die
Selbstorganisation von Teilchen mit perfekt harter Birnenform (HPR‐Mo‐
dell). Das Phasendiagram der HPR‐Teilchen besteht lediglich aus isotro‐
pen und nematischen Zuständen, wobei weder der Gyroid noch smekti‐
sche Annordnungen beobachtet werden. Um die Anfälligkeit gegenüber der
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Teilchenform näher zu beleuchten, behandeln wir die entropische effektive
Anziehung zweier Birnenteilchen durch Depletion beider Modelle in einer
Lösung harter Kugeln. Es zeigt sich, dass sich die HPR‐Teilchen genau nach
geometrischen Vorhersagen richten, die wir zuvor durch Berechnungen des
Verdrängungsvolumens der Teilchen tätigen, wohingegen die PHGO Birnen
Unterschiede zu diesen Erwartungen aufweisen. Diese Abweichungen sind
auf die ungewöhnliche Winkelabhängigkeit der (nicht‐additiven) Kontak‐
tfunktion und auf die, durch die Annäherung enstehenden, kleinen Über‐
lappungen zurückzuführen.

Im PHGO Modell zeigen wir darüberhinaus, dass sich bei Hinzunahme
geringer Konzentrationen harter Kugeln eine Pn3m Diamantphase einstellt
(basierend auf der Schwarz D Minimalfläche). Dieses Ergebnis beruht auf
der größeren räumlichen Heterogenität der Diamantgeometrie verglichen
mit dem Gyroid, wodurch zusätzliches Material benötigt wird, um geome‐
trische Frustration zu überwinden. Im Gegensatz zu Copolymersystemen
sammeln sich die Füllteilchenmeist nahe derMinimalfläche desDiamanten,
waswiederum in demnicht‐additivenCharakter der PHGO‐Kontaktfunktion
begründet ist. Bei hohen Konzentrationen, stellt sich eine Phasensepara‐
tion ein, in welcher sich die Birnen in mizellenähnlichen Strukturen anord‐
nen. Hier bilden die dicken Enden der Birnen die Mitte, wohingegen die
Spitzen der Birnen nach außen zeigen. DieMizellen erzeugen selbst größere
Mesostrukturen, was auf eine mögliche hierarchisch aufgebaute Selbstor‐
ganisation der bikontinuierlichen Strukturen hindeutet.

Schlussendlich entwickeln wir ein Dichtefunktional im Rahmen von Fun‐
damental Measure Theory für allgemeine harte Rotationskörper, in denen
die Birnen als Spezialfall enthalten sind. Dieses wird auf ein System von Bir‐
nenteilchen bei geringer Dichte angewendet, wobei wir das Verhalten der
Teilchen an einer harten Wand untersuchen. Dabei sagen wir eine kom‐
plizierte Richtungsanordnung nahe der Wand voraus, welche direkt mit
der Teilchenform in Zusammenhang gebracht werden kann und Einsicht
in Adsorptionsprozesse nichtsymmetrischer Kolloide gibt. Das prognos‐
tizierte Verhalten der Teilchen und die Unterschiede zwischen PHGO und
HPR Modell werden durch Monte Carlo Simulationen bestätigt.
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1 Self‐assembly of bicontinuous
nanostructures

“Great things are done by a series of small things brought to‐
gether.”

– Vincent Van Gogh

The focus of this thesis is the complex three‐dimensional nanostructures
known as bicontinuous phases and in particular their genesis in entropic sys‐
tems. This chapter introduces this research field by giving a brief overview
of select aspects of nanoscience and nanomaterials. To establish the general
paradigm of this thesis – the core role of geometry for soft‐matter physics, we
first discuss the use of functional nanomaterials and the special connection
between geometry and physics (Sec. 1.1). Afterwards, the geometry behind
bicontinuous phases, namely triply periodic minimal surfaces, is introduced
(Sec. 1.2). The last section (Sec. 1.3) outlines the occurrence of such minimal
surface morphologies in chemistry, biology and soft matter physics.

1.1 Nanostructures: Functional spatial geometries

Why is steel harder than iron? What gives a kitchen sponge its squishy con‐
sistency? Why do strawberries appear red and what makes peacock feathers
extraordinarily colourful? Often the physical properties of objects can be
derived from the features of the molecules they are made of. Strawberries,
for instance, owe their bright red colour to anthocyanin pigments: chemicals
which absorb all but the red light [1]. Also the hardness of steel ismainly gov‐
erned by its carbon or alloy content [2]. However, many fascinating effects
in materials science, for instance, the mechanical properties of the sponge
or the colour of peacocks, cannot be reduced directly to the chemical com‐
pounds of substances, but are contingent instead on the internal structure
and arrangement of those molecules.
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1 Self‐assembly of bicontinuous nanostructures

(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) hydrophilic heads

hydrophobic tails

water

(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)

Figure 1.1: Two structures representing the constructionmethod for complex geometries out
of multiple constituents for different length‐scales. (a) The aqueduct de Sagovia in the centre
of Spain. Its arches embody the concepts of geometry in Roman architecture (photo credit:
Felver Alfonzo [4]). (b) A sketch of lipids forming a micelle structure in a mixture with water.

The importance of patterns and structures on the physics of materials has
been recognised for a long time. Already the ancient Romans applied geo‐
metrical concepts to buildmonumental structures, beautifully demonstrated
in the arches of their aqueducts (see Fig. 1.1a). The specific arrangement of
single stones leads to a pressure distribution which binds the loose con‐
stituents and additionally increases the tolerance to heavy loads. At the
least when Kepler stated “Ubi materia, ibi geometria!”11 400 years ago in one
of his tractates De fundamentis astrologiae certioribus [3], the inseparable
bond between geometry and matter and its special relation to patterns have
been fully acknowledged by physicists.

Today geometry plays a crucial role in understanding physical phenomena.
For instance, the percolating nature of permeable rocks can be explained by
the arrangement and topology of embedded cavities. Those voids form com‐
plex hollow tunnel systems allowing liquids or gases to spread from the top
to the bottom of the rock [5], or they can store fluids, which is of great im‐
portance in the gas or oil industry [6]. Similarly, the perforations alter the
mechanical properties of the rocks [7]. Similar mechanisms are found in the
kitchen sponge, where small pores within the cellulose fabric cause both the
sponge’s softness and its high liquid absorption. Another example is the sta‐
bility of granular packings, which is crucial for the fundamentalmechanisms

1“Where there is matter, there is geometry!”
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1.1 Nanostructures: Functional spatial geometries

of landslides of debris or finely grained soil around seismic areas and also
explains the difference between a nearly solid sand surface and liquid‐like
quicksand [8, 9, 10]. The arrangement of particles within the packing is a key
determinant that governs the static, mechanical and dynamic (flow) prop‐
erties of such systems [11, 12].

On amuch smaller, microscopic scale, patterns play a significant role like‐
wise in biology. Even before the first nanostructures, that is patterns with a
typical length scale up to 1 𝜇m, were found, D’Arcy Thompson established in
his book On Growth and Form (first published in 1917 [13]) the thinking that
biology and biological materials are informed by geometry on any imagin‐
able length‐scale. Since then, a plethora of different nanostructures with
highly diverse functions have been discovered in nature. The overwhelming
number of structures in animals and plants allows only for a limited selec‐
tion of examples which we can give in the following list (see also Fig. 1.2,
Fig. 1.3 and Fig. 1.4). However, even this glimpse into the world of nano‐ and
microstructures illustrates their impressive variety and versatility.

• The Lotus effect of ultra‐hydrophobic leaves is based on microscopi‐
cally small spikes on the surface, which decrease the contact surface
between the leaf and a water droplet significantly and so prevent the
wetting of the surface [14].

• In the eyes of moths, a nano‐grated array of knobs prevents the ac‐
cretion of unwanted particles like pollen or dust [15]. Moreover, this
particular pattern achieves additional anti‐reflective properties [16].

• Oriental hornets use grooves in their exoskeleton to harvest the energy
of light [17], which might explain their heightened activity under a UV
source [18].

• Planktonic types of microalgae, called diatoms, are known to build
porous silica shells [19]. These shells or “frustules” are produced for
protection without hindering the algae’s photosynthetic abilities (in
fact the shells even enhance the production of oxygen [20]) and ex‐
hibit a great diversity of forms as depicted in Fig. 1.2a.

• The skin of snakes is designed to facilitate a frictionless forward mo‐
tion combined with high friction in the backward direction [21]. This
friction anisotropy is caused by 400nm wide “hairs”, called microfib‐
rils.

3



1 Self‐assembly of bicontinuous nanostructures

(a) Diatoms

(b) Gecko

Figure 1.2: The functionality and variety of nanostructures in biological systems displayed
by two representative examples. (a) Microscopic diatoms form protective silica shells with a
great variety of different morphologies (adapted with permission from [19]). (b) The feet of
geckos are covered with thin hairs, called setae, which give the gecko its adhesive properties
(adapted with permission from [22]).

• Geckos are able to climb extremely smooth objects because of simi‐
larly small hairs on their feet, called setae designed to increase their
adhesive properties [22, 23] (see Fig. 1.2b).

Perhaps the influence of nanostructures is best “visualised” by the pheno‐
menon of structural (or interference) color [24, 25, 26, 27]. Here colour is
produced by the interplay of visible light and microscopically small struc‐
tures on the same length scale, so‐called photonic crystals, rather than by
chemical pigments. Most people are familiar with this optical effect as they
admired it in their childhood in the stunning array of colours of soap bub‐
bles and oil films (see Fig. 1.3a). Their appearance is not explained by chem‐
istry. On the one hand, the bubble is multicoloured and even changes colour
over time and with viewing angle. On the other hand, the soap solution on
its own – for example in a vial – is usually fully transparent without any
sign of colour. Instead of pigments, the incident light interacts with the
thin liquid soap film of the bubble which encapsulates air and separates it
from the outside. As the film acts as two interfaces between the liquid and
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1.2 Triply‐periodic minimal surface structures

(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)

Figure 1.3: Structural color demonstrated on (a) soap bubbles (photo credit: Pashminu [29])
and (b) barbules in the eye pattern of peacock feathers (photo credit: Marco Roosnik [30]).
In both cases microscopic structures on the scale of visible light generate the coloration.

air‐domain, light reflects from both interfaces and forms two separate waves
travelling different distances. This enhances the colour of a certain wave‐
length, due to constructive interference. The wavelengths that are amplified
and, more importantly, the resulting apparent colours are both controlled
by the thickness of the film. Given that the film thickness is between 200nm
and 1200 nm [28], this is the most commonly known nanoscale effect.

Flora and fauna utilize similar techniques for color creation by producing
complex nanostructures [24, 25, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,
43, 44]. For example, some flowers have developed a deliberately disordered
nanostructure which predominantly scatters light in the blue‐UV range to
attract bees, which are sensitive to exactly this wavelength [31]. Also the
feathers of peacocks exhibit an elaborate pattern on the nanoscale, which
imbues the bird with its piedness [24, 32] (see Fig. 1.3b). Additionally, these
structures induce a much more complex optical effect, namely an angle de‐
pendency of colour appearance called iridescence [25, 33, 34, 35]. Not only in
other birds [25, 36], but also in insects [37, 38, 39, 40], whichmight unfold the
greatest diversity of nanostructures [41], arachnoids [42] and cephalopods
[43], a magnificent range of structural color creating patterns has been de‐
tected.

1.2 Triply‐periodic minimal surface structures

This thesis is focused on one of themost complex, but simultaneously highly
symmetric and most ordered class of geometries, whose, among others,
optical properties have raised major interest amongst both biologists and
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1 Self‐assembly of bicontinuous nanostructures

(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b) (c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)GyroidGyroidGyroidGyroidGyroidGyroidGyroidGyroidGyroidGyroidGyroidGyroidGyroidGyroidGyroidGyroidGyroid (d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)

(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e)(e) (f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f)(f) (g)(g)(g)(g)(g)(g)(g)(g)(g)(g)(g)(g)(g)(g)(g)(g)(g)DiamondDiamondDiamondDiamondDiamondDiamondDiamondDiamondDiamondDiamondDiamondDiamondDiamondDiamondDiamondDiamondDiamond (h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)(h)

Figure 1.4:Nanostructures creating structural color in the Callophrys rubi butterfly (a‐c) and
the Entimus imperialis weevil (e‐f). Light microscopy shows that the wings (b) and pits (f)
are built out of multi‐faceted scales. Electronmicroscopy of their wing and pit scales, respec‐
tively, reveals two triply‐periodic minimal surface structures (see Sec. 1.2), the single gyroid
in the [110]‐direction (b,c) with lattice constant 𝑎SG = 311nm [45] and the single diamond in
the {100}‐ (f) and {111}‐direction (g) with lattice constant 𝑎SD = 445nm [37]. For comparison
computer models of the single gyroid (d) and single diamond (h) are shown (reproduced
with permission from Ref. [46] (a‐c) and Ref. [38] (e‐g)).

physicists. Two representatives, which demonstrate this complexity, have
been observed in certain butterflies (the so‐called single gyroid [46, 47]) and
weevils (the so‐called single diamond [37, 38]) and are depicted in Fig. 1.4.
By performing electron microscopy, it becomes apparent that the scales of
the wings of the butterfly and the scales of the pits of the weevil both display
a chitinous network‐like geometry. In both cases, the nanostructures are re‐
sponsible for the green appearance of the wings/scales and can be attributed
to bicontinuous triply‐periodic minimal surfaces (TPMS) [48, 49, 50, 51, 52].

The most famous members of TPMSs, the gyroid (Ia3d symmetry),
diamond or Schwarz‐D surface (Pn3m symmetry) and also the primitive or
Schwarz‐P surface (Im3m), are ubiquitously found in biological and chemical
systems and are depicted in Fig. 1.5. These three surfaces partition space into
two identical (up to mirror reflections) and interwoven domains, which are
often alternatively visualised as two intertwined, periodic and highly sym‐
metric labyrinth‐like sub‐volumes and, hence, are referred to as bicontinuous.
In the butterfly and weevil system in Fig. 1.4 the gyroid and diamond surface,
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1.2 Triply‐periodic minimal surface structures

(a) (b) (c)

(d) (e) (f)

Figure 1.5: The three most common triply‐periodic minimal surface structures occurring in
nature and soft matter: (a+d) gyroid, (b+e) diamond, (c+f) primitive. At the top, the TPMS
surfaces are shownwhich divide space into two equally sized subdomains. At the bottom, the
alternative depiction of the two intertwined non‐intersecting labyrinth‐like domains is indi‐
cated. The domains are represented by filling the smaller channels of their CMC companions
[53, 54, 55].

for example, separate the chitin network from the air filled channel and gen‐
erates a single gyroid and single diamond structure, respectively.

The auxiliary “single” in single gyroid or single diamond refers to the dif‐
ferent chemical compounds of the two sub‐volumes in these systems leading
to a different symmetry group than the surface structures on which they are
based.22 The individual channel networks of the gyroid are also known as
“srs”‐networks, named after the SrSi2 crystal [56]. This specific structure is
of special interest as it is chiral (with a 4‐fold screw axis in the {100}‐direction
and a 3‐fold screw axis in {111}‐direction [55]) and has even been argued to be
the simplest interconnected chiral network with cubic symmetry [56]. The

2The single gyroid has the symmetry group 𝐼4132, the single diamond the space group 𝐹𝑑3𝑚,
and the single primitive the space group 𝑃𝑚3𝑚.
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1 Self‐assembly of bicontinuous nanostructures

“double” gyroid, where the two channels are not distinguishable and the
structure has the same symmetry group as the attributable surface, contains
two srs‐networks with opposite handedness and, therefore, is overall achiral
[57].

1.2.1 Mathematical description

In mathematical terms, minimal surfaces are defined as surfaces of zero
mean curvature 𝐻. This implies that every point 𝑝 on the surface is a saddle
point and the principal curvatures, 𝜅1 and 𝜅2, differ only in sign. In terms
of Gaussian curvature 𝐾 – the product of both principle curvatures – these
surfaces are hyperbolic, and so

𝐻 (𝑝) = 1

2
(𝜅1(𝑝) + 𝜅2(𝑝)) = 0

𝐾 (𝑝) = 𝜅1(𝑝) · 𝜅2(𝑝) ≤ 0 ∀𝑝 ∈ TPMS.
(1.1)

The “minimal” feature refers to the surface being a critical point of the
area functional, constrained by the boundary conditions in terms of varia‐
tions due to normal deformations [58]. In other words, minimal surfaces
are local optima, where the surface area is minimised subject to sufficiently
simple boundary conditions embedded within the surface. Hence minimal
surfaces are special cases of constant‐mean‐curvature surfaces (CMC) where
the mean curvature is constant but not zero necessarily. Classic examples
for minimal surfaces are again soap films which form catenoid minimal sur‐
faces between two rings due to surface tension (see Fig. 1.6).

Triply‐periodic minimal surfaces are a special class of minimal surfaces
that are invariant under a discrete set of translations which determine the
Euclidean space and can be assigned to a crystallographic symmetry group.
Despite the great variety of TPMSs with different symmetries only a lim‐
ited class of these surfaces are not self‐intersecting and even fewer (espe‐
cially gyroid, diamond, and primitive) have shown their importance in liv‐
ing organisms [37, 38, 46, 47, 59, 60, 61, 62, 63, 64] and synthetic materials
[65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80].

Some of these bicontinuous gyroid, diamond or primitive structures are
technically notminimal surface structures but belong to one of their constant
mean‐curvature (CMC) companions [53, 54, 55]. These surfaces share the
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1.2 Triply‐periodic minimal surface structures

Figure 1.6: Two classic examples of minimal surfaces. Left: A soap filmminimises the surface
area between two parallel rings. The emerging minimal surface is the catenoid (Photo credit:
EPINET [81]). Right: A braided mesh spanned over four of six edges of a regular tetrahedron
(photo credit: AGPapa [82]). By tightening the mesh it eventually forms a minimal surface
which is the fundamental surface patch of the diamond minimal surface (see Fig. 1.5).

same topology as their parents, however, vary in terms of the volume frac‐
tion between the two separate channel domains. Even though 𝐻 (𝑝) is con‐
stant for all points 𝑝 on the CMC surface, it is unequal to 0 unless the CMC
surface is congruent with the TPMS itself. The CMC companions can also
be created by minimising the surface area, with the difference that a con‐
straint of the fixed volume ratio between the divided subdomains has to be
included.

Triply‐periodic minimal surfaces were first discovered in 1856 by Aman‐
dus Schwarz [83] in the form of the D‐surface. He noticed that a soap film
spanned across a quadrilateral frame, consisting of four edges of a regu‐
lar tetrahedron, can be smoothly and infinitely continued with other soap
films creating the same surface patches (see Fig. 1.6). This is due to the fact
that every TPMS can be constructed out of a smallest fundamental piece
or “Flächenstück” under consideration of the symmetry group. For sur‐
faces with mirror and two‐fold in‐surface rotations, these patches are often
bounded by straight lines ormirror planes. Using this idea, Schwarz later ac‐
complished to formulate, with input from Riemann and Weierstrass [48, 51],
an analytical expression for a couple of TPMS including the diamond and
also the primitive surface. They were able to connect holomorphic functions
𝑅(𝜔), which are complex differentiable functions at every point 𝜔∈C, with
minimal surfaces [48]. In particular, it was shown that for all 𝑅(𝜔) there
exists a minimal surface which is embedded in space by x = (𝑥, 𝑦, 𝑧) where
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1 Self‐assembly of bicontinuous nanostructures

𝑥(�̄�) = Re
∫ �̄�

0
ei𝜃𝐵 (1 − 𝜔2)𝑅(𝜔)d𝜔

𝑦(�̄�) = Im
∫ �̄�

0
ei𝜃𝐵 (1 + 𝜔2)𝑅(𝜔)d𝜔

𝑧(�̄�) = Re
∫ �̄�

0
ei𝜃𝐵 (2𝜔)𝑅(𝜔)d𝜔,

(1.2)

with the Bonnet angle 𝜃𝐵. This Weierstrass representation is still a powerful
tool to generate and visualise TPMS [84, 85, 86]. As this procedure gives a
more accurate representation of the TPMS, we will favour the Weierstrass
approach over the nodal approximation of Eq. (1.5) to depict the surfaces in
this thesis.

The gyroid was first described by Alan Schoen nearly 100 years later during
his studies on TPMS and their Weierstrass representation [52, 87]. The gy‐
roid, diamond, and primitive surface share the same holomorphic function,
called the Weierstrass function [85, 86, 87, 88]

𝑅(𝜔) = 1
√
𝜔8 − 14𝜔4 + 1

. (1.3)

and only differ in 𝜃𝐵. Hence, the Bonnet angle can be seen as a parameter
to transform the surface from a diamond where 𝜃𝐵 = 0, to a gyroid where
𝜃𝐵 = arccot K(1/4)

K(3/4) ≈ 38◦ with K being the complete elliptical integral of the
first kind, to the primitive surface where 𝜃𝐵 = 𝜋

2 [87].

Since then many other TPMS have been introduced [53, 89], but they do
not receive the same attention in physics and biology as their three relatives
because they are found less frequently, if at all. It is believed that the gyroid,
diamond, and primitive surfaces aremore likely to be obtained in nature and
chemistry as they exhibit the lowest inhomogeneity of Gaussian curvature
[70, 90, 91]. This makes them the closest attempt to embed a manifold with
constant negative Gaussian curvature in Euclidean space (see Sec. 8.1 for a
more in‐depth discussion).

Gyroid‐like surfaces and TPMS are still of interest in contemporarymathe‐
matical research. For example, Fujimori and Weber [92] recently introduced
an alternative construction method for TPMS surfaces based on a Schwarz‐
Christoffel formula for periodic polygons. Similarly, Chen [93] identified

10



1.2 Triply‐periodic minimal surface structures

some minimal surfaces as minimal twins of TPMS. Also, new minimal sur‐
faces have been described within the last two years, for instance, by deform‐
ing already known TPMS embeddings sufficiently [94, 95] or generating
area‐minimising interfaces between the quartz network and its dual [96].
For the latter a powerful software‐tool called Surface Evolver [97, 98] is used
which minimises the energy (for example area) of surfaces for given con‐
straints.

1.2.2 Nodal approximation

A convenient way to approximate a TPMS is by the nodal surface of a Fourier
series [99, 100, 101]

0 = Ψ(x) =
∑

k
𝐹 (k) cos[2𝜋k · x − 𝛼(k)], (1.4)

where k is the reciprocal lattice vector, 𝛼(k) is a phase shift and 𝐹 (k) is an
amplitude. Also the TPMS can be satisfactorily reproduced by truncating
the Fourier series to the leading term, which gives the so‐called nodal ap‐
proximation of the gyroid, diamond and primitive surface [102]

gyroid: 0 = sin 2𝜋𝑥
𝑎

· cos 2𝜋𝑦
𝑎

+ sin 2𝜋𝑦
𝑎

· cos 2𝜋𝑧
𝑎

+ sin 2𝜋𝑧
𝑎

· cos 2𝜋𝑥
𝑎

diamond: 0 = cos 2𝜋𝑥
𝑎

· cos 2𝜋𝑦
𝑎

· cos 2𝜋𝑧
𝑎

− sin 2𝜋𝑥
𝑎

· sin 2𝜋𝑦
𝑎

· sin 2𝜋𝑧
𝑎

primitive: 0 = cos 2𝜋𝑥
𝑎

+ cos 2𝜋𝑦
𝑎

+ cos 2𝜋𝑧
𝑎
, (1.5)

where 𝑎 is the crystallographic lattice parameter (periodicity) of the surface.
With the nodal representation, also the CMC companions of these surfaces
can be approximated by replacing 0 on the left‐hand side of the equations
Eq. (1.5) with a constant 𝜖 . Here the constant 𝜖 acts as a control parameter
to shift the size proportions of the sub‐volumes (but not in a strictly linear
fashion [103]). The orange and blue channels in Fig. 1.5 are, for example, con‐
structed by filling the minority domain of each CMC, which is approximated
by a nodal equation with 𝜖 = 1 and 𝜖 = −1, respectively.

To picture the essential geometry of the domains, TPMS are often rep‐
resented by a skeletal network [90] or the medial axis of the minimal sur‐
faces (see [104] for a review). This medial surface (or axis) is a geometric
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1 Self‐assembly of bicontinuous nanostructures

construction that produces a centred skeleton of the original shape. For
the case of bicontinuous structures, it represents a generalised line graph
that also provides a robust definition of local domain (or channel) size and
hence relates to questions of chain stretching frustration and geometric ho‐
mogeneity [70, 90, 91, 105]. For an object defined by its bounding surface,
for every surface point 𝑝 with surface normal vector 𝑛(𝑝), the corresponding
medial surface point is defined as 𝑝 + 𝑑MS(𝑝)·𝑛(𝑝). The medial surface dis‐
tance function 𝑑MS(𝑝) describes the distance from 𝑝 to the corresponding
centre of the channel.

1.3 Triply‐periodic minimal surfaces in chemistry
and nature

The ambition to mimic highly complex and functional nanostructures like
the TPMS found in living organisms marks one of the pillars of today’s re‐
search in bio‐ and soft matter physics. Due to their geometry and topol‐
ogy, TPMS and the corresponding CMCs are attractive for application in
optics, where they can function, for instance, as beamsplitters [106, 107],
photo‐sensors [108, 109] or on‐chip chiro‐optical devices [110]. But they also
raise interest for their transport [111, 112, 113, 114] and mechanical properties
[115, 116, 117, 118] and even have been suggested for a new way of energy stor‐
age [119, 120, 121, 122, 123]. Next to the efforts expended in understanding
how certain nanostructures manipulate these material properties, partic‐
ularly the pursuit of the astonishing efficiency and variety of mechanisms
which nature developed, is a driving force of many recent studies.

For the construction of gyroid‐like structures on the nano‐scale, scientists
have developed, in the course of this, various methods which can be sepa‐
rated into two general categories. In top‐down approaches the networks are
manufactured directly out of certain materials. The techniques which are
listed as bottom‐up strategies, on the other hand, are inspired by nature,
where microparticles collectively assemble into complex morphologies.

1.3.1 Top‐down assembly methods

The most straightforward methods for preparing nearly arbitrarily sized
nanostructures, including the gyroid or diamond networks, are categorised
as top‐down approaches. These strategies are essential to create new types
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1.3 Triply‐periodic minimal surfaces in chemistry and nature

of meta‐materials with tailored photonic or mechanical properties (see Ref.
[124] for a recent review focused on gyroid‐like structures generated with
top‐down approaches). Traditionally, lithography has been the most reli‐
able route for preparing TPMS nanostructures with the top‐down approach.
The idea of these techniques is simply speaking to carve void space into a
block of material using a photon or electron beam. In the case of interfer‐
ence lithography, for example, the three‐dimensional network is shaped by
the superposition of coherent light in a photo‐reactive substance [125]. In
particular, photonic crystals with different morphologies have been manu‐
factured using multi‐beam/holographic [126] and phase‐mask lithography
[127, 128], also including TPMS structures [129, 130, 131, 132]. These lithogra‐
phy techniques, however, are subject to limitations in terms of their require‐
ment on a substrate, the obtainable geometries and the feasible dimensions
of the final object. Typically they are also associated with complex optical
setups. Other known methods, like atomic layer deposition [133, 134] and
cuprous oxide electrodeposition [135] have similar issues regarding their ef‐
ficiency and restriction to create structures of high complexity.

Nowadays many of these problems have been alleviated through the ad‐
vances made in 3D nanoprinting. Especially multiphoton lithography, also
known as direct laser writing (DLW), [136, 137] and super‐resolution photo‐
induced‐inhibition nanolithography (SPIN) [138, 139] provide the greatest
combination of speed, precision, and flexibility. With these two methods,
yet another degree of complexity can be added to the already intricate mor‐
phology of the srs [106] or double gyroid [140]. In particular, multi‐srs net‐
works, where 2‐srs [141], 4‐srs [56, 142], 8‐srs [143, 144] or even more like‐
handed srs networks are intertwined, have been built. Hereby, the chiral
nature of the srs‐networks opened a new path for achieving interesting topo‐
logical and optical phenomena, such as Weyl points (topological monopoles
of the Berry‐flux) [140, 145], circular dichroism effects [56, 106] and optical
activity [56, 143].

Another great benefit of DLW, SPIN and top‐down approaches, in general,
is the layout flexibility of the used material. The incorporation of different
materials is of great interest in modern‐day nanofabrication, for example, to
alter the refractive index of the optical material or the elasticity of scaffolds.
Next to the already mentioned photo‐sensitive polymers, gyroidal nanos‐
tructures have also been created from ceramic [140], chalcogenide glasses
[147, 148, 149], and graphene [150]. Moreover, metallic gyroids have been
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(a) (b) (c)

Figure 1.7: (a) A 50 𝜇m×50 𝜇m srs‐network nanostructure created out of a plastic coverslip
using direct laser writing. A close‐up of the same structure before (b) and after (c) the surface
is coated with silver particles. The figure is adopted from Ref. [146].

fabricated using DWL and electroless metallization [146] (see Fig. 1.7) or
layer‐by‐layer deposition [124] on a polymer template.

1.3.2 Bottom‐up assembly methods

Bottom‐up approaches, which are the focus of this work, resort to a similar
idea like the Romans for building aqueducts. Like the differently shaped
stone bricks, small nanoparticles adopting suitable shapes act as building
blocks to form long‐ranged complex geometries (see Fig. 1.1). In particular,
self‐assembly (that is, the spontaneous and collective arrangement of mul‐
tiple nanoparticles into ordered microstructures) has proven to be a fun‐
damental design strategy to generate elaborate bio‐inspired patterns. First,
the method of particles forming complex configurations without any ex‐
ternal input (like electromagnetic fields, or in contrast to the aqueduct:
manpower) makes this bottom‐up procedure much more energetically cost‐
effective than top‐down strategies. Secondly, we can hope to fabricate nano‐
materials on a much larger scale than it is otherwise achievable. The butter‐
fly C. rubi, for example, produces several cm2 of gyroid structure, where the
top‐down DLW method is limited to (10 𝜇m)2 samples [151]. Molecules and
nanoparticles which self‐assemble into diffusive ordered configurations are
often categorised as liquid crystals.

Liquid crystal phases

Liquid crystals (LC), also known asmesogens, and their applications have be‐
come indispensable in today’s everyday life. May it be their implementation
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0 ◦C 25 ◦C 50 ◦C

Figure 1.8: A cholesteric liquid crystal (MBBA) passes through three different phases (photo
credit: Feodor Oestreicher [152]) . For low temperatures, the liquid crystal is in a solid phase.
By supplying heat the system transitions into amesophase which is revealed as amilky liquid.
By raising the temperature further the liquid turns transparent and the liquid crystal adopts
the isotropic phase.

in many of our electronic devices as a crucial part of liquid crystal displays
(LCD) [153, 154], or their value as a tool to detect heat sources in medicine
[155] and electrical engineering [156], LCs have proven to be of great im‐
portance in technology. Typically, liquid crystals are defined as anisotropic
particles or molecules which exhibit additional, more complicated phases in
between the liquid and crystalline state, see e.g. Ref. [157]. These so‐called
mesophases (μέσος; greek mesos: “middle”) display features characteristic
of both liquid and solid matter. Elongated molecules with liquid‐like flow‐
ing dynamics which simultaneously can be assigned some sort of solid‐like
anisotropy in terms of their orientational order are prime examples of liq‐
uid crystals. The term liquid crystal or “flowing crystal” was introduced by
Otto Lehmann in 1890 [158] after Friedrich Reinitzer observed this duality
of states in derivates of cholesterol [159]. Even then, though not fully un‐
derstood, their influence on optical features became apparent. Reinitzer
observed two phase transitions. One from the solid to a milky liquid‐like
mesophase. At the other one the liquid turned transparent (see Fig. 1.8).

Commonly, the mesophases are classified into four different types: ne‐
matic, smectic and cholesteric (see Fig. 1.9). This classification is traceable
to their description by Georg Friedel in 1922 [160]. The common LC phases
are in the notation used in Ref. [157].

• The nematic phase (νήμα; greek nema: “thread”) is characterized by
its long‐range orientational and only short‐range translational order.
This means that the particles are homogeneously distributed within
the system like a liquid, however, possess an overall orientational
alignment. The direction that is defined by the preferred orientation is
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1 Self‐assembly of bicontinuous nanostructures

isotropic

nematic smectic

crystalline

cholesteric

liquid crystalline mesophases

Figure 1.9: The three classes of thermotropic mesophases between the isotropic and the
solid/crystalline phase. (a) The nematic phase exhibiting no translational but orientational
order. (b) The cholesteric phase characterized by an additional chirality of the director. (c)
The smectic phase combining both translational order in one dimension and orientational
order.

called the director. Usually, the orientational alignment occurs along
the major axis of the particles. Orientational order along the smaller
axes has also been observed, often referred to as discotic or columnar
phases as they also often form columns which themselves can arrange
in different two‐dimensional patterns (hexagons, rectangles) at higher
concentrations[161].

• On introducing an overall chirality to the nematic system, the phase is
defined as cholesteric. This phase was the one discovered by Reinitzer
in cholesterol [159], hence the name. Here the director changes along a
direction perpendicular to the director in a corkscrew‐shaped fashion.
This is manifested in a twist of the particles and simultaneously by the
formation of layers with different orientation of the director.

• The smectic phase (σμῆγμα; greek smégma: “soap” due to their soap‐
like behaviour) differs from the other two by exhibiting some degree
of translational order. Like in the nematic phase the particles align
along a director, however, they also assemble into two‐dimensional
stacks/sheets. Within the different sheets the particles are still dis‐
tributed randomly and diffuse like a liquid, yet, the formation of the
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1.3 Triply‐periodic minimal surfaces in chemistry and nature

sheets indicates a one‐dimensional positional order. If the particles
are layered in the same direction as the director the smectic phase is
indicated by smectic‐A. If the director does not coincidewith the layer‐
normal the phase is called smectic‐C [157].33

All of the phasesmentioned above are typically associated with thermotropic
molecules. Here the occurrence of the different phases is highly dependent
on the temperature 𝑇 of the system. However, liquid crystals of another type
have shown themselves to be able to form more complex phases – including
TPMS phases. These lyotropic LCs consist of mesogens dissolved in a suit‐
able solvent (typically a simple liquid or mixture of simple liquids). Hence,
the mesophases are more dependent on the concentration between meso‐
gen and solvent rather than the temperature of the system, which only plays
a subordinate role.

Lipid bilayer structures

An example of LCs which famously adopt bicontinuous structures are the
lyotropic phases of amphiphilic lipids [65, 66]. These molecules consist
of a solvophilic head and a solvophobic tail end – therefore the term am‐
phiphilic (αμφις; greek amphis: “both”) – such that the lipids favour to face
the solvent with their head rather than their tail part. Bicontinuous struc‐
tures in pure water‐lipid‐systems without excess water were first reported
by Luzzati [162]. The bicontinuous phase is a mesophase between a lamel‐
lar phase, where bilayers of lipids and water create alternating planar sheets
(dry conditions), and the hexagonal columnar phase where lipids enclose
infinite water cylinders in a hexagonal pattern (high water content) [163].
On diluting the hexagonal phase further, lipids arrange into spherical “mi‐
celle” clusters with the solvophobic moiety in the center of the micelle (see
Fig. 1.1b). In the bicontinuous phase, the lipids form curved bilayers which
are draped around the minimal surface and act as a matrix separating two
aqueous domains [65, 67, 164]. Here the tails of the lipids meet at the curved
minimal surface such that the head groups face the water domain, similar
to the arrangement in the lamellar phase (see Fig. 1.10c). At a low concen‐
tration of water, the symmetry of the two domains can be assigned to the
gyroid structure. Increasing the water content leads to the formation of the
diamond structure [163, 165]. Similarly, the introduction of proteins to the
gyroid phase can stabilise a diamond configuration [166]. This is explained

3However, if there are additional correlations, also further classification is possible.
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(a)

Pears

(b)

water

Lipid+Water

(c)

Copolymers

(d)

Figure 1.10: The three different arrangements within the gyroid phase (a) generated by ta‐
pered liquid crystalline pears, (b) lipids in a mixture with water, (c) and di‐block copolymers
(d). The pears, lipids and di‐block copolymers create bilayers draped aroung the gyroid min‐
imal surface ( ).

by the greater spatial heterogeneity of the diamond compared to the gyroid
[70, 91, 167] (see Sec. 8.1 for a more in‐depth discussion). In the diamond
phase, the system has to fill more domain space compared to a gyroid phase
with a similar degree of Gaussian curvature and arranges this by placing the
additional material – more water and proteins, respectively – within the wa‐
ter channels. By further adding water to the water‐protein‐lipid system, the
phase eventually transitions into a P‐surface configuration [168].

Biological bicontinuous membranes

Biological membranes of lipids with TPMS morphology, known as cubic
membranes [62, 171, 172], have been reported in various lifeforms. Among
these systems are, for example, chloroplasts which form prolamellar bodies
under lack of light [63, 173], endoplasmatic reticula in response to height‐
ened concentration levels of specific proteins [62, 169] (see Fig. 1.11a) or mi‐
tochondria of amoebae under starvation [60, 170] as shown in Fig. 1.11b. Also
themitochondria in the retina of tree shrews exhibitmembranes with gyroid
morphology [174]. Even though it has been noticed [62, 175] that these mem‐
branes in vivo transition into cubic phases exceptionally often when subject
to cellular stresses like starvation [60], viral infections [176, 177] or hypoxia
[178] and although it has been conjectured that these transitions are part
of an antioxidant defence mechanism of the cells [179] the exact biological
functions and fundamental formation processes are still unknown.
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1.3 Triply‐periodic minimal surfaces in chemistry and nature

(a) (b)

Figure 1.11: (a) A TEM image of endoplasmatic reticulum forming a cubic membrane struc‐
ture with the same morphology as the diamond surface. The image is adopted with permis‐
sion from Ref. [169]. (b) A TEM image of a diamond‐like cubic membrane found in mito‐
chondria of starving amoeba. The image is adopted with permission from Ref. [170].

Moreover, it is conjectured that in an intermediate stage of the wing devel‐
opment of the butterfly in Fig. 1.4, themolecules form bilayers with the same
morphology as the gyroid minimal surface [180, 181], which act as a mem‐
brane separating space into two percolating channels. It has been argued
that this bilayer arrangement functions as a cast, which templates externally
extruded chitinous cuticle, resulting in the final chiral single gyroid struc‐
ture. This method has inspired scientists to develop a similar templating
technique to generate inorganic gyroid structures from the butterfly nanos‐
tructure [182, 183, 184] or other self‐assembled templates [185, 186, 187]. Thus,
the use of biotemplates can be understood as an indirect self‐assembly ap‐
proach.

Block copolymers

The second important group of molecules that adopt double gyroids are
copolymeric melts [68, 69, 70, 71, 72, 73, 188], in particular, di‐block
copolymers (note also the review about copolymeric self‐assembly in Ref.
[189]). Di‐block copolymers consist of two different chains, each built up of
single monomer “beads” A and B, which are linked to generate one single
molecule. Both end chains energetically favour coming closer to chains of
the same kind and, therefore, also establish some kind of amphiphilic be‐
haviour. Depending on the relative volume fractions of the two monomers,
the di‐block copolymers arrange in similar phases to those of lipid system,

19



1 Self‐assembly of bicontinuous nanostructures

namely lamellar, columnar and micellar phases [68, 188]. At a volume frac‐
tion of 33% the melt can also adopt a gyroid geometry (see Fig. 1.10d). Here
the majority component fills the channels separated by a matrix formed by
the minority moiety. A transition to the diamond and primitive phase has
been theoretically and computationally examined by addingA‐homopolymers
[71, 190] and experimentally stabilised upon addition of inorganic compo‐
nents [191]. Even more complex, polycontinuous TPMS, where space is sub‐
divided into more than two domains, have been studied by adding more
monomer types to the molecule [192].

There are other lyotropic and thermotropic liquid crystals [74, 75, 76] and
also dry monovalent soaps [77], dendrimers [78], mesoporous silica [79] and
germanium oxides [80] which form bicontinuous phases as well.

Although self‐assembly shows great potential for recreating the formation
processes of TPMS in nature, bottom‐up strategies still face some issues, es‐
pecially concerning limits in orientation and scalability. Until now, only
very small self‐assembled gyroid structures (with the largest having peri‐
ods of about 258 nm [193]) have been synthesised with periodicities below
the ones found in nature. Hence, those systems mainly interact with UV
light instead of light in the visible region and cannot yet be used as color
creating devices. Even though there have been some advances to shift self‐
assembled nanostructures into the visible light range [194, 195, 196], which
are potentially applicable to gyroid assemblies, and to the synthesis of sys‐
tems with controlled orientation [197], this open question is still unresolved.
Therefore, we investigate a self‐assembly approach which stands out with a
certain uniqueness and is based on the interaction between hard colloidal
nanoparticles.

1.3.3 Colloids

In this thesis, we mainly focus on a specific class of lyotropic liquid crys‐
tals, namely colloidal lyotropic liquid crystals [198]. Colloids are non‐mixing
suspensions of nano‐ or microsized particles of a certain state (gas/liquid/
solid) in another substance of the same or different state. This includes,
for example, foams (gas bubbles in a liquid), fog (water droplets in air),
milk (liquid fat droplets in water) or blood (solid blood cells in liquid blood
plasma). Due to the small size and low mass of the colloidal particles, their
dynamics aremainly dominated by the interactions between themselves and

20



1.3 Triply‐periodic minimal surfaces in chemistry and nature

the Brownianmotion caused by the surrounding solvent. External forces like
gravitation, however, do not affect the colloidal system on the time scale
for which they are usually studied in experiments. For large colloids on
the micron‐scale, gravity is certainly relevant, but we are not interested in
these particular systems. This negligible influence of gravity distinguishes
colloidal systems greatly from granular materials and makes them easier to
study using computational techniques like simulations. Nevertheless, most
colloids are also large enough to be seen using light microscopy. This makes
them interesting for experiments.

Lipids and di‐block copolymers are great examples of systems which fea‐
ture complex electrostatic interactions between the LCs or the LC and the
solvent and mainly self‐assemble into ordered structures due to a dominant
enthalpic component. In general the mesophases, however, arise as a re‐
sult of minimizing the Helmholtz free energy 𝐹 of the system, which has an
energetic part 𝑈 and an entropic part 𝑆, given by

𝐹 = 𝑈 − 𝑇 · 𝑆. (1.6)

The influence of entropy is often, in particular in popular science writing
and even thermodynamic or statistical mechanics textbooks, misinterpreted
and its part in creating ordered phases is not properly acknowledged. This
is based on the flawed notion that entropy is often falsely, or overly sim‐
plistically, associated with an increase in disorder [199, 200, 201] rather than
with the proper definition of the Boltzmann entropy as a measure for the
configuration space Ω of the particles [202]

𝑆 = 𝑘𝐵 lnΩ (1.7)

with the Boltzmann constant 𝑘𝐵. Already 70 years ago, however, Onsager
contradicted this misconception of equating entropy with randomness. By
calculating and minimizing the free energy, Onsager predicted the orienta‐
tional order of infinitely long hard spherocylinders satisfying 𝐿

𝐷→ ∞ with
length 𝐿 and width 𝐷 at high densities [203]. Hard colloidal particles only
interact via volume exclusion, that is short‐ranged, repulsive and infinitely
steep interactions. To put it in other words the only restriction which pre‐
vents particles from roaming freely is that they are not allowed to overlap.
For the purpose of this thesis, we define a colloid to primarily interact as
such hard particles.
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1 Self‐assembly of bicontinuous nanostructures

Figure 1.12:A colloid experiment showing crystallisation of hard spheres performed by Pusey
and van Megen, which displays entropically driven order. This experiment shows that hard
colloidal sphere systems way below the random close packing fraction (Φ = 0.634 [204])
equilibrate into crystalline arrangements. This can be explained by maximizing the entropy
of the system (reproduced with permission form [205]).

Onsager’s spherocylinders are quintessentially entropy‐driven. The mere
interactions via collision imply that all allowed microscopic states are as‐
sociated with a constant internal energy 𝑈. Considering Eq. (1.6), only the
entropic term contributes to the free energy minimization. It also becomes
apparent that in this case 𝑇 , usually constant in experiments, does not affect
mesophase formations either and can be interpreted as a scaling factor for
the time‐scale in which colloidal systems equilibrate. Even though it seems
counter‐intuitive, at first glance, that a system with a preferred orientations
is able to adoptmore configurations than systemswith randomly distributed
particle orientation, the constraint in the rotational degrees of freedom in‐
creases the translational freedom at high densities. Consequently, the sphe‐
rocylinders try to orient parallel to each other to adopt a wider range of po‐
sitions and so obtain more space to “wiggle” around without hitting neigh‐
bouring particles. Later the first computational simulations on the simplest
hard particle assemblies – hard spheres – also illustrated translationally or‐
dered arrangements due to entropy. Alder and Wainwright [206] observed
a phase transition into a colloidal crystal far below the later determined ran‐
dom close packing density of 0.636 [204]. It was only with the beautiful
demonstration and illustration by Pusey and van Megen [205, 207] in the
1980s that these simulation predictions could be confirmed experimentally
(see Fig. 1.12). Also the longstanding discussions to this day about the two‐
dimensional equivalent hard disc system have to bementioned when talking
about the importance of entropy in self‐assembly [208, 209].
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Figure 1.13: The phase diagrams of hard spherocylinders (left) and hard ellipsoids (right) in
regards to density and aspect ratio of the particles. Despite their close similarity in shape,
only the spherocylinders adopt a smectic phase. The figures are reproduced with permission
from [237] (left) and [214] (right)

Since the simulations of Alder and Wainwright, a lot of theoretical [210, 211,
212] and computational [213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223] work
has been done to predict the behaviour of several, differently shaped parti‐
cles. Furthermore, the last decade has witnessedmajor improvements in our
ability to synthesise a variety of colloids and nanoparticles with complex as‐
pherical shapes in large numbers. These have revealed and confirmed that
a great range of phases and behaviours (such as shear banding [224, 225])
are accessible to colloidal systems. Common shapes which can be prepared
nowadays include multi‐sphere particles [226, 227], ellipsoids [228, 229],
rods [230, 231], polyhedra [232, 233], superballs [234] and even more elab‐
orate particle shapes [235, 236].

It appears intuitive that, in hard particle assemblies, where excluded vol‐
ume is themost important parameter, the particle shape is a crucial property
of the system. The enormous influence of shape becomes apparent by com‐
paring the phase behaviour of hard spherocylinders [213] and hard ellipsoids
[214] obtained by simulations and displayed in Fig. 1.13. Even though the
shapes of the individual particles seem rather similar the smectic phase is
only assembled by spherocylinders and not by ellipses. Thus predicting the
right phase behaviour of particles exclusively by looking at their shapes is
a sheer impossible task44, which makes the theoretical and computational
colloidal studies of exceeding importance [236, 238]. By the same token, the

4Even though for some structures some necessary characteristics are suggested [221].
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1 Self‐assembly of bicontinuous nanostructures

number of possible shapes promises a large variety of different obtainable
structures [202]. Including other more complex interactions, obviously in‐
fluences the phase behaviour of colloids [202, 239, 240]. Nevertheless, also
for these systems, the entropic effect on the choice of the adopted phase has
to be considered as the interaction terms are typically of the same order as
the thermal energy 𝑘𝐵𝑇 . Often a concept of particle shape is held respon‐
sible for more complex nanostructures, rather than simply orientationally
ordered nematic or smectic phases, for example TPMS.

Colloidal gyroid phases

Over ten years ago it was computationally asserted by Ellison and Cleaver
that colloidal particles are able to adopt a gyroid structure [241]. For this
they studied the phase behaviour of a purely repulsive hard pear‐like particle
system [241, 242, 243]. Even though the importance of entropy for the self‐
assembly of amphiphilic systems into the gyroid has long been recognised,
and is implicit in both the molecular shape concept [50, 244] and the Hel‐
frich formalism [245, 246], the pear‐shaped colloid system is a particularly
good system towiden our understanding of the entropic aspect in the forma‐
tion of bicontinuous phases. Pear‐shaped particles are tapered versions of
ellipsoids, best thought of as prolate ellipsoids with a wider ‘blunt’ end and a
narrower ‘sharp’ end. For appropriate parameter values, equilibrium ensem‐
bles of such pear‐shaped particles adopt a curvy bilayer arrangement which
was later identified as the double gyroid structure (see Fig. 1.10b). For a de‐
tailed description of this phase I refer to Chap. 4 and Fig. 4.1. Furthermore,
they extracted the intertwined channel domains based on the positions of
the blunt ends of the pears. Hence, the thin moiety of the pear‐particles ac‐
cumulates around the minimal surface. The pears adopt this liquid crystal
phase in an arrangement that fills space fairly uniformly, at fluid‐like densi‐
ties. As these particles interact purely repulsively on a short range – using
Gaussian hard overlap potentials – this system is purely entropy‐driven.

The model based on Gaussian overlap potentials, however, is just an ap‐
proximation of the pear‐shape. Originally thought to be a sufficiently accu‐
rate representation of the hard pear‐shape, it showcases small differences.
In this connection, the question arises if these distinctions alter the phase
behaviour like between ellipsoids and spherocylinders? Or is the phase sta‐
ble in terms of minor shape changes? These questions are the context of this
thesis and are explored in the subsequent eight chapters.
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2 Computational models of pear‐shaped
liquid crystals

“The trouble with optimists is that they don’t do well in a pear‐
shaped world.”

– Lucy Kellaway

The realm of shapes and forms is vast and provides a virtually fathomless
plethora of shapes for possible use as colloidal particles. Although the appli‐
cation of large‐scale computer simulations in modern‐day colloidal science
fuels the hope to gain control over elaborate particle designs, the uncount‐
able number of possible particle shapes seems overwhelming. Especially in
morphological approaches, where it is assumed that the particle shape is
a key determinant of the phase behaviour, the endeavour to find and con‐
ceive specific shapes, which are accompanied by interesting and complex
mesophases, appears overwhelming. However, it is often assumed possible
to make preliminary predictions about the distinctive collective behavioural
patterns of molecules and to reduce the number of possible candidates sig‐
nificantly [221, 247]. Usually, this is done by capturing the morphological
essence of the colloids and effectively encoding their shapes to a finite num‐
ber of shape descriptors (real numbers). For example, some anisotropic or‐
dered states, which occur in the equilibrium of thermal systems, are typically
related to the existence of only a couple ofmorphological key features shared
by the molecules forming those phases. For instance, it has been shown that
close‐packed structures, like those based on the 𝛾‐brass lattice, require par‐
ticles with a high isoperimetric quotient, which indicates the ratio between
the particle’s volume and its surface area [221]. This concept of simplifying
shape is common in other multi‐particle based systems like granular materi‐
als [248, 249] or in non‐equilibrium pattern formation [250, 251, 252], which,
however, will not be covered in this thesis.

One of themost important properties which is crucial for the formation of
globally orientationally ordered nematic or smectic phases, is the aspect ra‐
tio 𝑘 . The aspect ratio is defined by the relation between length 𝑙 andwidth 𝑑
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2 Computational models of pear‐shaped liquid crystals

of an object as 𝑘 = 𝑙
𝑑 . In case of colloidal spherocylinders and ellipsoids it

has been shown that a certain amount of elongation is needed to stabilise
entropically driven nematic order without the support of attractive forces
(𝑘 > 3 for ellipsoids [214] and 𝑘 > 4.7 for spherocylinders [213, 237]). Also for
disk‐like ellipsoids, the particles have to be flat enough, so far enough from
spherical to form columnar phases 𝑘 < 0.36 [214]. Less aspherical ellipsoids
or spherocylinders, but also the extensively studied globular platonic solids
[253, 254] do not exhibit orientationally ordered mesophases in between the
isotropic fluid and the crystalline solid. Only by stretching or flattening the
latter into polyhedra/prisms and basically by increasing their aspect ratios
to sufficiently high values, nematic and columnar phases can be obtained
via self‐assembly, respectively [219, 221, 222].

Nonetheless, even in this arguably simplest case of asphericity – namely
elongated particles – it is still important to distinguish between the exact
analytical shapes of ellipsoids and spherocylinders. This manifests in the
lack of a smectic phase for ellipsoids [214], whereas spherocylinders, which
only differ slightly, spontaneously form a smectic mesophase for 𝑘 > 4.1
[213, 237]. Thus the inter‐particle differences have to be considered to ob‐
tain the more specific details of the molecules’ phase behaviours. This hints
at a conceivable issue that formore complexmesophases than ”simply” glob‐
ally orientational ordered phases the exact shape plays an even more crucial
role in self‐assembly.

2.1 Definition of pear shape

In this thesis, we address the spontaneous behaviour of particles which
feature another shape‐defining property besides its elongation. The par‐
ticle trait in question, called pear‐shapedness, is a measure for the head‐
tail‐asymmetry of elongated molecules without inversion symmetry. It can
be described by an effective tapering of colloids (see Fig. 2.1), which is a
promising candidate to form much more complex and symmetric phases
than the “simple” global alignment of particles along a director. The in‐
terest in tapering is based on the already mentioned copolymers and lipids
which adopt a cone‐like shape (without inversion symmetry) to create TPMS
structures (see in Sec. 1.3.2). In terms of colloids, the impact of tapering on
self‐assembled structures is best studied on axially symmetric pear‐shaped
particles, reminiscent of tapered prolate ellipsoids. Those particles have also
shown their potential to formhighly complex structures, like the Ia3d double
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Figure 2.1: The contours of differently tapered pear‐shaped particles with aspect ratio 𝑘 = 3.
The corresponding tapering parameter 𝑘 𝜃 is indicated underneath the cross‐sections. Each
shape is generated by two Bézier‐curves forming the bottom (blue) and the upper (green)
half. The dots determine the positions of the anchor points. The tapering angle is spanned
by the two tangents at both sides of the contours. Pear‐shaped particles with 𝑘 𝜃 < 2 are
concave (see very left pear).

gyroid phase [241], and hence, are an excellent model system to analyse fur‐
ther in more detail. Moreover, those particles can be naturally compared to
ellipsoidal colloids which have been studied in great detail and can be used
as a reference.11

The contour, from which the pear is generated as a body of revolution, is
defined by a set of cubic Bézier‐curves [243] in two‐dimensional Euclidean
space. In general, Bézier‐curves are described in terms of their anchor points
a𝑖 by

B(𝑡) = (1 − 𝑡)3a0 + 3𝑡 (1 − 𝑡)2a1 + 3𝑡2(1 − 𝑡)a2 + 𝑡3a3. (2.1)

To be more specific, the silhouettes are analytically described by two Bézier‐
curves forming the upper and bottom half of the pear‐shape. The anchor
points a𝑖 of the upper half are chosen as

a0 =

(
0.5𝑑
0

)
a1 =

(
0.5𝑑

𝑘𝜃−2
3 𝑘

𝑘𝜃
2
3 𝑙

)
a2 =

(
−0.5𝑑 𝑘𝜃−

2
3 𝑘

𝑘𝜃
2
3 𝑙

)
a3 =

(
−0.5𝑑
0

)
.

(2.2)

1In fact, the ellipsoid is the limit 𝑘 𝜃→∞ of the pear‐shape defined below.
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Analogously the anchor points b𝑖 of the bottom half are selected as

b0 =

(
0.5𝑑
0

)
b1 =

(
0.5𝑑

𝑘𝜃+2
3 𝑘

𝑘𝜃
−23 𝑙

)
b2 =

(
−0.5𝑑 𝑘𝜃+

2
3 𝑘

𝑘𝜃
−23 𝑙

)
b3 =

(
−0.5𝑑
0

)
.

(2.3)
This choice of anchor points ensures a differentiable outline. The result‐
ing contour is the basis from which we generate a three‐dimensional object
as a solid of revolution, henceforth referred as “pear‐shape”. In Fig. 2.1 the
cross‐sections of some exemplary pears are depicted with 𝑘 = 3 and differ‐
ent values of 𝑘 𝜃 described by two Bézier‐curves. All of them exhibit thick
or blunt bottom ends and thin pointy ends at the top and hence, feature an
adjustable tapering.

For the analytical description of the pear‐shape in Eq. (2.2) and Eq. (2.3),
the degree of tapering is expressed by a tapering parameter

𝑘 𝜃 =
1

2
arctan

(
𝜃𝑘
2

)
(2.4)

with the tapering angle 𝜃𝑘 . For pears 𝜃𝑘 is spanned by the tangents at the
central anchor points a0/b0 and a3/b3 on both sides of its contour. Alter‐
natively 𝑘 𝜃 = 𝑙𝜃

𝑑 can be described as the ratio between the distance of the
center of the particle to the position where both of the tangents 𝑙𝜃 meet
and 𝑑 (see Fig. 2.1). This definition implies a very small tapering parame‐
ter for very cone‐like molecules whereas for 𝑘 𝜃→∞ the object turns more
and more ellipsoidal and therefore symmetrical. It becomes apparent that
the pears are separated into two types. For 𝑘 𝜃 ≥ 2

3 𝑘 the pears are convex.
Otherwise for 𝑘 𝜃 < 2

3 𝑘 the colloids are concave.

2.2 Pear‐shaped particle models in simulations

2.2.1 Hard‐core potentials

In order to perform numerical simulations, we have to translate the differ‐
ent pear‐shapes into suitable potentials between the molecules. In compu‐
tational physics, colloids are often identified as hard core particles which are
solely interacting via their excluded volume. The hard potential𝑈𝑖 𝑗 between
two objects 𝐵𝑖 and 𝐵 𝑗 is defined by
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Figure 2.2: The concept of contact functions 𝜎 for spheres, ellipsoids and pear‐shaped par‐
ticles. For spheres 𝜎sph is constant and equal to the diameter of the spheres. For ellipsoids
and pears the contact function is dependent on the relative arrangement of the particles to
each other encoded within the distance vector r𝑖 𝑗 and the orientation vectors u𝑖 and u 𝑗 .

𝑈𝑖 𝑗 :=
{
0, if 𝐵𝑖 ∩ 𝐵 𝑗 = ∅
∞, if 𝐵𝑖 ∩ 𝐵 𝑗 ≠ ∅.

(2.5)

Consequently, the particles only influence their nearest neighbours directly
if they overlap. Thus, the interactions of particles with perfectly hard‐core
potentials can be interpreted as collision‐like, where the force is only non‐
zero (and, in fact, infinite) when the particles touch.

The hard‐core interactions of spheres can be controlled mathematically
in a more practical way by a contact distance 𝜎. Here, the decision if two
spheres overlap is rephrased in terms of the Euclidean distance 𝑟𝑖 𝑗 = |r𝑖 − r 𝑗 |
between the centers r𝑖 and r 𝑗 of the two molecules. Also the potential can
be rewritten as

𝑈𝑖 𝑗 :=
{
0, if 𝑟𝑖 𝑗 ≥ 𝜎
∞, if 𝑟𝑖 𝑗 < 𝜎.

(2.6)

Therefore, 𝑟𝑖 𝑗 has to be at least 𝜎, where the colloids are exactly in contact,
or greater to prevent intersections. For mono‐disperse spherical particles it
is easy to argue that the contact 𝜎sph = 2𝑟sph is twice the sphere radius 𝑟sph
(see Fig. 2.2).

For aspherical particles the analytical description of𝜎 often becomes non‐
trivial. On the one hand, 𝜎 does not stay constant for arbitrary shapes. On
the other hand, 𝜎 in general is also defined as a contact function𝜎(u𝑖 , u 𝑗 , r̂𝑖 𝑗)
dependent on the orientation vectors of the particles u𝑖 and u 𝑗 and the nor‐
malised distance vector r̂𝑖 𝑗 =

r𝑖 𝑗
𝑟𝑖 𝑗

. These three vectors collectively encode the
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2 Computational models of pear‐shaped liquid crystals

exact arrangement of the particles relative to each other, since we assume
uni‐axial (rotationally symmetric) particles. One of the few examples for
which the distances of closest approach has been determined analytically is
for hard spherocylinders [203, 255]. Nevertheless, only small changes, like
removing the caps at the end of the spherocylinders, can make the calcula‐
tion of 𝜎(u𝑖 , u 𝑗 , r̂𝑖 𝑗) much more complicated (see collision detection of rigid
cylinders [256]) or even analytically unpredictable. Despite the fact that in
two dimensions ellipses can be treated analytically [257], the exact contact
profile has to be calculated numerically for their three‐dimensional ellip‐
soidal counterparts as its solution requires a sixth‐order polynomial [258].
As the pear‐shapes are even more complicated than ellipsoids it is rather
unlikely that the exact analytical description of its contact function can be
derived either.

Hard pears of revolution (HPR) contact function

A simple idea to model the pear‐shape without its exact analytical con‐
tact function is to compose the particle out of multiple spherical fragments,
which in total roughly follow the Bézier‐curves. However, these “snowman”
particles tend to crystallise or vitrify as they interlock due to the concave
features of their non‐smooth surfaces [220, 259, 260, 261] and do not form
liquid crystal phases. Also for other multi‐sphere approaches, issues in re‐
gards to degraded smoothness of the particle surface have been raised earlier
[262, 263, 264]. For hard‐core pears, we use an alternative (but computation‐
ally very slow) approach which is kept more closely to Eq. (2.5) and based on
densely sampled triangulated meshes of the three‐dimensional pear surface
of revolution (see Fig. 2.3). Here, the particles are treated as multifaceted
polyhedra such that the surface mesh 𝑇 is composed out of 𝑁4 ≈ 1000 trian‐
gles 𝑡𝛼 ∈ 𝑇 with

𝜕𝐵 =
𝑁4⋃
𝛼=1

𝑡𝛼 and

∅ = 𝑡𝛼 ∩ 𝑡𝛽 if 𝛼 ≠ 𝛽.

(2.7)

Two particle meshes 𝑇𝑖 and 𝑇𝑗 with distance r𝑖 𝑗 and orientations u𝑖 and
u 𝑗 are considered as overlapping if one can find at least one pair of triangles
{𝑡 (𝑖) , 𝑡 ( 𝑗)} which intersects:
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2.2 Pear‐shaped particle models in simulations

Figure 2.3: Exemplary triangulations of pear‐shaped particle surfaces which are used to de‐
termine the contact of two objects in the HPR model. The meshes are represented by pear‐
shaped particles with 𝑘 = 3 and 𝑘 𝜃 = 2 (left) and 𝑘 𝜃 = 3.5 (right).

𝑈𝑖 𝑗 :=
{
∞, if ∃{𝑡 (𝑖) ∈ 𝑇𝑖 , 𝑡 ( 𝑗) ∈ 𝑇𝑗} : 𝑡 (𝑖) ∩ 𝑡 ( 𝑗) ≠ ∅
0, else

(2.8)

This model to determine the overlap of two particles will be called the hard
pears of revolution (HPR) model. While giving the most accurate results for
the contacts of pear‐shaped particles the algorithm to detect collisions for
polyhedra is very time‐expensive if a large number of triangles are needed
to catch all the pear details. Even by enhancing the performance by a hi‐
erarchical method based on oriented bounding boxes to find the poten‐
tially intersecting triangle quicker and the use of the separating axis theorem
[265, 266, 267], the algorithm stays rather slow. As a result, only small sim‐
ulations with a small number of particles (≲ 2000 particles) are performed.22

Additionally, this approach is only suitable for Monte Carlo based simula‐
tions (see Sec. 3.2.2). Despite all these disadvantages, it is one of the most
efficient methods to represent the exact contact function of pear‐shaped
particles in respect to the Bézier‐curve representation and therefore, will be
used in the following chapters. We will refer to this effective contact func‐
tion as 𝜎HPR. It is also conceivable to apply other algorithms to represent
pear‐shaped particles which identify the exact contact distances for ellip‐
soids and might be possible to be derived for pears [270, 271]. Those are,
however, de facto even more impractical than meshes in terms of computa‐
tional time for simulation purposes.

Hard pear‐sphere (HPS) contact function

For the interactions between a hard sphere and pear‐shaped particle, a simi‐
lar approach is implemented as the one between twohard pears of revolution.

2Often the triangulatedmesh approach is used with even smaller particle numbers [268, 269]
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2 Computational models of pear‐shaped liquid crystals

However, the examination of the overlap reduces to a two‐dimensional prob‐
lem as we are dealing with a rotational symmetric pear and a rotational in‐
variant sphere. This reduction in dimensionality is given by considering to
projections of the colloids onto a plane which is spanned by the orientation
of the pear u𝑖 and the distance vector r𝑖 𝑗 . Consequently, we do not have to
use a mesh of both particle species to determine their overlap but instead
can check if the sphere cuts the contour line defined by the intersection of
the projection plane and the pear‐shaped particle. This decreases the com‐
plexity of the numerical calculations significantly.

To implement this overlap algorithm we first sample the Beziér curve,
which defines the pear‐shaped particle on the projection plane, by a set of
points

𝑐𝛼 = 𝑥𝛼 ·
r̂ij − (u𝑖 ·r̂𝑖 𝑗)u𝑖√
r̂ijr̂ij − (u𝑖 ·r̂𝑖 𝑗)2

+ 𝑦𝛼 · u𝑖 ∈ 𝐶 (u𝑖 , r̂𝑖 𝑗) (2.9)

with the coordinates 𝑥𝛼 and 𝑦𝛼 in the projection plane coordinate system
(see Fig. 2.4). The contour 𝐶 (u𝑖 , r̂𝑖 𝑗) of a pear‐shaped particle with orienta‐
tion u𝑖 intersects a sphere with radius 𝑟sph and distance r𝑖 𝑗 if one can find at
least one point 𝑐𝑖 ∈ 𝐶 (u𝑖 , 𝑟𝑖 𝑗) which is closer to the center of the sphere than
its radius:

𝑈𝑖 𝑗 :=
{
∞, if ∃𝑐𝑖 ∈ 𝐶 (u𝑖 , r̂𝑖 𝑗) : dist(𝑐𝑖 , r𝑖 𝑗) < 𝑟sph
0, else

(2.10)

This determination criterion can also be translated to a contact function
𝜎HPS. To do so, the closest point on the pear contour 𝑐𝛼 to the neighbouring
sphere is determined. Based on this point, the contact function is given by:

𝜎HPS(u𝑖 , r̂𝑖 𝑗) =
𝐴(u𝑖 , r̂𝑖 𝑗), if 𝑟𝑠 < |𝑦𝛼

√
1 − (u𝑖 ·r̂𝑖 𝑗)2 − 𝑥𝛼 (u𝑖 ·r̂𝑖 𝑗) |

𝐴(u𝑖 , r̂𝑖 𝑗) + 𝐵(u𝑖 , r̂𝑖 𝑗), else
(2.11)

Here we use an abbreviation for the first and second term of the contact
function
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Figure 2.4: Determination the contact distance 𝜎 between a hard pear‐shaped particle and
a hard sphere with radius 𝑟𝑠 according to Eq. (2.11). The overlap is based on a point set on the
pear contour with 𝑐𝛼 is the closets point to the sphere. The contact distance is composed of
a first term 𝐴𝛼 and a second term 𝐵𝛼i defined in Eq. (2.12).

𝐴(u𝑖 , r̂𝑖 𝑗) = 𝑥𝛼
√
1 − (u𝑖 ·r̂𝑖 𝑗)2 + 𝑦𝛼 (u𝑖 ·r̂𝑖 𝑗)

𝐵(u𝑖 , r̂𝑖 𝑗) =
√
𝑟2𝑠 − (𝑦𝛼

√
1 − (u𝑖 ·r̂𝑖 𝑗)2 − 𝑥𝛼 (u𝑖 ·r̂𝑖 𝑗))2,

(2.12)

based on simple geometric arguments which are explained in the sketch of
Fig. 2.4. Note here, that the first case in Eq. (2.11) never identifies an over‐
lap of the particles and is usually outside the cut‐off range explained below.
Therefore, only the second case has to be considered for the numerical cal‐
culations.

Hard Gaussian overlap (HGO) contact function

For simulations of large systems, an approximation to the hard‐core contact
function, based on the so‐calledGaussian overlapmodel (GO), has been pro‐
posedwhich still has hard core interactions but a slight “non‐additivity”. The
GOmodel was originally introduced by Berne and Pechukas [272] where they
derived an approximation of𝜎(u𝑖 , u 𝑗 , r̂𝑖 𝑗) from ellipsoidal Gaussian distribu‐
tions for identical uniaxial ellipsoids of length 𝑑 of the small axis and length
𝑙 of the large axis. It yields

𝜎GO(u𝑖 , u 𝑗 , r̂𝑖 𝑗) = 𝜎0

(
1 − 𝜒

2

[
(u𝑖 ·r̂𝑖 𝑗 + u 𝑗 ·r̂𝑖 𝑗)2

1 + 𝜒(u𝑖 ·u 𝑗)
+
(u𝑖 ·r̂𝑖 𝑗 − u 𝑗 ·r̂𝑖 𝑗)2

1 − 𝜒(u𝑖 ·u 𝑗)

])− 1
2

,

(2.13)
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𝜙=0◦ 𝜙=30◦ 𝜙=60◦ 𝜙=90◦

Figure 2.5: The contact profiles according to the HGOmodel ( ) and the HPRmodel with
𝑘 𝜃 = ∞ ( ) for identical ellipsoids with 𝑘 = 3 at different angles between themolecules 𝜙 =
arccos(u𝑖 ·u 𝑗 ) in the xz‐plane. The surrounding ellipsoids are positioned in contact according
to the HGO model.

where 𝜎0 =
√
2𝑑 is the length parameter and 𝜒 = 𝑙2−𝑑2

𝑙2+𝑑2 defines the shape
anisotropy parameter. Based on this expression, the approximation can be
extended to the generalised hard Gaussian overlap (HGO) function for mix‐
tures of ellipsoids

𝜎HGO(u𝑖 , u 𝑗 , r̂𝑖 𝑗) = 𝜎HGO
0 × (2.14)(

1−𝜒HGO

[
(𝛼2HGO(u𝑖 ·r̂𝑖 𝑗)

2+𝛼−2HGO(u 𝑗 ·r̂𝑖 𝑗)
2−2𝜒HGO(u𝑖 ·r̂𝑖 𝑗) (u 𝑗 ·r̂𝑖 𝑗) (u𝑖 ·u 𝑗)

1 − 𝜒2HGO(u𝑖 ·u 𝑗)2

])− 1
2

by deriving it from dissimilar Gaussian distributions [273]. Here 𝜎HGO and
𝜒HGO are generalisations of the parameters in Eq. (2.13). Additionally, there
is a second shape anisotropy parameter 𝛼. For a pair of ellipsoidal molecules
(𝑖, 𝑗) with small axis lengths (𝑑𝑖 , 𝑑 𝑗) and long axis lengths (𝑙𝑖 , 𝑙 𝑗) the param‐
eter are defined as

𝜎HGO
0 = (𝑑2𝑖 + 𝑑2𝑗 )

1
2 ,

𝜒HGO =

√√√(
(𝑙2𝑖 − 𝑑2𝑖 )(𝑙2𝑗 − 𝑑2𝑗 )
(𝑙2𝑗 + 𝑑2𝑖 )(𝑙2𝑖 + 𝑑2𝑗 )

)
and

𝛼2HGO =

√√√(
(𝑙2𝑖 − 𝑑2𝑖 )(𝑙2𝑗 + 𝑑2𝑖 )
(𝑙2𝑗 − 𝑑2𝑗 )(𝑙2𝑖 + 𝑑2𝑗 )

)
.

(2.15)
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2.2 Pear‐shaped particle models in simulations

The HGO contact profile is depicted in Fig. 2.5, which shows that it repre‐
sents the true ellipsoid shape for aligned particles satisfactorily but overes‐
timates the overlap for particles perpendicular to each other slightly.

Pear‐shaped hard Gaussian overlap (PHGO) contact function

To extend Eq. (2.14) even further and to give a formula for an approximated
contact function of pears, we can substitute 𝑑 and 𝑙 by 𝑑 (u, r̂) and 𝑙 (u, r̂),
respectively. In doing so, the widths and lengths of the ellipsoids do not
stay constant but depend on their relative arrangement to each other. This
technique gives us the opportunity to mould convex shapes out of a multi‐
tude of ellipsoids, which locally coincide with the associated morphology.
Due to the close resemblance of pears and ellipsoids, this method has been
adapted to pear‐shaped particles [243]. Here, each colloid does not interact
with the pear directly but with a “virtual” ellipsoid which describes the pear
in this specific constellation of particles best (see Fig. 2.6). For uni‐axial ro‐
tationally symmetric molecules the width and length, in general, are written
as polynomials in terms of the scalar product (u·r̂)

𝑑 (u, r̂) =
𝑁𝑑∑
𝑛=0

𝑘 (𝑛)𝑑 (u·r̂)

𝑙 (u, r̂) =
𝑁𝑙∑
𝑛=0

𝑘 (𝑛)𝑙 (u·r̂)

(2.16)

with the polynomial amplitudes 𝑘 (𝑛)𝑑 and 𝑘 (𝑛)𝑑 of order 𝑛. Putting theses ex‐
pressions into Eq. (2.14) gives us a contact function for pear‐shaped particles

•

•

•

•

•

Figure 2.6: The schematics of the PHGO potential describing a pear particle with 𝑘 = 3 and
𝑘 𝜃 = 3 are shown. Depending on the direction of the other object, the morphology is locally
described by different “virtual” ellipsoids. These ellipsoids are determined by expressing their
length and width by polynomials (see Eq. (2.16)) and by fitting them such that the virtual
ellipsoids describe the Bézier‐curves best.
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𝑘 𝜃 = 2 𝑘 𝜃 = 3

𝑘 𝜃 = 4 𝑘 𝜃 = 5

Figure 2.7: The effective pear shape modelled by the virtual ellipsoid after fitting them to
the Bézier‐curves. The orange object shows half of the cross‐sections of different pear‐shapes
generated with the Bézier approach. The black dotted lines, obtained by the virtual ellipsoids
after fitting, coincide nicely with the outline of the desired shape.

𝜎PHGO(u𝑖 , u 𝑗 , r̂𝑖 𝑗) = 𝜎PHGO
0 ×

(
1− (2.17)

𝜒PHGO

[
(𝛼2PHGO(u𝑖 ·r̂𝑖 𝑗)

2+𝛼−2PHGO(u 𝑗 ·r̂𝑖 𝑗)
2−2𝜒PHGO(u𝑖 ·r̂𝑖 𝑗) (u 𝑗 ·r̂𝑖 𝑗) (u𝑖 ·u 𝑗)

1 − 𝜒2PHGO(u𝑖 ·u 𝑗)2

])− 1
2

with

𝜎PHGO
0 (u𝑖 , u 𝑗 , r̂𝑖 𝑗) = (𝑑𝑖 (u𝑖 , r̂𝑖 𝑗)2 + 𝑑 𝑗 (u 𝑗 , r̂𝑖 𝑗)2)

1
2 , (2.18)

𝜒PHGO(u𝑖 , u 𝑗 , r̂𝑖 𝑗) =

√( (𝑙𝑖 (u𝑖 , r̂𝑖 𝑗)2 − 𝑑𝑖 (u𝑖 , r̂𝑖 𝑗)2) (𝑙 𝑗 (u 𝑗 , r̂𝑖 𝑗)2 − 𝑑 𝑗 (u 𝑗 , r̂𝑖 𝑗)2)
(𝑙 𝑗 (u 𝑗 , r̂𝑖 𝑗)2 + 𝑑𝑖 (u𝑖 , r̂𝑖 𝑗)2) (𝑙𝑖 (u𝑖 , r̂𝑖 𝑗)2 + 𝑑 𝑗 (u 𝑗 , r̂𝑖 𝑗)2)

)
and

𝛼PHGO(u𝑖 , u 𝑗 , r̂𝑖 𝑗)2 =

√( (𝑙𝑖 (u𝑖 , r̂𝑖 𝑗)2 − 𝑑𝑖 (u𝑖 , r̂𝑖 𝑗)2) (𝑙 𝑗 (u 𝑗 , r̂𝑖 𝑗)2 + 𝑑𝑖 (u𝑖 , r̂𝑖 𝑗)2)
(𝑙 𝑗 (u 𝑗 , r̂𝑖 𝑗)2 − 𝑑 𝑗 (u 𝑗 , r̂𝑖 𝑗)2) (𝑙𝑖 (u𝑖 , r̂𝑖 𝑗)2 + 𝑑 𝑗 (u 𝑗 , r̂𝑖 𝑗)2)

)
.

Even though there is no particular rule how to choose the degrees 𝑁𝑑 and
𝑁𝑙 of the polynomials, it has been shown that for 𝑁𝑑 = 10 and 𝑁𝑙 = 1 the
pear‐shape can be modeled in good agreement with the Bézier‐curves and
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2.2 Pear‐shaped particle models in simulations

therefore, can be represented by the virtual ellipsoids accurately [243]. Here,
𝑘 (𝑛)𝑑 and 𝑘 (𝑛)𝑑 are fitted via a least squares method to its contour according to
the particle‐point contact function

𝜎(u𝑖 , r̂𝑖 𝑗) =
𝑑𝑖 (u𝑖 , r̂) · 𝑙𝑖 (u𝑖 , r̂)√

𝑙2𝑖 (u𝑖 , r̂) − (𝑙2𝑖 (u𝑖 , r̂) − 𝑑2𝑖 (u𝑖 , r̂)) · (u𝑖 ·r̂𝑖 𝑗)2
, (2.19)

where we used Eq. (2.17) with 𝑑 𝑗 = 0, 𝑙 𝑗 = 0 and u 𝑗 = 0. Fig. 2.7 shows that
the profiles match the Bézier curves closely. In the following we will refer
to this model as the pear‐shaped hard Gaussian overlap (PHGO) model and
denote the associated contact function by 𝜎PHGO.

Self‐non‐additive properties of the PHGOmodel

In Fig. 2.8 the contact profiles of 𝜎PHGO and 𝜎HPR are compared. It becomes
apparent that the two models show for angles between 50◦ and 130◦ consid‐
erable differences. In this regime the PHGO profile often overestimates the
overlap, which leads to gaps between the particles. This, however, is inher‐
ited from a similar error between the HGO and HER (hard ellipsoids of rev‐
olution) potential of the ellipsoid as seen in Fig. 2.5. The HGO model is de‐
signed to imitate the hard potential for parallel configurations closely. This
is important to represent the orientationally ordered phases, like nematic, as
precise as possible. Here large angles between neighbouring particles hardly
occur such that poor representation of those angles does not preponderate.
We can make the same argument for pears as we do not expect angles close
to 90◦ for dense systems. For parallel or anti‐parallel configurations, the dif‐
ferent models coincide well. Note here, however, that for small angles an
additional effect occurs. At around 30◦ the PHGO profile also occasionally
underestimates the contact distance such that the pears overlap with their
blunt ends.

In the following, we will use the term self‐non‐additivity to describe this
combination between over‐ and underestimation of the contact distance.
Conventionally, hard‐core interactions are labelled non‐additive, if in an
athermal mixture the distance of closest approach 𝜎𝐴𝐵 between species 𝐴
and 𝐵 is not restricted by additive constraints of the contact distance be‐
tween particles of the same type: 𝜎𝐴𝐵 ≠ 0.5(𝜎𝐴𝐴 + 𝜎𝐵𝐵) [274, 275, 276, 277,
278]. A similar effect, however, also occurs in the mono‐disperse PHGO par‐
ticle system. This becomes apparent by explaining the choice of the prefix
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𝜙=180◦ 𝜙=168◦ 𝜙=156◦ 𝜙=144◦

𝜙=132◦ 𝜙=120◦ 𝜙=108◦ 𝜙=96◦

𝜙=84◦ 𝜙=72◦ 𝜙=60◦ 𝜙=48◦

𝜙=36◦ 𝜙=24◦ 𝜙=12◦ 𝜙=0◦

Figure 2.8: The contact profiles according to the PHGO model ( ) and the HPR model
( ) for identical pear‐shaped particles with 𝑘 = 3 and 𝑘 𝜃 = 3 at different angles between
the molecules 𝜙 = arccos(u𝑖 ·u 𝑗 ) in the xz‐plane. The surrounding pears are positioned in
contact according to the PHGO model.
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“self” in self‐non‐additivity which is illustrated by analysing the contact dis‐
tance between the blunt ends of the pear‐shaped particles in Fig. 2.8. For
certain relative angles, the blunt ends overlap (𝜙 = 36◦), whereas for other
angles their contact coincides with the Bézier description (𝜙 = 144◦). Sim‐
ilar behaviour is observed for the contact between the thin ends (gaps at
𝜙 = 108◦ and no gap at 𝜙 = 156◦). Hence, differently orientated pears can be
interpreted as two distinct hard particle species with non‐additive interac‐
tions. Moreover, the described angular dependency of the contact function
implies that a true physical hard shape cannot copy the PHGO model.33 In‐
stead, the Bézier pear‐shape has to be seen as the closest realisation of a real
physical hard PHGO body.

In conclusion, the PHGO model does not perfectly mimic the pear‐shape
but is closely related and also inherits the most important features like the
tapering towards one end and the aspect ratio. Additionally, the PHGO ap‐
proximation is computationally very effective andmoreover the only feasible
way to analyse pear‐shaped particles in large assemblies (≳2000 particles).
However, even though the discrepancies between theHPR and PHGOmodel
seem negligible, we will show that these distinctions have to be considered
very well throughout this thesis (see Chap. 5 and specifically Chap. 6).

2.2.2 Soft‐core Weeks‐Chandler‐Andersen (WCA) potential

In Molecular Dynamics simulations, soft approximations of hard potentials
can be simulated much more efficiently than hard‐core potentials as stated
in Eq. (2.5) . We, therefore, now introduce a soft version of the pear‐particle
model, called PHGO‐WCA, which ’softens’ the non‐additive PHGO poten‐
tial into a slightly soft potential that can be used for MD simulations.

Additionally, hard‐core particle potentials are only idealised versions of
the observed steric interactions in many nanoparticle and colloidal systems
in experiments [207, 279, 280, 281]. These interactions cause short range,
strongly repulsive forces between the colloidal particles and are imitateted in
amore realistic way by theWeeks‐Chandler‐Andersen potential (WCA) [282].

3Additional overlap rules (like adding non‐additive features to the blunt ends see Sec. 6.4)
are required to imitate the interactions between PHGO particles with physical hard shapes.
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2 Computational models of pear‐shaped liquid crystals

For identical spheres with diameter 𝜎sph, the WCA potential is a truncated
and shifted Lennard‐Jones potential

𝑉WCA
𝑖 𝑗 =


4𝜖0

[(
𝜎sph
𝑟𝑖 𝑗

)12
−

(
𝜎sph
𝑟𝑖 𝑗

)6]
+ 𝜖0, if 𝑟𝑖 𝑗 < 2

1
6𝜎sph

0, if 𝑟𝑖 𝑗 ≥ 2
1
6𝜎sph,

(2.20)

such that the potential energy rapidly increases if the particles are closer
than the cut‐off distance 𝑟cut = 2

1
6𝜎sph. This choice of 𝑟cut at the minimum

of the Lennard‐Jones‐potential ensures that the particles interact purely re‐
pulsively. The additional shift 𝜖0 sets the potential at 𝑉WCA

𝑖 𝑗 (𝑟cut) = 0 and
makes it simultaneously also differentiable. The parameter 𝜖0 also dictates
how quickly the potential increases. The larger 𝜖0 the closer is the WCA po‐
tential to a hard‐core potential. In the following we set 𝜖0 to 1. The difference
to the hard‐core is depicted in Fig. 2.9. To adapt the WCA potential to ellip‐
soids two suggestions have been made. The first application was originally
introduced by Berne and Pechukas [272], where they simply replaced the
sphere contact function with the contact function of ellipsoids in Eq. (2.13).
The same can be done by using the contact function of pears 𝜎PHGO. This is
equivalent to stretching the potential to fit the desired contact profiles. As
a result the potential does not increase at the same rate for every possible
two‐particle configuration in contact and thus varies in softness by a great
margin. If the cut‐off distance 𝑟cut is small, for example for pears placed side‐
to‐side, the potential energy growsmore steeply than for configurationswith
larger 𝑟cut where the particles touch with their ends (see Fig. 2.9).

To remove this configurational dependency, a revised version was sug‐
gested a couple of years later [283] where the interface according to the con‐
tact functions is altered, not by stretching using the Lennard‐Jones model,
but by shifting the potential according to the Gay‐Berne model. Here the
WCA potential is written by

𝑉PHGO
𝑖 𝑗 =

{
4𝜖0(𝑅12 − 𝑅6) + 𝜖0, if 𝑟𝑖 𝑗 < 𝑟cut,
0, if 𝑟𝑖 𝑗 ≥ 𝑟cut,

(2.21)

with the distance parameter

𝑅 =
𝜎𝑤

𝑟𝑖 𝑗 − 𝜎PHGO(u𝑖 , u 𝑗 , r̂𝑖 𝑗) + 𝜎𝑤
. (2.22)
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Figure 2.9: The Weeks‐Chandler‐Andersen potential, mimicking the steric interactions of
pear‐shaped particles for three different pear configurations. In the Lennard‐Jones approach
(see Eq. (2.20)), the potential is stretched to fit the contact function of the pear which leads
to different softness for different configurations. This is resolved by the Gay‐Berne model
(see Eq. (2.21)) where the potential is shifted rather than stretched.

The factor 𝜎𝑤 =
√
0.5 is a necessary and arbitrarily chosen parameter, which

sets up a unit of length as the pre‐factor 𝜎0 in Eq. (2.18) is not constant for
pear‐shaped particles but is also dependent on the thickness of the virtual el‐
lipsoids 𝑑𝑖 (u𝑖 , r) and 𝑑 𝑗 (u 𝑗 , r). Additionally, 𝜎𝑤 defines the effective width of
the pear‐shaped particle as well. To make the potential again overall purely
repulsive, it is truncated at

𝑟cut = 𝜎
PHGO(u𝑖 , u 𝑗 , r̂𝑖 𝑗) + (2 1

6 − 1)𝜎𝑤 . (2.23)

In the following we will mostly study pear‐shaped particles with steric in‐
teractions by implementing the second version of the WCA potential based
on the formulations by Gay and Berne. However, we will also compare it
with perfect hard particle interactions according to 𝜎HPR to determine the
major influence of minor changes in shape on the self‐assembly in greater
detail.
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3 Simulation methods and structure
analysis tools

“Since we cannot change reality, let us change the eyes which
see reality.”

– Nikos Kazantzakis

Computational methods, and in particular simulation methods, play a ma‐
jor role in canvassing the phase behaviour for families of experimentally
available and (yet) unavailable particle shapes and are key tools for guiding
the development of new particle synthesis techniques. Those methods have
become very cost‐effective and less time‐consuming compared to experi‐
ments and allow scientists to implement delicate features of the particles
more easily. Pear‐shaped particles have not been synthesised as colloidal
objects yet. Thus, in the case of this thesis, our simulation methods and
theoretical descriptions of the collective properties of pears are regarded as
preliminary studies of a hopefully upcoming experimental realisation of the
system, even though the pear‐shaped particles were originally investigated
as a generic model for molecules [272].

In this thesis, our interest is in thermodynamically equilibrated phases of
pear‐shaped particles. In general, multi‐particle systems in equilibrium are
thermodynamically defined by a small number of parameters like their tem‐
perature 𝑇 , pressure 𝑃 or the number of particles 𝑁 . Usually, this macro‐
scopic view of thermodynamics and the study of the behaviour of these
quantities is much more efficient to characterise physical phenomena than
to deal with the dynamics of each particle on its own. Nevertheless, tech‐
niques which try to describe systems on this detailed microscopic level,
like computational simulations, are essential tools to derive and predict
macroscopic quantities. Even though we are by far not capable of analysing
naturally‐occurring microscopic systems with O(1023) molecules with mod‐
ern day computers, it is usually already enough to consider only a fraction of
these systems for analysingmulti‐particle phenomena, like the self‐assembly
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3 Simulation methods and structure analysis tools

of bicontinuous structures.11 Thus, computational methods, which enable
systems of sizes of “only” up to O(106) to be studied [209, 285], are generally
more than suitable and additionally less time consuming and more cost‐
effective than experiments. Hence, they were used to successfully predict
multiple physical effects in colloidal and liquid crystal science and, there‐
fore, play an inherent and integral part in soft matter physics today.

3.1 Statistical ensembles

In the following, we will briefly discuss the basic principles of statistical
physics needed for the simulations of pear‐shaped particles presented in this
thesis. For a more detailed introduction, we refer to Ref. [286, 287] on which
this section is loosely based.

3.1.1 Sampling

Time average

In the microscopic approach, systems in statistical physics are described by
the positions q and momenta p of all atoms within the configuration. As
we will deal mostly with anisotropic pear‐shaped particles, also their orien‐
tational state in terms of an angular vector Θ and angular momentum L is
needed for a complete description. For 𝑁 atoms this means that they collec‐
tively span a 2𝑁𝐹 ·𝑁‐dimensional space, the so‐called phase space Ω, where
𝑁 𝑓 is the number of degrees of freedom for each particle. Here 𝑁 𝑓 = 5 is
composed of three translational and – for axially symmetric objects – two ro‐
tational degrees of freedom. A single point or microstate in this phase space
is defined as Γ𝑁 = (q𝑁 ,Θ𝑁 , p𝑁 ,L𝑁 ) ∈ Ω and contains the information of
all positions, orientations, momenta and angular momenta of all particles.
The value of a certain property A at this phase point Γ𝑁 can be written as
A(Γ𝑁 ).

In equilibrium, all microscopic realisations are uniformly distributed.
Hence, the system tends towards a macrostate with macroscopic properties
𝐴 which has the most microstates under given constraints (see Sec. 3.1.2 for
the different possible constraints). As the equilibrated system evolves in
time 𝑡, also Γ𝑁 (𝑡) changes constantly by following its trajectory in the phase

1In experimental single chain lipid systems, for example, the gyroid structure contains
roughly 90 lipids per unit cell [284].
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3.1 Statistical ensembles

space. Therefore, A cannot be directly related to the property of the equi‐
librated system that is measured in experiments but as an “instantaneous”
value of the microscopic state which is exposed to fluctuations. By assuming
that in equilibrium the phase space trajectory will visit all points in the phase
space after a certain time 𝑡, known as the principle of ergodicity [288, 289],
we obtain the macroscopic property 𝐴 by calculating the time average of
A(Γ𝑁 ) ideally over an infinite amount of time 𝑡obs:

𝐴 = 〈A(Γ𝑁 )〉𝑡obs = lim
𝑡obs→∞

1

𝑡obs

∫ 𝑡obs

0
A(Γ𝑁 (𝑡))d𝑡. (3.1)

Even though the time evolution can be easily carried out, for example by
solving Newton’s equation of motion (see Sec. 3.2.1), the infinite time frame
formeasuring observables as stated in Eq. (3.1) can obviously not be reached.
However, if the simulation is averaged over a sufficiently long interval of time
and assuming that the trajectory is, loosely speaking, a “representative equi‐
librium trajectory”, it can be argued that our results coincide with real‐world
observations. In our computational studies, time is quantised such that the
system is evolved in small time steps Δ𝑡 over a large finite number of time
steps 𝜏obs with 𝑡obs = 𝜏obs · Δ𝑡 generating an array of dynamically obtained
snapshots. Consequently, the equation can be rewritten as

𝐴 = 〈A(Γ𝑁 )〉𝑡obs ≈
1

𝑡obs

𝜏obs∑
𝜏=0

A(Γ𝑁 (𝜏Δ𝑡))Δ𝑡 = 1

𝜏obs

𝜏obs∑
𝜏=0

A(Γ𝑁 (𝜏Δ𝑡)) (3.2)

Here, again, we have to be careful to choose a sufficiently long 𝑡obs such that
the system is able to sample a satisfactory amount of the physically rele‐
vant part of the phase space with this finite time evolution. This includes
setting smartly chosen initial conditions for the starting values of the par‐
ticles to ensure a high degree of accuracy and to sample the phase space
correctly. Additionally, an intelligently selected starting configuration can
lead to shorter 𝜏obs. In general, this average calculation corresponds to an
average of certain time frames of the system. The computational technique
which uses this ansatz is calledMolecularDynamics and is explained inmore
detail in Sec. 3.2.1.

One advantage of Eq. (3.2) is that the sequence of time frames does not
have to be necessarily in the right order or even from the same simulation
run. This guarantees the reproducibility of the simulations and that the
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3 Simulation methods and structure analysis tools

average can be obtained over multiple measurements. The series in Eq. (3.2)
could entice into the false assumption that non‐physical sets, which are not
collected by a technique simulating the passage of time of pear‐shaped parti‐
cle systems, are appropriate to be used. However, here we have to be careful
as in these cases some conditions have to be met. To determine these con‐
ditions we have to address the alternative way to sample the system which
leads to Gibbs‐ensemble averaging.

Ensemble average

Besides the time average, the macroscopic properties of a system in ther‐
mal equilibrium can also be calculated by the ensemble average, also known
as the statistical average, which was introduced by Gibbs [290]. An ensem‐
ble is defined as a collection of points in the phase space which share the
same fixed thermodynamic parameters and which, consequently, are in the
same thermodynamic state. The points Γ𝑁 are distributed according to the
phase‐space density 𝑓 (Γ𝑁 ). Each point can be thought of as one copy of
the same system following different trajectories measured at the same time
rather than as one system with the same trajectory measured at different
time steps. As each replica evolves in time, in principle the density distri‐
bution can change in time as well. However, as we are only interested in
equilibrated states of the systems, we can assume that 𝑓 (Γ𝑁 ) stays constant
𝜕 𝑓
𝜕𝑡 = 0 and, therefore, that the trajectories are stationary. Hence, it is rea‐
sonable to argue that if one trajectory is visiting all points in the phase space,
each trajectory will also pass all phase points at some moment in time. Con‐
sequently, after a long enough time period, the obtained states are indepen‐
dent of the initial states. As a consequence, it does not matter if we follow
one single pear‐shaped particle system and average its property in time or if
the average is integrated over a bundle of replicas of the ensemble all frozen
in time. The time average in Eq. (3.1) can be replaced by the ensemble aver‐
age

𝐴 = 〈A(Γ𝑁 )〉ensemble =
∫

A(Γ𝑁 ) 𝑓 (Γ𝑁 )dΓ𝑁 . (3.3)

Similar to the time average approach, we cannot hope to reach the number
ofmicroscopic copies, related to an ensemble for our numerical calculations,
and therefore perfect ergodicity.
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3.1 Statistical ensembles

In section 3.2.2, however, we will show a method, the so‐called Metropo‐
lis Monte Carlo method, in generating a sequence of 𝑛 states of the phase
space (Γ𝑁𝑖 )𝑛𝑖=0 = (Γ𝑁0 , Γ

𝑁
1 , . . . , Γ

𝑁
𝑛 ) out of one single initial state Γ𝑁0 . Here,

it is important that the set is also correctly weighted by 𝑓 (Γ𝑁 ). With this
approach, the different states are not correlated in time and even unphysical
steps between two states, where successive states are not connected through
the system’s time evolution, are allowed. Thus, observables which describe
the dynamics of the system like diffusion cannot be calculated with this ap‐
proach.

Finally, we have to make the same argument as for the time average that
the initial state has to be chosen wisely to assure an accurate sampling of the
phase space and counteract the fact that we are not able to cover all possible
microstates. This can be countered, for example, by multiple simulations
with different initial conditions. Additionally, the set of visited states has to
be sufficiently large to ensure accurate results. By using a sequence of 𝑛 states
Γ𝑁𝑖 , which correctly represents the phase‐space density 𝑓 (Γ𝑁 ), Eq. (3.3) can
be approximated by

𝐴 = 〈A(Γ𝑁 )〉ensemble ≈
∑
Γ𝑁

A(Γ𝑁 ) 𝑓 (Γ𝑁 ) MC
=
1

𝑛

𝑛∑
𝑖=0

A(Γ𝑁𝑖 ) (3.4)

The resemblance of Eq. (3.2) and Eq. (3.4) again highlights the connection
between both approaches of sampling the phase space.

3.1.2 Common ensembles

The probability density distribution 𝑓 (Γ𝑁 ) depends on the ensemble and,
therefore, the fixed thermodynamic parameters of the configuration. One
of the simplest, but also most important ensembles is the microcanonical
ensemble. In systems described by this ensemble, the number of particles
𝑁 , the volume of the space 𝑉 which particles are allowed to occupy, and the
overall energy of the system 𝐸 which ensures the conservation of energy,
are set to constant values (see the sketch in Fig. 3.1). This ensemble is also
known as the 𝑁𝑉𝐸‐ensemble.

In general, the total energy of a multi‐particle system is given by the
Hamiltonian

H(Γ𝑁 ) = K(p𝑁 ,L𝑁 ) + V(q𝑁 ,Θ𝑁 ), (3.5)
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Reservoir T, P, 𝜇

Microcanonical
(const. NVE)

(a)

Canonical
(const. NVT)

(b) Δ𝐸

Isotherm. isobar.
(const. NPT)

Δ𝐸 Δ𝑉(c)

• •

• •

Grand canonic.
(const. 𝜇VT)

Δ𝐸 Δ𝑁(d)

Figure 3.1: The four most important statistical ensembles and their relation to an external
reservoir are sketched. In the microcanonical ensemble (constant 𝑁 , 𝑉 , and 𝐸) the particles
are within an isolated space. Canonical ensembles (constant 𝑁 , 𝑉 , and 𝑇) are coupled with
a heat bath to interchange energy. In the isothermal‐isobaric ensemble (constant 𝑁 , 𝑃, and
𝑇) the systems interact with the reservoir thermally but can also adjust to the reservoir’s
pressure by changing its volume. Lastly, in the grand canonical ensemble (constant 𝜇,𝑉 , and
𝑇) the systems exchange energy and particles with their environment.

which is split into a kinetic and an interaction potential term. The kinetic
energy

K(p𝑁 ,L𝑁 ) = Ktrans(p𝑁 )+Krot(L𝑁 ) =
𝑁∑
𝑖=0

(
p2𝑖
2𝑚𝑖

)
+
𝑁∑
𝑖=0

(
𝐿2𝑖,𝑥
2𝐼𝑖,𝑥𝑥

+
𝐿2𝑖,𝑦

2𝐼𝑖,𝑦𝑦
+
𝐿2𝑖,𝑧
2𝐼𝑖,𝑧𝑧

)
(3.6)

itself consists of two parts – the translational kinetic energy Ktrans(p𝑁 ) and
the rotational kinetic energy Krot(L𝑁 ) – and is a function of just the mo‐
menta p and angular momenta L = (𝐿𝑥 , 𝐿𝑦 , 𝐿𝑧)𝑇 of all particles with their
masses 𝑚𝑖 and the diagonal elements 𝐼𝑖,𝛼𝛼 of the inertia tensor I in a princi‐
pal axis frame (𝑥, 𝑦, 𝑧). The interaction potentialV(q𝑁 ,Θ𝑁 ) = U(q𝑁 ,Θ𝑁 )+
Vext(q𝑁 ,Θ𝑁 ) consists of the internal interaction potentialU and an external
potentialVext. In the following we will mostly neglect the external potential
term as we will investigate self‐assembly processes, where external forces are
not required. Therefore, we will set V(q𝑁 ,Θ𝑁 ) = U(q𝑁 ,Θ𝑁 ), unless like
in Chap. 7 explicitly stated otherwise.
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3.1 Statistical ensembles

To single out only specific space points Γ𝑁 which are assigned to the cho‐
sen energy, the Hamiltonian of the system is restricted to H(Γ𝑁 ) = 𝐸 .
Thus, the probability density has to be proportional to the delta distribu‐
tion 𝛿(𝐸 −H(Γ𝑁 )). This yields

𝑓NVE(Γ𝑁 ) := 1

𝑁! ℎ3𝑁
𝛿(𝐸 −H(Γ𝑁 ))

𝑊 (𝐸) . (3.7)

The Gibbs factor 1
𝑁 ! corrects over‐counting due to indistinguishable pear‐

shaped particles, whereas the Planck constant ℎ ≈ 6.63 · 10−34 Js ensures the
microcanonical partition function

𝑊 (𝐸) := 1

𝑁!ℎ3𝑁

∫
𝛿(𝐸 −H(Γ𝑁 ))dΓ𝑁 (3.8)

is dimensionless. The partition function determines the space of all mi‐
crostates for a given set of 𝑁 , 𝑉 and 𝐸 and acts as a normalisation factor.
𝑊 (𝐸) also determines the entropy of the system according to Eq. (1.7).

Even though in principle the microcanonical ensemble is able to describe
all systems in the thermodynamic limit of infinite system size, the fixed ther‐
modynamic parameters of this ensemble do not match the typical experi‐
mental conditions, particularly for finite systems. Consequently, other de‐
scriptions have proven to be more convenient choices. Keeping the volume,
energy and number of molecules constant, the 𝑁𝑉𝐸‐ensemble resembles
ideal isolated systems best. By examining the protocols of many colloidal
experiments, however, it becomes apparent that a great number of particle
systems are not isolated and have to be recognised as subsystems embed‐
ded within their environment (see Fig. 3.1). Especially in terms of energy the
environment is often coupled with the particle system and serves as an en‐
ergy reservoir to keep the mean temperature 𝑇 rather than the energy of the
system constant. Therefore, the subsystem is in the 𝑁𝑉𝑇‐ensemble also re‐
ferred to as the canonical ensemble. Nevertheless, the condition of energy,
conservation is again met by including the energy reservoir to the observa‐
tion space. Thus, the whole system (our subsystem + the environment) can
be treated microcanonically again

H(Γ𝑁 ) + H (Γ𝑁res) = 𝐸. (3.9)

We retain in this microcanonical approach too much unnecessary infor‐
mation about the environment and an overall system which is heavily dom‐
inated by the reservoir such that no predictions about the subsystem can be
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made. To extract only the information about the subsystem, the density dis‐
tribution within this confined phase space has to be calculated. This can be
derived from the whole system using Eq. (3.7) and Eq. (3.9) with

𝑓NVT(Γ𝑁 ) =
∫

𝑓NVE(Γ𝑁 , Γ𝑁res)d𝜔res

∝
∫

𝛿(𝐸 −H(Γ𝑁 ) − H (Γ𝑁res))d𝜔res ∝ 𝑊 (𝐸 −H(Γ𝑁 )).
(3.10)

Using Eq. (1.7) and the argument that the number of particles in the reservoir
is much larger than in our subsystem 𝑁res ≫ 𝑁 it can be shown that the
density distribution of the canonical ensemble is given by

𝑓NVT(Γ𝑁 ) =
1

𝑁!ℎ3𝑁
exp(−𝛽H(Γ𝑁 ))

𝑍NVT(𝑇)
(3.11)

with the inverse temperature 𝛽−1 = 𝑘𝐵𝑇 and the canonical partition function

𝑍NVT(𝑇) =
1

𝑁!ℎ3𝑁

∫
exp

(
−𝛽H(Γ𝑁 )

)
dΓ𝑁 . (3.12)

The canonical partition function defines the Helmholtz free energy 𝐹 of the
system

𝐹 (𝑇,𝑉, 𝑁) = −𝛽−1 ln 𝑍NVT(𝑇) (3.13)

which the particle system minimises in equilibrium. With the distribution
function we now have the necessary equipment to sample the phase space
in the 𝑁𝑉𝑇‐ensemble. The canonical ensemble average is given by

𝐴 = 〈A(Γ𝑁 )〉NVT =

∫
A(Γ𝑁 ) exp(−𝛽H(Γ𝑁 ))dΓ𝑁

𝑁!ℎ3𝑁 · 𝑍NVT(𝑇)
. (3.14)

To calculate this formula Eq. (3.4) and Eq. (3.11) are used.

There also exist other ensembles, like the isothermal isobaric ensemble
(𝑁𝑃𝑇) with constant number of particles 𝑁 , pressure 𝑃 and temperature
𝑇 or the grand canonical ensemble (𝜇VT), where the particle system is in
chemical and thermal thermodynamic equilibrium with the reservoir and
can exchange energy (constant𝑇) and particles (constant chemical potential
𝜇). The latter is important for the theoretical part of my thesis in Chap. 7.
The density distribution is given by
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𝑓𝜇VT(Γ𝑁 ) =
1

𝑁!ℎ3𝑁
exp(−𝛽(H (Γ𝑁 ) − 𝜇𝑁))

𝑍𝜇VT(𝜇, 𝑇)
(3.15)

with the grand canonical partition function

𝑍𝜇VT(𝜇, 𝑇) = Trcl exp(−𝛽(H (Γ𝑁 ) − 𝜇𝑁)). (3.16)

Here we used the classical trace

Trcl · · · =
∑
𝑁

1

𝑁!ℎ3𝑁

∫
· · · dΓ𝑁 (3.17)

as a shorthand notation. The grand canonical potential Ω of this system is
written as

Ω(𝑇,𝑉, 𝜇) = −𝛽−1 ln 𝑍𝜇VT(𝜇, 𝑁). (3.18)

In the following, computational studies of pear‐shaped particle systems,
we will use the canonical ensemble to imitate experimental conditions. Even
though other ensembles are occasionally a better fit to experiments, the
canonical point of view with some modifications (specifically the floppy‐box
mechanism explained below) seems to be suitable to predict physical phe‐
nomena like the self‐assembly of pear‐shaped particles22 and is also more
time efficient in terms of computational algorithms.

3.2 Simulation techniques

Now that the fundamental statistical methods and ensembles have been es‐
tablished, we describe two algorithms to generate sequences of microscopic
states to sample the phase space of canonical pear‐shaped particle ensem‐
bles accurately. The first technique is a dynamical approach called Molecu‐
lar Dynamics. Secondly, an alternative stochastic method, namely Metropo‐
lis Monte Carlo, is introduced. See Ref. [292, 293] for more information.

Note here that throughout this thesis all observables and parameters are
dimensionless. This is achieved by expressing them in terms of a fundamental
set of units – mass𝑚0, energy 𝜖0 and length 𝜎0. Often, quantities in reduced

2We performed some sample checks which do not indicate qualitative changes between NVT
(with wall moves) and NPT. The floppy‐box mechanism has to be implemented to avoid the
development of (incorrect) pressure anisotropy in fluid phases [291].
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energy 𝑈∗ = (𝜖−10 )𝑈

temperature 𝑇∗ = (𝑘𝐵𝜖−10 )𝑇

volume 𝑉∗ = (𝜎−3
𝑤 )𝑉

number density 𝜌∗𝑁 = (𝜎3𝑤 )𝜌𝑁
pressure 𝑃∗ = (𝜎3𝑤𝜖−10 )𝑃

time 𝑡∗ = ( 𝜖0
𝜎2

𝑤𝑚0
) 1
2 𝑡

mass 𝑚∗ = (𝑚−1
0 )𝑚

distance r∗ = (𝜎−1
𝑤 )r

velocity v∗ = (𝑚0𝜖−10 ) 1
2 v

momentum p∗ = (𝑚0𝜖0)−
1
2 p

force F∗ = (𝜎𝑤𝜖−10 )F

acceleration a∗ = (𝜎𝑤𝑚0𝜖−10 )a

moment of inertia 𝐼∗ = (𝑚0𝜎2𝑤 )−1

angular velocity 𝜔∗ = ( 𝑚0

𝜎2
𝑤 𝜖0

) 1
2𝜔

angular momentum L∗ = ( 𝜎2
𝑤

𝑚0 𝜖0
) 1
2 L

torque 𝜏∗ = (𝜖−10 )𝜏

angular acceleration 𝛼∗ = ( 𝜎
2
𝑤𝑚0

𝜖0
)𝛼

Table 3.1:The relation between observables and parameters in reduced units and their equiv‐
alents in SI units.

units are marked by an asterisk ∗; however, as all calculations are performed
in reduced units, we refrain from using this marker in the following. The re‐
lation between reduced properties and their equivalents in SI units is given
in Table 3.1.

3.2.1 Molecular Dynamics simulations

The main idea of Molecular Dynamics (MD) simulations is to computation‐
ally replicate an experimental study onmulti‐particle systems. Starting from
some initial configuration the trajectories of all particles, which only depend
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on the inter‐particle interactions, are numerically predicted by integrating
Newton’s equations of motion. Based on this, the given system is propa‐
gated in time to generate a time sequence of microstates which is used in
Eq. (3.2) to calculate time averages. Considering a system of 𝑁 aspherical
pear‐shaped particles, the Newton equation of motion of all 𝑁 particles can
be derived from the Hamiltonian shown in Eq. (3.9). We obtain the transla‐
tional motion of every particle

¤q𝑖 =
𝜕H
𝜕p𝑖

=
p𝑖
𝑚𝑖

¤p𝑖 = −𝜕H
𝜕q𝑖

= −∇𝑖V = f𝑖
(3.19)

with the total force f𝑖 =
∑𝑁
𝑗 f𝑖 𝑗 acting on particle 𝑖 summed over all pair‐

particle interactions calculated from Eq. (2.21). The rotational equations of
motion are derived similarly

¤Θ𝑖 =
𝜕H
𝜕L𝑖

=
L𝑖
𝐼𝑖

¤L𝑖 = − 𝜕H
𝜕Θ𝑖

= −∇Θ𝑖V = 𝜏𝑖 .
(3.20)

with the total torque 𝜏𝑖 acting on particle 𝑖. For rigid, elongated, and rota‐
tionally symmetric particles like pear‐shaped particles it is often more con‐
venient to describe their orientations by normalized orientation vectors u𝑖
rather than the associated angle vectorsΘ𝑖. Also, in case of the PHGO‐model
of pear‐shaped particles, the contact function between two pears in Eq. (2.17)
is expressed in terms of their orientation vectors. As the pear only has two
rotational degrees of freedom, due to the fact that it is invariant under rota‐
tions around the symmetry axis, and, as the rotation is always perpendicular
to u𝑖, 𝜏𝑖 can be reduced to

𝜏𝑖 = u𝑖 × g𝑖 (3.21)

in terms of the gorque g𝑖 which functions as a force causing the particles to
turn. Similarly to the force, the gorque is a derivative of the particle potential
g𝑖 = −∇u𝑖V. It has been shown [294] that the dynamics of the orientation
vector can be expressed by

𝐼𝑖 ¥u𝑖 = g⊥𝑖 + 𝜆u𝑖 . (3.22)

Here g⊥𝑖 is the component of the gorque perpendicular to ui. The factor 𝜆 is
a Lagrange multiplier to conserve the unity of the orientation vector.
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To integrate the equations of motion in Eq. (3.19) and Eq. (3.22), a version
of the Velocity‐Verlet algorithm for rotationally symmetric particles is im‐
plemented [293, 295]. The Velocity‐Verlet scheme is chosen because it ad‐
vantageously combines energy conservation on large time scales and, fur‐
thermore, time reversibility. The integration is performed in small finite
time steps Δ𝑡 such that the time progression of the translational quantities
(position q𝑖 and linear velocity v𝑖) is attained in an iterative fashion as

v𝑖 (𝑡+0.5·Δ𝑡) = v𝑖 (𝑡) +
Δ𝑡
2𝑚𝑖

f𝑖 (𝑡)

q𝑖 (𝑡+Δ𝑡) = q𝑖 (𝑡) + Δ𝑡 · v𝑖 (𝑡+0.5·Δ𝑡)

v𝑖 (𝑡+Δ𝑡) = v𝑖 (𝑡+0.5·Δ𝑡) +
Δ𝑡
2𝑚𝑖

f𝑖 (𝑡+Δ𝑡).

(3.23)

To set up the initial configuration, the absolute values of the linear velocities
of the particles are arbitrarily chosen according to the Maxwell‐Boltzmann
distribution

𝑓𝑣 (𝑇) =
(

𝑚

2𝜋𝑘𝐵𝑇

) 3
2

exp
(
−𝑚𝑣2
2𝑘𝐵𝑇

)
. (3.24)

The directions of velocity, however, are assigned to each particle randomly.

TheVelocity‐Verlet algorithm for the rotations is applied similarly atwhich
the restriction |u𝑖 | = 1 has to be considered with additional terms

¤u𝑖 (𝑡+0.5·Δ𝑡) = ¤u𝑖 (𝑡) +
Δ𝑡
2𝐼𝑖

g⊥𝑖 (𝑡) + 𝜆u𝑖 (𝑡)

u𝑖 (𝑡+Δ𝑡) = u𝑖 (𝑡) + Δ𝑡 · ¤u𝑖 (𝑡+0.5·Δ𝑡)

¤u𝑖 (𝑡+Δ𝑡) = ¤u𝑖 (𝑡+0.5·Δ𝑡) +
Δ𝑡
2𝐼𝑖

g⊥𝑖 (𝑡+Δ𝑡) + ( ¤u𝑖 (𝑡+0.5·Δ𝑡) · u𝑖 (𝑡+Δ𝑡))u𝑖 (𝑡+Δ𝑡).
(3.25)

The Lagrangian correction multiplier 𝜆 is obtained by

𝜆′′ = −Δ𝑡
2

(
¤u𝑖 (𝑡) · ¤u𝑖 (𝑡) +

Δ𝑡
2𝐼𝑖

g⊥𝑖 (𝑡) · (2 ¤u𝑖 (𝑡) +
Δ𝑡
2𝐼𝑖

g⊥𝑖 (𝑡))
)

𝜆′ = 𝜆′′ − (1 + 𝜆′′Δ𝑡)2(u𝑖 (𝑡) · u𝑖 (𝑡)) − 1 − 𝜆′′Δ𝑡
2Δ𝑡 (1 + 𝜆′′Δ𝑡)

𝜆 = 𝜆′ − (1 + 𝜆′Δ𝑡)2(u𝑖 (𝑡) · u𝑖 (𝑡)) − 1 − 𝜆′′Δ𝑡
2Δ𝑡 (1 + 𝜆′Δ𝑡)

(3.26)
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where the last two steps can be thought of as refinement steps for the mul‐
tiplier. Even though it is reasonable to also distribute the original rotational
velocities according to the Maxwell‐Boltzmann distribution, it is not neces‐
sarily needed. The equipartition of energy over all degrees of freedom causes
the adjustment to an accurate distribution of the angular velocities within
a few time steps due to interparticle collisions except at very low densities
which are not considered here. Therefore, we do not initiate rotations and
set ¤u𝑖 (0) = 0 for all particles 𝑖.

So far the pear system is described in themicrocanonical ensemble at con‐
stant energy. Therefore, a thermostat has to be introduced which enables
us to perform MD canonically at constant temperature. In the formalism
of Nosé and Hoover [292, 293, 296], the thermodynamic interaction with an
external heat bath is achieved by extending the Hamiltonian of Eq. (3.5) as

HNose =
𝑁∑
𝑖

(
pi
2

2𝑚𝑖𝑠2
+ Li

2

2𝐼𝑖𝑠2

)
+ V(q𝑁 , u𝑁 ) + 𝑝2𝑠

2𝑄
+ 𝑁 𝑓 𝑘𝐵𝑇0 ln 𝑠. (3.27)

The parameter 𝑠 can be interpreted as an additional coordinate of the reser‐
voir with an effective mass 𝑄 and effective momentum 𝑝𝑠. Using again the
Hamilton equations, Eq. (3.19) and Eq. (3.20) are rewritten to

¤q𝑖 =
p𝑖
𝑚𝑖

¤p𝑖 = −𝜕V(q𝑁 ,Θ𝑁 )
𝜕q𝑖

− 𝜉p𝑖

¤Θ𝑖 =
L𝑖
𝐼𝑖

¤L𝑖 = −𝜕V(q𝑁 ,Θ𝑁 )
𝜕Θ𝑖

− 𝜉L𝑖

¤𝜉 = 1

𝑄

(
𝑁∑
𝑖

pi
2

𝑚𝑖
+

𝑁∑
𝑖

Li
2

𝐼𝑖
− 𝑁 𝑓 𝑘𝐵𝑇0

)
.

(3.28)

To simplify the equations we here introduce the thermodynamic friction
coefficient 𝜉 = 𝑝𝑠

𝑄 . Based on these dynamics a similar Velocity‐Verlet algo‐
rithm can be implemented as described by Smith [297].
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Simulation box

The computational simulations are performed on the flat 3‐torus using pe‐
riodic boundary conditions to imitate systems in bulk. Here, it is assumed
that the cuboidal simulation box is surrounded by replicas of the system in
the x‐, y‐ and z‐directions, which image the original box. In our simula‐
tions, this implies that every pear‐shaped particle has a counterpart in every
periodic box, which moves the same. When a pear‐shaped particle crosses
the boundary and leaves the simulation domain, it is replaced by an image
pear which enters the simulation box on the opposite side. Due to the peri‐
odic boundary conditions, the pear‐shaped particles only interact with the
closest image of neighbouring particles, known as the minimum image con‐
vention [292, 293].

The systems are initially set up within a floppy tetragonal simulation box,
which is able to move its walls without changing the overall volume to relax
the particle arrangements. The initial shape is a cubic simulation box. The
wall moves are implemented by first randomly choosing one of the simu‐
lation box edges 𝑙1, 𝑙2 or 𝑙3. Afterwards, the chosen edge is rescaled by a
factor Λ (stretch) or 1

Λ (compression) with Λ = 1.005, whereas the other two
edges are rescaled by 1√

Λ
and

√
Λ, respectively, to keep the volume constant.

This can lead to cuboidal simulation boxes decreasing the possibility of the
occurrence of phases which are imposed by the boundary conditions. The
wall moves are performed every 100 steps.

As we have shown, MD usually relies on the calculation of the inter‐
particle forces. In hard‐core particle models as introduced in Eq. (2.5), how‐
ever, the potential is by definition non‐differentiable. Thus, a direct im‐
plementation of the hard‐core potential into the algorithm above is often
unfeasible. Even though event‐driven approaches can be considered [292,
298], where the time step Δ𝑡 is not constant and analytically determined
between two collisions, such a method is rather complex and, especially for
aspherical particles, highly non‐trivial. Additionally, for very dense systems,
like those covered in this thesis, the time steps between two collisions be‐
come very small and, consequently, make the event‐driven algorithm inef‐
ficient. To still analyse the dynamical behaviour of pear‐particle systems,
the hard core‐potential is approximated. We use the short range, purely
repulsive, sharply increasing potential which mimics the exclusive volume
interactions according to the PHGO‐contact function (see Eq. (2.17)) of the

56



3.2 Simulation techniques

pear‐shaped particle as close as possible. To be more precise, we use the
Weeks‐Chandler‐Anderson potential, introduced in Eq. (2.21). Even though
it does notmatch the description of a hard‐core particle perfectly, it probably
resembles more realistic slightly soft interaction profiles like those observed
in experimental colloidal systems [207, 279, 280, 281]. The MD approach
described here is applied in Chap. 4 and Chap. 5 to single‐component pear‐
shaped particle systems and in Chap. 8 to pear‐sphere mixtures.

3.2.2 Monte Carlo simulations

Another type of algorithms to computationally study the phase behaviour of
pear‐shaped liquid crystals is Monte Carlo (MC) simulations. Especially, for
hard particles systems,MChas been an important tool to predictmesophases
[206, 213, 214, 215, 216, 217, 218, 219, 220, 221]. In contrast to the MD simula‐
tions, where the initial state at time zero determines the states at all other
times 𝑡, MC is non‐deterministic. Its main idea is to generate a probabilis‐
tic set of samples of the phase space, called a Markov chain [299], using an
iteration process of stochastic trial moves of particles. This means that the
simulation does not follow the time‐evolution trajectory of a specific sys‐
tem, but sweeps the configuration space according to the density distribu‐
tion 𝑓𝑁𝑉𝑇 . At every trial move, the algorithm attempts to map the current
particle configuration Γ𝑁𝑐 to an arbitrarily chosen new configuration Γ𝑁𝑛 , by
relocating particles. The probability density to obtain the new state is given
by prob(Γ𝑁𝑐 → Γ𝑁𝑛 )=𝛼(Γ𝑁𝑐 → Γ𝑁𝑛 ) × acc(Γ𝑁𝑐 → Γ𝑁𝑛 ) and contains the prob‐
ability to choose the step from Γ𝑁𝑐 to Γ𝑁𝑛 𝛼(Γ𝑁𝑐 → Γ𝑁𝑛 ) and the probability
to accept this transition acc(Γ𝑁𝑐 → Γ𝑁𝑛 ) afterwards.

In an equilibrated system the density distribution is static 𝜕prob
𝜕𝑡 = 0. Ac‐

cordingly, the average number of accepted transitions from the current state
has to equal the average number of transitions into the current state. This
condition is called global balance

∫
dΓ′𝑁 𝑓 (Γ𝑁𝑖 )·prob(Γ𝑁𝑖 → Γ′𝑁 )= 𝑓 (Γ𝑁𝑖 )=

∫
dΓ′𝑁 𝑓 (Γ′𝑁 )·prob(Γ′𝑁 → Γ𝑁𝑖 ).

(3.29)
One property of an algorithm, which complies with global balance by im‐

posing a much stricter requirement, is detailed balance. Here the outgoing
flux from Γ𝑁𝑐 to Γ𝑁𝑛 is set equal to the reversed incoming flux from Γ𝑁𝑛 to
Γ𝑁𝑐 . Given that additionally 𝛼(Γ𝑁𝑐 → Γ𝑁𝑛 ) = 𝛼(Γ𝑁𝑛 → Γ𝑁𝑐 ) is chosen to be
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symmetric, so that the probability to choose a trial move from Γ𝑁𝑐 to Γ𝑁𝑛 is
equal to the probability to choose a move the other way around, detailed
balance is written as

𝑓 (Γ𝑁𝑐 ) · acc(Γ𝑁𝑐 → Γ𝑁𝑛 ) = 𝑓 (Γ𝑁𝑛 ) · acc(Γ𝑁𝑛 → Γ𝑁𝑐 ). (3.30)

In principle, detailed balance is not necessary to guarantee an accurate
sampling as other algorithms show [300, 301]. Nevertheless, for non‐spherical
particles like pears, the implementation of detailed balance is still the most
convenient approach. Combining Eq. (3.30) and Eq. (3.11) we find

acc(Γ𝑁𝑐 → Γ𝑁𝑛 )
acc(Γ𝑁𝑛 → Γ𝑁𝑐 )

=
𝑓NVT(Γ𝑁𝑛 )
𝑓NVT(Γ𝑁𝑐 )

= exp(−V(Γ𝑁𝑛 ) − V(Γ𝑁𝑐 )
𝑘𝐵𝑇

). (3.31)

Even though there are uncountable options for acc(Γ𝑁𝑐 → Γ𝑁𝑛 ) to validate
detailed balance, Metropolis et al. [292, 293, 302] introduced an efficient
choice for the acceptance probability between two states

acc(Γ𝑁𝑐 → Γ𝑁𝑛 ) :=
{

exp(−V(Γ𝑁
𝑛 )−V(Γ𝑁

𝑜 )
𝑘𝐵𝑇

), if V(Γ𝑁𝑛 ) ≥ V(Γ𝑁𝑐 )
1, if V(Γ𝑁𝑛 ) < V(Γ𝑁𝑐 )

(3.32)

which is still widely used and known as the Metropolis algorithm. In terms
of hard‐particle interactions the use of Metropolis’ approach proves particu‐
larly beneficial. According to Eq. (2.6) the acceptance matrix acc(Γ𝑁𝑐 → Γ𝑁𝑛 )
in Eq. (3.32) becomes binary. As all permissible configurations feature equal
potential energy, a trial step is only rejected if particles overlap. In terms
of pear‐shaped particles the overlap occurs according to its contact func‐
tions (see Sec. 2.2.1 for the different contact function models). We can, thus,
change Eq. (3.32) to

acc(Γ𝑁𝑐 → Γ𝑁𝑛 ) :=
{
1, if particles do not overlap
0, if particles overlap.

(3.33)

Computationally, this leads to the advantage that the algorithm is accel‐
erated significantly. On the one hand, the acceptance step does not have
to be randomized anymore. On the other hand, a trial step attempt can be
rejected as soon as one overlapping pair of molecules has been identified.
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Δ𝑞t

Δ𝑞,max

𝑢𝑢′′

Δ𝑢v Δ𝑢,max

Transl.Rot.

Figure 3.2: The two possible move sequences in the Monte Carlo simulation of hard‐core
pear‐shaped particle. Left: A random pear is rotated by adding a vector v with random di‐
rection and length Δ𝑢 to its orientation vector u which is normalised afterwards. Right: A
random pear is translated by a vector t with random direction and length Δ𝑞 . If the moving
particle does not overlap with another particle the step is accepted. Otherwise, the move is
reversed again.

Like inMD, theMetropolis algorithm is applied to a system of 𝑁 hard‐core
molecules within a floppy cuboidal simulation box with periodic bound‐
ary conditions. For every trial move, an arbitrary particle is chosen and
displaced by a small margin. For pear‐shaped particles, this is realised ei‐
ther by a minor translation or by a rotation of the orientation vector around
a small angle (see Fig. 3.2). To ensure detailed balance and the symmetry of
𝛼(Γ𝑁𝑐 → Γ𝑁𝑛 ), the direction of translation is given by a random unit vector t
and a randomly chosen factor Δ𝑞 ∈ [0,Δ𝑞,max]

q′ → q + Δ𝑞t. (3.34)

For MC, no velocities are assigned to the particles demonstrating once more
that this algorithm is purely statistical in its nature.

Analogous to the linear translations, also the rotation is performed by
adding a random unit vector v multiplied by a randomly chosen factor Δ𝑢 ∈
[0,Δ𝑢,max]. Afterwards the orientation vector is normalized

u′ → u + Δ𝑢v

u′′ → u′

|u | .
(3.35)

One MC step is completed after 𝑁 trial move attempts. The maximal trans‐
lational Δ𝑞,max and the maximal orientational displacement Δ𝑢,max are se‐
lected such that both trial move variants are accepted with a probability of
50% on average. Hence, in every MC‐run a preparation stage, where Δ𝑞,max
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and Δ𝑞,max are determined, precedes the production stage, where the phase
space is sampled.

The advantage of MC over MD simulations is that we can directly use
the hard‐core potentials. More specifically, the MC approach is applied in
Chap. 4–8 with the PHGO contact function and in Chap. 5–7 using the HPR
model. Secondly, the MC algorithm tends to reach equilibrated states after
a smaller number of simulation steps, as it does not have to follow physical
trajectories and, hence, forgives poorly initiated starting conditions, where
the particle system is very far from equilibrium, more easily. However, this
also implies that no predictions about kinetic features of the system can be
obtained with this method.

Additionally, the Metropolis Monte Carlo scheme is hard to parallelise for
highly efficient and fast simulation runs. Even though parallel codes have
been developed for spherical particles [285] where the simulation box is
subdivided into multiple subdomains like a checkerboard, those algorithms
are mostly expensive for elongated, aspherical particles, like ellipsoids or
pears. This means that despite the theoretically faster equilibration of the
system,MD simulations are often faster if the initial condition is chosen con‐
veniently, so close to the equilibrium state. Therefore, we use both the MC
and MD approach to analyse pear‐shaped particle self‐assembly to cover a
wide range of quantifiable observables.

3.3 Thermodynamic observables

In the following, the most important observables in dynamic computational
simulations are established. The first type of observables we introduce here
are of thermodynamic nature. Note that some of these variables cannot be
determined by the ensemble average method and are only retrieved from
the Molecular Dynamics technique of Sec. 3.2.1.

3.3.1 Temperature

The temperature 𝑇 , for example, is a constant predetermined parameter in
MC‐simulations due to the non‐dynamical nature of the MC algorithm and
cannot be calculated. In our hard pear‐shaped particle systems, the temper‐
ature does not even contribute to the Metropolis step (see Eq. (3.33)) and,
therefore, has to be interpreted rather as an adjustable parameter which
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governs the time‐scale. Also inMD‐simulations with a thermostat, the aver‐
age temperature is determinate beforehand. Yet, 𝑇 can be obtained from the
Hamiltonian H to review the accuracy of the algorithm or to assess equilib‐
rium. In particular, the equipartition theorem, which states that the energy
has to be equally distributed among all degrees of freedom, relates 𝑇 with
H and all variables 𝑥𝑖 assigned to one degree of freedom of the (2𝑁𝐹 ·𝑁)‐
dimensional phase space Ω as〈

𝑥𝛼
𝜕H
𝜕𝑥𝛽

〉
= 𝛿𝛼𝛽𝑘𝐵𝑇. (3.36)

Here 𝛿𝛼,𝛽 symbolises the Kronecker delta. Focussing only on the momen‐
tum of each particle p, the temperature can be directly derived from the
average translational kinetic energy per degree of freedom with Eq. (3.6) by〈

𝑝𝛼
𝜕H
𝜕𝑝𝛼

〉
=

〈
𝑝𝛼
𝜕Ktrans

𝜕𝑝𝛼

〉
=

〈
𝑝2𝛼
𝑚

〉
= 𝑘𝐵𝑇. (3.37)

Thus, for every step of the computational simulations, the instantaneous
temperature T

T =
𝑁∑
𝑖

𝑚𝑖v2𝑖
𝑘𝐵 · (3𝑁 − 3) (3.38)

is averaged over all particles by calculating the translational kinetic energy of
the whole system and dividing it by the total number of translational degrees
of freedom 3𝑁 . In this way we can prevent high fluctuations and enhance
our statistics. The formula is given in terms of the molecules’ velocities v𝑖
rather than its momenta as it is more convenient to save the velocities in
Molecular Dynamics.

Alternatively, T can be procured by calculating the rotational kinetic en‐
ergy in the same way. However, here we have to be careful that there are
only 2𝑁 rotational degrees of freedom in total so

T =
𝑁∑
𝑖

𝜔𝑇𝑖 I𝑖𝜔𝑖
𝑘𝐵 · 2𝑁 . (3.39)

The equilibrium temperature 𝑇 is the time average of 〈T 〉. In general,
𝑇 does not affect the phase behaviour of soft‐core particle systems like the
WCA in Sec. 2.2.2. According to Eq. (1.6), the temperature can be seen as a
scaling factor of the system. The higher the temperature is set, the faster the
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system equilibrates. However, high temperatures and, therefore, fast par‐
ticles, are also accompanied by the possibility of large overlaps of particles
between two finite time steps during the discrete time integration of the
MD algorithm. Those overlaps result in extremely high potential energies
and can break the simulation. To resolve this issue, we choose the time step
size Δ𝑡 sufficiently small which increases computational time considerably.
Thus, a compromise between a sufficiently high temperature and time step
for a fast equilibration has to be found.

3.3.2 Pressure

The pressure 𝑃 is also a result of the equipartition theorem. Instead of the
relation between temperature and momenta, the position coordinates 𝑞𝛼 of
each particle are inserted in Eq. (3.36)〈

𝑞𝛼
𝜕H
𝜕𝑞𝛼

〉
=

〈
𝑞𝛼

𝜕V
𝜕𝑞𝛼

〉
= 〈−𝑞𝛼 · 𝐹𝛼〉 = 𝑘𝐵𝑇. (3.40)

Here we used that only the interaction potential term is dependent on 𝑞𝛼
(see Eq. (3.5)) and the identity Δ𝑖V = −𝐹𝑖 between the potential and the
force 𝐹𝑖 which is acting on particle 𝑖. This directly gives us the virial theorem

𝑁∑
𝑖

〈q𝑖 · F𝑖〉 = −3𝑁 · 𝑘𝐵𝑇 = −2 〈𝐸 (trans)
kin 〉 (3.41)

with the average translational kinetic energy 〈𝐸 (trans)
kin 〉. In the canonical en‐

semble the particles are assumed to be containedwithin a closed box. There‐
fore, the forces which impact single molecules are composed of the internal
forces between different particles F𝑖 𝑗 with F𝑖𝑖 = 0 and an external force be‐
tween the wall and a particle 𝐹 (wall)

𝑖 . The internal term can be outlined as

〈
𝑁∑
𝑖=1

𝑁∑
𝑗=1

q𝑖 · F𝑖 𝑗〉 = 〈
𝑁−1∑
𝑖=1

𝑁∑
𝑗=𝑖+1

(q𝑖 · F𝑖 𝑗 − q 𝑗 · F𝑖 𝑗)〉 = 〈
𝑁−1∑
𝑖=1

𝑁∑
𝑗=𝑖+1

r𝑖 𝑗 · F𝑖 𝑗〉 (3.42)

with the distance vector r𝑖 𝑗 between two pears. The pressure of the system
is defined as the force of the particle system imposed on the wall of the con‐
fining volume𝑉 divided by its surface 𝜕𝑉 . Simultaneously an infinitesimally
small patch of the wall d𝑆 ⊂ 𝜕𝑉 acts on particles at position q ∈ d𝑆 on the
boundary based on the action‐reaction principlewith a forceF(wall)= − n𝑃d𝑆.
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3.3 Thermodynamic observables

The vector n is the normal direction of the surface patch d𝑆. By means of
the divergence theorem the external term can be written as

〈
𝑁∑
𝑖

q𝑖 · F(wall)
𝑖 〉 = −𝑃

∮
𝜕𝑉

q · nd𝑆 = −𝑃
∫
𝑉
∇ · qd𝑉 = −3𝑃𝑉. (3.43)

Implementing Eq. (3.42) and Eq. (3.43) into Eq. (3.41) leads to

𝑃 = 𝑘𝐵𝑇
𝑁

𝑉
+ 2

3𝑉

〈
𝑁∑
𝑖< 𝑗

F𝑖 𝑗 · r𝑖 𝑗

〉
. (3.44)

The excess pressure

𝑃ex =
2

3𝑉

〈
𝑁∑
𝑖< 𝑗

F𝑖 𝑗 · r𝑖 𝑗

〉
. (3.45)

however, has to be treated with caution, as we deal with a soft potential close
to the hard core limit. For perfectly hard particles the forces diverge. How‐
ever, the duration of the collisions also vanishes such that the momentum
exchange Δp is finite. The Eq. (3.44) can be replaced by

𝑃 = 𝑘𝐵𝑇
𝑁

𝑉
+ 2

3𝑉𝜏

〈∑
𝑐

Δp𝑖 𝑗 · r𝑖 𝑗

〉
(3.46)

where the symbol 𝑐 entails all collisions during the time interval 𝜏. The mo‐
mentum exchangeΔp𝑖 𝑗 is calculated from the velocities of the particle 𝑖 right
before and after the contact with particle 𝑗 . Usually, it is not as informative
as for systems interacting via soft‐core interactions. Nevertheless, as we will
see it still contains enough information to identify phase transitions in Sec.
5.1.

3.3.3 Diffusion

The last important thermodynamic observable that has to be introduced is
diffusion. Diffusion is defined as a measure of the mean distance a parti‐
cle travels in time 𝑡. In simulations, the diffusion coefficient 𝐷 is usually
obtained by using the mean squared displacement

〈r2𝑖 (𝑡)〉𝑖 = 〈(q𝑖 (𝑡) − q𝑖 (0))2〉𝑖 =
1

𝑁

𝑁∑
𝑖

(q𝑖 (𝑡) − q𝑖 (0))2 (3.47)
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3 Simulation methods and structure analysis tools

and describes the development of the mean squared distance between the
original positions of the particles at time 𝑡𝑖 = 0 and their current position at
time 𝑡𝑐 = 𝑡. Here the dynamics of each individual particle is tracked. Conse‐
quently, the mean squared displacement only contains physically meaning‐
ful information about diffusive behaviour by using MD and time averaging
(but not for MC methods) . In three dimensions the relation between the
mean squared displacement and diffusion coefficient is given by

〈r2𝑖 (𝑡)〉𝑖 = 6 · 𝐷 · 𝑡𝛼 in the limit 𝑡 → ∞. (3.48)

The parameter 𝐷 is the long‐time diffusion coefficient. Mostly the mean
squared displacement is linearly dependent on time 𝛼 = 1 and in the diffusive
state which is a result of Brownianmotion. For 0 < 𝛼 < 1 the system is called
subdiffusive, whereas for 𝛼 > 1 it is characterised as superdiffusive. For all
systems described in this thesis, the behaviour corresponds to either normal
diffusion (𝛼 = 1) or the non‐diffusive state (𝛼 = 0).

3.4 Structural observables

The second important set of observables are structural observables. These
aremetrics and properties used to detect structural correlations between dif‐
ferent molecules in the systems at a certain time. Hence, structural observ‐
ables are static measures and not dependent on the dynamics of the whole
system. Consequently, their values can be obtained using both a Molecular
Dynamics and Monte Carlo simulation approach. However, it is argued that
the Monte Carlo sampling is a much more efficient way as it is not restricted
to the “dynamical” path to form the equilibrated configuration and excuses
poorly chosen initial conditions more easily.

3.4.1 Nematic and polar order parameter

The concept to characterise global orientational order in the form of a ne‐
matic or smectic phase by a prominent direction called nematic director
n has already been introduced in Sec. 1.3.2. This normalised director de‐
fines a preferred orientation of anisotropic particles within the system. As in
the nematic phase, there is no distinction between parallel and anti‐parallel
alignment; so the sign of the director can be chosen arbitrarily n ≡ −n. This
also holds even though the investigated pear‐shaped particles covered in this
thesis possess a pronounced head‐tail‐asymmetry and a distinct orientation
thereto. It is equally likely to find pears facing up as pears facing down in
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3.4 Structural observables

the particle system. Due to thermodynamic fluctuations, molecules are not
perfectly aligned with the director. Therefore, to quantify nematic order the
nematic order parameter 𝑃2 is introduced [157, 303].

After expressing the directions u(𝜃, 𝜙) of the long axis of a rod‐like mole‐
cule in terms of polar coordinates with a polar angle 𝜃 and azimuthal angle
𝜙, we can define the probability to find a particle which is oriented within a
small angular element dΩ = sin 𝜃d𝜃d𝜙 as 𝑓 (𝜃, 𝜙)dΩ. The angular distribu‐
tion function 𝑓 (𝜃, 𝜙) defines the molecular orientational distribution of the
system. As we consider only uniaxial particles, which only have one marked
long axis, the whole system has to be axially symmetric around n as well.
Thus, the distribution function does not depend on 𝜙 when the coordinate
system is placed such that the 𝑧‐direction coincides with n: 𝑓 (𝜃, 𝜙) = 𝑓 (𝜃)

2𝜋 .
The angle 𝜃 can now be recognized as the angle between the molecule and
the director. To reduce the density function to a sequence of scalars, which
will be the measure of particle alignment, 𝑓 (𝜃) is expanded to a sum of Leg‐
endre polynomials 𝑃𝑛 (n · u)

𝑓 (𝜃) =
∞∑
𝑛=0

𝑓𝑛𝑃𝑛 (n · u) =
∞∑
𝑛=0

𝑓𝑛𝑃𝑛 (cos 𝜃) (3.49)

with

𝑓𝑛 =
2𝑛 + 1
2

∫ 1

−1
𝑓 (𝜃)𝑃𝑛 (cos 𝜃)d(cos 𝜃). (3.50)

The coefficients 𝑓𝑛 include all the information of the angular density distri‐
bution and are, therefore, the best candidates for the nematic order param‐
eter.

The first term with 𝑓0 = 1
2 is useless to measure nematic order as it is a

constant for all distributions. 𝑓𝑛 = 𝑓0𝛿𝑛0 resembles the angular distribu‐
tion function of an isotropic configuration without any orientational order.
Also the second amplitude 𝑓1 has to be excluded. As the director and its
antiparallel equivalent are interchangeable to describe a global alignment of
particles, the angular distribution is symmetric around 𝜃 = 𝜋

2 . We obtain
𝑓 (𝜃) = 𝑓 (𝜋 − 𝜃). Calculating Eq. (3.50) it is shown that the second dipolar
term vanishes 𝑓1 = 0.
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3 Simulation methods and structure analysis tools

Hence, the nematic order parameter 𝑃2 is defined by the first non‐trivial
multipole: the quadrupole 𝑓2. Furthermore, we can identify the nematic
order parameter

𝑃2 =
2

5
𝑓2 =

∫ 1

−1
𝑓 (𝜃) 1

2
(3 cos2 𝜃 − 1)d(cos 𝜃) = 〈𝑃2(cos 𝜃)〉 (3.51)

using Eq. (3.50) as the average second Legendre polynomial of the angle be‐
tween the director and the particle orientations. The factor 25 ensures that
𝑃2 lies within the interval [− 1

2 , 1]. If the distribution is peaked around 𝜃 = 0
and 𝜃 = 𝜋, which is tantamount to a near perfectly aligned system, 𝑃2 ap‐
proaches 1. The lower boundary − 1

2 corresponds to a perfectly perpendicular
arrangement of molecules to n, which is not observed in the absence of ex‐
ternal fields. For a constant 𝑓 (𝜃) and an isotropic system, 𝑃2 equals 0.

However, computational simulations face a problem as the director is not
known a priori and 𝑃2 cannot be identified by the particle orientations di‐
rectly. One strategy of determining n is choosing a random direction n0 and
calculating an order parameter using Eq. (3.51). Then an iterative algorithm
is used to maximise 𝑃2(n) by calculating the gradient of the imminent n𝑘
numerically. The nematic director n can be sufficiently closely approached
after a finite number of iterative steps 𝑘 : n𝑘 ≈ n. Nevertheless, this proce‐
dure is computationally very demanding and inefficient.

Luckily, 𝑃2 can be calculated alternatively in amuchmore direct way using
the nematic order tensor

Q =
1

2𝑁

𝑁∑
𝑖

(3u𝑖 ⊗ u𝑖 − 1). (3.52)

The matrixQ depends on the orientational configurations of the whole sys‐
tem. Additionally, it is traceless and symmetric and, hence, can be repre‐
sented by a diagonalised matrix D with an orthogonal matrix S: Q=SDS𝑇 .

The nematic order parameter can be written in terms of the order tensor
with [157, 304]

𝑃2 = 〈𝑃2(cos 𝜃)〉 =
〈
1

2

(
3(n𝑇 ui)2 − 1

)〉
=

〈
1

2

(
3(n𝑇 ui)2 − 1

)〉
=

=

〈
1

2

(
3(n𝑇 ui)(ui

𝑇 n) − 1
)〉

= n𝑇
〈
1

2
(3ui ⊗ ui − 1)

〉
n =

= n𝑇Qn = n𝑇 SDS𝑇 n = n̂𝑇Dn̂ = 𝜆1𝑛
2
1 + 𝜆2𝑛22 + 𝜆3𝑛23

(3.53)
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where 𝜆1 > 𝜆2 > 𝜆3 are the eigenvalues of Q. It is apparent that 𝑃2 is max‐
imised if the director in the eigenbasis of Q is n̂ = (1, 0, 0)𝑇 . Consequently,
𝑃2 can be identified as the largest eigenvalue of the nematic order matrix
𝜆1. The corresponding eigenvalue is the nematic director n = Sn̂. Using this
definition of 𝑃2, even though a goodmeasure for nematic or ordered phases,
will lead to small positive values in the isotropic phase as a finite size effect.
Therefore, we will talk about an orientationally ordered phase in the rest of
this thesis if 𝑃2 > 0.2.

As pears are polar particles, also a global polar order parameter 𝑃1 accord‐
ing to a polar director n𝑃1 can be determined. The polar director is defined
as the average normalized orientation over all particles in the system

n𝑃1 =
∑𝑁
𝑖 u𝑖

|∑𝑁
𝑖 u𝑖 |

. (3.54)

To calculate 𝑃1 the polar director is coupled with the particles orientations
by

𝑃1 =
1

𝑁

〈
𝑁∑
𝑖

n𝑃1u𝑖

〉
=
1

𝑁

〈∑𝑁
𝑖 u𝑖

∑𝑁
𝑖 u𝑖

|∑𝑁
𝑖 u𝑖 |

〉
=
1

𝑁

�����
〈
𝑁∑
𝑖

u𝑖

〉����� . (3.55)

This definition of the polar order corresponds to the first coefficient of the
Legendre polynomial extension 𝑓1 (see Eq. (3.50)). Here, we already argued
that in general 𝑓1 vanishes. Consequently, it does notmake sense to calculate
polar order globally. Nonetheless, the polar order and also the nematic order
parameter can be coupled with the pair correlation function (defined in the
very next section) which gives a measure for local polar and nematic order,
respectively.

3.4.2 Pair correlation functions

One of the most powerful observables to characterise the translational or‐
der of particle systems are the pair correlation function 𝑔(𝑟), also known as
the radial distribution function. The radial distribution function represents
the probability, given that particle 𝑖 is placed at the origin, to find another
molecule 𝑗 at a radial distance 𝑟. Thus 𝑔(𝑟) bears valuable information about
the positional correlations between the particles. Based on the number den‐
sity distribution function
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3 Simulation methods and structure analysis tools

𝜌𝑁 (r) = 〈
∑
𝑖

𝛿(r − r𝑖)〉 (3.56)

the radial distribution function is written as

𝑔(𝑟) = 1

𝑁𝜌𝑁

〈∑
𝑖

∑
𝑗≠𝑖

𝛿(𝑟 − 𝑟𝑖 𝑗)
〉

(3.57)

with the global number density

𝜌𝑁 =
𝑁

𝑉
. (3.58)

To calculate 𝑔(𝑟) numerically in our simulations, Eq. (3.57) has to be dis‐
cretized and rewritten. Based on the definition of 𝑔(𝑟), the mean number of
particles 𝛿𝑁 (𝑟) foundwithin a small distance interval [𝑟, 𝑟+𝛿𝑟] from another
particle is given by

𝛿𝑁 (𝑟) = 𝜌𝑁 𝑔(𝑟)𝑉shell(𝑟) (3.59)

with 𝑉shell(𝑟) being the volume of the thin spherical shell of thickness 𝛿𝑟
whose inner boundary is a sphere of radius 𝑟. By approximating 𝑉shell(𝑟) =
𝑉sph(𝑟 +𝛿𝑟) −𝑉sph(𝑟) ≈ 4𝜋𝑟2𝛿𝑟 +O(𝛿𝑟2) and rearranging Eq. (3.59), we obtain

𝑔(𝑟) = 1

𝜌𝑁

𝛿𝑁 (𝑟)
4𝜋𝑟2𝛿𝑟

. (3.60)

This can be interpreted as a formula to generate the radial distribution func‐
tion by a normalized histogram. The histogram is computed by counting all
pair separations, corresponding to the domain 𝑚𝛿𝑟 < 𝑟𝑖 𝑗 < (𝑚 + 1)𝛿𝑟 and
normalize them according to Eq. (3.60). Note that the “normalisation” fac‐
tor in this case indicates that 𝑔(𝑟) converges towards 1 for large distances:
lim𝑟→∞ 𝑔(𝑟) = 1. This indicates that a pair of particles at large distance from
one another is uncorrelated. Additionally, to prevent boundary effects only
pairs with 𝑟𝑖 𝑗 < 𝐿

2 are considered. The concept is pictured in Fig. 3.3a.

In the analysis of liquid crystals it is often advantageous not to determine
the radial distribution of a system, but to separate the distance between two
molecules into a longitudinal and a lateral part. This is vividly illustrated
by particles forming a smectic phase. Due to their anisotropic features, the
order parallel to the director is different from perpendicular to the director.
The radial distribution function, thus, superimposes the signatures along
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radial
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(c)

Figure 3.3: Schematics of the radial (a), longitudinal (b) and lateral distribution function
(c). The figures show cross sections through the sampling space. The gray areas represent
shells which bin the space around the center pear‐shaped particle and are used to create the
corresponding histogram. The shells are spherical (a), discal (b) and cylindrical (c).

both directions. By calculating 𝑔 ‖ (n · r) and 𝑔⊥(
√
𝑟2 − (n · r)2) the superim‐

position can be decoupled. The former characterises the smectic layering
of the system, whereas the latter is a measure of translational order within
the layers. However, this approach has the disadvantage that global orienta‐
tional order is needed. Lipid systems adopting a bicontinuous surface geom‐
etry, exhibit no overall global orientational order as they form pronouncedly
curved bilayers. Nevertheless, locally neighbouring lipids are clearly orienta‐
tionally correlated such that a lateral and longitudinal distribution function
on a local scale seems to be more effective. Thus, we replace the director
with the orientation of the liquid crystal at the origin u𝑖. In this way, we can
guarantee to detect both curved bilayer ordering but also smectic layering
as u𝑖 ≈ n.33 The longitudinal and lateral distance are defined by 𝑟 ‖ = u𝑖 · r and
𝑟⊥ =

√
𝑟2 − 𝑟 ‖2, respectively. Note here, that 𝑟 ‖ can become negative. For

pear‐shaped particles, positive longitudinal distances correspond to a dis‐
tance in the direction of the thin narrow end while negative distances have
to be assigned to particles which are placed in the direction of the thick blunt
end.

To compute the longitudinal distribution function 𝑔 ‖ (𝑟 ‖) and lateral dis‐
tribution function 𝑔⊥(𝑟⊥)weuse a similar histogramapproach like in Eq. (3.60).
For simplifying the normalisation of the histograms they are calculatedwithin

3This only applies to the smectic‐A phase. For other smectic phases it is still more convenient
to use the director as a reference.
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a cylinder. This implies that only particles which lie within a cylinder with
radius 𝑅cyl and height 𝐻cyl centered at the position of particle 𝑖 are consid‐
ered. The cylinder, furthermore, shares the same rotational symmetry axis
as the very particle 𝑖 (see Fig. 3.3b). The dimensions of the encapsulating
cylinder have to be chosen such that the periodic boundaries of the simula‐
tion box are not trespassed

𝐻cyl < 𝐿 sin 𝛼

𝑅cyl <
𝐿

2
sin 𝛼.

(3.61)

Here 𝛼 encodes the aspect ratio of the cylinder tan 𝛼. The probability to find
a particle at longitudinal distance 𝑟 ‖ within a circular disk of thickness 𝛿𝑟 ‖

and volume 𝑉disc = 𝜋𝑅2cyl𝛿𝑟
‖ bounded by the cylinder is given by

𝑔 ‖ (𝑟 ‖) = 1

𝜌𝑁

𝛿𝑁 ‖ (𝑟 ‖)
𝜋𝑅2cyl𝛿𝑟

‖ . (3.62)

𝛿𝑁 ‖ (𝑟 ‖) is the mean number of particles within the disc. Analogously,
probability to find a particle at lateral distance 𝑟⊥ within a cylindrical shell
of thickness 𝛿𝑟⊥ and volume 𝑉disc ≈ 2𝜋𝑟𝛿𝑟 ‖𝐻cyl is defined as

𝑔⊥(𝑟⊥) = 1

𝜌𝑁

𝛿𝑁⊥(𝑟⊥)
2𝜋𝐻cyl𝑟⊥𝛿𝑟⊥

. (3.63)

Here 𝛿𝑁⊥(𝑟⊥) is the mean number of particles within the cylindrical shell.
The notion of both distribution functions is depicted in Fig. 3.3b+c.

The different distribution functions provide the possibility to study the
local orientational ordering in a much more detailed way as well. Here, the
number density in Eq. (3.56) can be weighted by a factor which includes the
relative orientations of the pear particles. With this take on 𝑔(𝑟) we can
define a polar radial distribution function 𝑔𝑃1 weighted by the first Legendre
polynomial 𝑃1(u𝑖 · u 𝑗) = cos(u𝑖 · u 𝑗)

𝑔𝑃1 (𝑟) =
1

𝑁𝛿𝑁 (𝑟)

〈∑
𝑖

∑
𝑗≠𝑖

cos(u𝑖 · u 𝑗)𝛿(𝑟 − 𝑟𝑖 𝑗)
〉
. (3.64)
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For the nematic radial distribution function 𝑔𝑃2 the second Legendre
polynom 𝑃2(u𝑖 ·u 𝑗) = 1

2 (3 cos2(u𝑖 · u 𝑗) − 1) is used as weighting factor, such
that

𝑔𝑃2 (𝑟) =
1

𝑁𝛿𝑁 (𝑟)

〈∑
𝑖

∑
𝑗≠𝑖

1

2
(3 cos2(u𝑖 · u 𝑗) − 1)𝛿(𝑟 − 𝑟𝑖 𝑗)

〉
. (3.65)

Both the polar and nematic distribution function are scaled by the mean
number of particles at distance 𝑟 to easier relate the values to the polar and
nematic order parameters (see Eq. (3.51) and Eq. (3.55)). This means that
𝑔𝑃1 (𝑟) and 𝑔𝑃2 (𝑟) determine how strongly two particles separated by a dis‐
tance 𝑟 are orientationally correlated. However, the functions do not con‐
tain information about the likeliness of such configurations occurring. In
a similar vein also lateral and longitudinal variants of the distributions are
defined.

3.4.3 Structure factor and scattering pattern

In a homogenous, equilibrated and infinitely large liquid system, the radial
distribution function 𝑔(𝑟) is related to the structure factor 𝑆(k) by a Fourier
transformation [287]

𝑆(k) = 1 + 𝜌𝑁
∫

exp(−ikr) (𝑔(r) − 1)dr. (3.66)

In experiments, the structure factor is usually obtained by measuring the
diffraction or scattering patterns of a crystalline sample. The relative inten‐
sity 𝐼 (k) of the pattern is equivalent to the structure factor 𝑆(k).44 The struc‐
ture factor contains information about the crystallographic symmetry of the
analysed configuration which is a decisive step to identify the exact mor‐
phology. By plotting the intensity in terms of the absolute value of the scat‐
tering vector k, the pattern displays characteristic peaks. These peaks can
be assigned to reflection planes for corresponding ordered structures indi‐
vidually, but collectively specify the three‐dimensional space group. Exper‐
imental scattering techniques, like small angle X‐ray scattering, have shown
to be the most reliable methods to identify elaborate and highly symmetric
structures like the double gyroid [180, 305, 306, 307, 308, 309, 310].

4More precisely 𝐼 (k) = 𝑓 (k)𝑆(k) with 𝑓 (k) is the form factor of the considered point cloud.
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In computational physics, “scattering” ismodelled by calculating the Fourier
transform of the three‐dimensional point density 𝜌𝑁 (r) which represents
the multi‐particle system55 [287]

𝑆(k) = 1

𝑁

����∫ 𝜌𝑁 (r) exp(−ik · r) dr
����2 . (3.67)

In particular, the scattering pattern is obtained by discretising the density
into 𝜌𝑖 𝑗𝑘 with 0 ≤ 𝑖, 𝑗 , 𝑘 < 𝑀 − 1 representing the density amplitude at
r = 𝑙max

𝑀 (𝑖, 𝑗 , 𝑘)T with box size 𝑙𝑚𝑎𝑥 . Performing Fast Fourier transformation
gives us the amplitude

Ψlmn =
𝑀−1∑
𝑖 𝑗𝑘

𝜌𝑖 𝑗𝑘 exp
(
−i2𝜋
𝑀

(𝑙 · 𝑖 + 𝑚 · 𝑗 + 𝑛 · 𝑘)
)
. (3.68)

The scattering pattern 𝑆(k) at k = 2𝜋
𝑙max

(𝑙, 𝑚, 𝑛)T is roughly proportional
to |Ψlmn |2. Moreover, using this computational tool, the structure factor
cannot only be resolved radially in one dimension or as a projection in two
dimensions but can also be unravelled easily in three dimensions such that
we gain even more structural information than with state‐of‐the‐art scatter‐
ing experiments, where only 2D diffraction patterns can be realised.

3.4.4 Cluster algorithm

Another structural analysis tool we use in this thesis is a clustering algo‐
rithm which is tailored specifically to pear‐shaped particle systems forming
bicontinuous phases. The primary goal of this algorithm is to identify the
two channel domains of triply‐periodic minimal surface structures by sep‐
arating the pear‐shaped particles into two distinct subsets. Moreover, the
clustering tool is performed to enable structural characterisation of phases.

To assign a pear‐shaped particle to one of the channel domains we con‐
sider the position of its blunt end. Ellison et al. has shown that in the gyroid
phase these ends are situated close to the skeletal backbone of the channel
networks [241]. Based on this information the algorithm is partitioned into
the following three steps which are also illustrated pictorially in Fig. 3.4:

5Note that Eq. (3.66) and Eq. (3.67) are equivalent up to a delta function term.
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Cluster assignment

Figure 3.4:A pictorial illustration of the three major steps of the clustering algorithm. In the
first step (left) nodes are assigned to the blunt ends of the pears. In the second step (centre) all
nodes with a relative distance smaller than 𝑟cl are linked which results in multiple connected
graphs. In the third step (right) all pears, which belong to the same network are grouped to
a cluster and coloured accordingly.

1. In the first step, nodes 𝑛 are placed at the position of the blunt end of
each particle as in the gyroid phase these ends ocularly group together.

2. Afterwards, we define two nodes 𝑛 and 𝑛 as connected if their Eu‐
clidean distance dist(𝑛, 𝑛) is smaller than a certain threshold distance
𝑟cl or in other words if 𝑛 is within the 𝑟cl‐neigbourhood 𝑁𝑟cl of 𝑛:

𝑛 ∈ 𝑁𝑟cl (𝑛) = {𝑝 ∈ E | dist(𝑛, 𝑝) < 𝑟cl}. (3.69)

This leads to a complex graph effectively linking different pears.

3. Nodes 𝑛 and 𝑚, and subsequently the associated pears, are assigned to
the same cluster in the last step if a path 𝑛1,𝑛2,..,𝑛𝑁−1,𝑛𝑁 with 𝑛1 = 𝑛
and 𝑛𝑁 = 𝑚 between them can be found where

∀0 < 𝑖 < 𝑁 𝑛𝑖 ∈ 𝑁𝑟cl (𝑛𝑖+1). (3.70)

Thus, the clusters are defined as the connected components of this
graph.

3.4.5 Set‐Voronoi tessellation

The structural analysis of the proximity of particles on the microscopic scale
is a significant aspect in softmatter and related fields of physics. In particular,
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the local geometric properties around the particles can give valuable insight
into the stability of systems and reveal certain mechanisms about formation
processes of particle configurations.

One important tool in this regard is the description of occupied space by
Voronoi cells along with the pair correlation functions. The idea to tessellate
space according to this method has found a wide range of useful applica‐
tions, not only in many particle‐based fields of science like granular materi‐
als [12, 311, 312, 313], colloidal systems [221, 314, 315, 316], biophysics [317, 318,
319, 320, 321] and other systems of statistical physics [322, 323, 324, 325, 326],
but has also proven to be beneficial in other fields like cosmology [327, 328],
solid state physics [329, 330], engineering [331, 332] or even outside science
in city planing [333]. The original idea of Voronoi tessellation, also known
as point Voronoi tessellation, which assigns each particle a certain volume
which is closer to the centre of this particle than to any other particle is ac‐
credited to Dirichlet and Voronoi [334] but can be traced back even further
to Descartes [335]. The process leads to individual non‐overlapping cells
which partition the whole system (see Fig. 3.5 left).

The Voronoi cell 𝑉cell
𝑖 of particle 𝑖 is defined mathematically in three‐

dimensional Euclidean space E3 by

𝑉cell
𝑖 = {x ∈ E3 | dist(x, q𝑖) ≤ dist(x, q 𝑗) ∀ 𝑗 ≠ 𝑖} (3.71)

with dist(x, qi) being the Euclidean distance between point x and the cen‐
tral point q𝑖 of particle 𝑖. The combination of all cells is referred to as the
Voronoi diagram and fills space completely as⋃

𝑖

𝑉cell
𝑖 = E3. (3.72)

This definition can be generalised, in the obvious way, to lower and higher
dimensions but also to other metric spaces besides E.

This basic version of the Voronoi diagram is a well‐established method
to study points sets. By inference, it is only applicable to non‐overlapping
mono‐disperse sphere configurations. Already for polydisperse spheres but
also for objects with much more intricate shapes, like pear‐shaped particles,
the Voronoi cells which are constructed with the concept above based on
centre points alone, cannot be interpreted as the vicinity of the particles
any more [335]. This can be seen especially in aspherical particle systems at
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Figure 3.5: Left: The Voronoi diagram in a system of monodisperse spheres. The cells are
constructed such that each point within a domain is closer to the centre of a sphere than to
any other sphere. Center: The Voronoi diagram of the centre points of pear‐shaped particles
fails to describe a tessellation of particle environments for polydisperse and aspherical sys‐
tems. Right: For complicated shapes, like pear‐shaped particles, the Set‐Voronoi diagram is
used to divide space according to particle domains. This is done by relating the distance of
the point to the surface of the particles rather than its centre.

high densities like those occurring in the gyroid phase of pear‐shaped par‐
ticle systems. Here the particles are often not entirely encapsulated by the
Voronoi cell, but parts of the particle reach into the cell domain of a neigh‐
bouring particle (see Fig. 3.5 centre). This contradicts the intuitive notion of
the environment of an object. The method breaks down because arbitrary
features of shape often cannot be captured by just a single point in space like
for example the centre of the particle. Additionally, the term “centre” point
of a particle is not uniquely defined for most complex shapes.66

Another more advanced version of the point Voronoi diagram is the La‐
guerre tessellation [325, 336], otherwise referred to as thePower diagram [337]
or Voronoi S‐net [338]. This improvement, however, is tailored specifically
to polydisperse sphere systems and yet fails for aspherical particles as well.
The most suitable generalisation of the Voronoi diagram for pears, but also
aspherical particles in general, is the Set‐Voronoi tessellation [339], which

6There exist a magnitude of different definitions for the “centre” of an object like the centre
of mass, Steiner point, centre of the maximal inscribed sphere and centre of the minimal
circumscribed sphere
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is also known as tessellation by zone of influence [340] or navigational map
[312]. In this approach, the cells are related to the surface of the objects and
thus the bodies themselves rather than only their centre point. The resulting
cells are still space filling and non‐overlapping, but also exhibit in contrast to
point Voronoi tessellations curved faces and are not necessarily purely con‐
vex as indicated on the right‐hand side of Fig. 3.5. Moreover, this method
can cover a wide range of particle morphologies from simple monodisperse
sphere systems to mixtures of nearly arbitrary shapes.

The mathematical definition of the Set‐Voronoi cells of an object 𝑖 is

𝑉cell
𝑖 = {x ∈ E3 | dist(x,B𝑖) ≤ dist(x,B 𝑗) ∀ 𝑗 ≠ 𝑖}. (3.73)

Here the distance dist(x,B𝑖) between the point x and the interior B𝑖 of
the object is given by the minimal Euclidean distance of the dist(x,B𝑖) =
minp∈B𝑖 dist(x, p). With this definition we are able to prevent particles to
extend into multiple cells as dist(x,B𝑖) = 0 ∀𝑥 ∈ B𝑖. Note that the point p
in the definition of dist(x,B) always lies on the surface of the particle 𝜕B.

3.4.6 POMELO: A generic Set‐Voronoi tool

Even though we can describe the surface of the pear‐shaped particles by
Bézier‐curves, the curved interfaces between neighbouring Set‐Voronoi cells
cannot be calculated directly from this parametrisation. Therefore, we ap‐
ply a computational construction algorithm, which was introduced in Ref.
[339], in order to extract the Set‐Voronoi tessellations of pear‐shaped parti‐
cle systems in this thesis. This algorithm is based on the computation of the
conventional point Voronoi tessellation paired with a triangulation of the
particles’ bounding surfaces and consists of three major steps:

1. In the first step, the surface of all pear‐shaped particles is sampled.
This is done by generating a point‐cloud which represents the surface.

2. Afterwards, the point Voronoi tessellation based on these surface‐points
is calculated numerically.

3. Subsequently, all cells which belong to surface points of the same pear‐
shaped particle are merged. The resulting collection of regions corre‐
sponds to the Set‐Voronoi diagram of the pear system.

The steps are also illustrated in Fig. 3.6.
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Step 1:
Surface Sampling

Step 2:
Voronoi diagram

Step 3:
Combining cells

Figure 3.6: A pictorial illustration of the three major steps of the Set‐Voronoi tessellation al‐
gorithm executed by POMELO. In the first step (left) the surfaces of the particles are sampled
by point clouds. In the second step (centre) the point Voronoi cells of the surface point dis‐
tribution are calculated. In the third step (right) all cells which belonging to surface points
of the same particle are merged. The resulting tessellation corresponds to the Set‐Voronoi
diagram.

To calculate all the Set‐Voronoi tessellations in the following we used a
new software tool called POMELO, which was developed as a side project
in the course of this thesis in collaboration with Simon Weis [341, 342]. In
general, POMELO is designed to calculate Set‐Voronoi tessellations of ar‐
bitrarily shaped particle packings. Beside systems of pear‐shaped particles
(see especially Chap. 4.3 and Ref. [343]), POMELO has also been applied to
sphere [344, 345], ellipsoid [346] and tetrahedra [347] packings. Moreover,
it has been successfully used to analyse systems of amino‐acid molecules
[348]. Additionally, modes to calculate the Set‐Voronoi diagrams of sphero‐
cylinders, coarse‐grained copolymers and point clouds are implemented.

To highlight the versatility of POMELO and how it can be applied in soft‐
matter physics in addition to particle packings like the pear‐shaped particle
system presented in this thesis, we want to briefly discuss another two fields
of applications, which we were significantly involved with. In particular,
we briefly focus on a project about creating amorphous cellular geometries
with a hidden hyperuniform order which has been published in Ref. [349]77

7My contribution to this work was the implementation of the Voronoi diagram computations,
as well as technical and scientific advice on the computer‐geometric analysis of shapemetrics
for Voronoi structures.
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and secondly a still ongoing study of disordered minimal surface structures.
Note that these two examples are mostly decoupled from the topic of the
rest of this thesis and, hence, can be interpreted as a small intermezzo. In
order to continue with the main project of this PhD project, the following
two subsections can be skipped.

Interlude I: Hyperuniform structures

To find space tessellation with extremal geometrical properties is a funda‐
mental mathematical and physical problem. One example is the Kelvin
problem [350], asking the question about the ideal space partition which
minimises the interface‐area between the cells.88 Another one is the Kepler
problem [352] searching for the sphere packingwith the highest overall pack‐
ing fraction.99 The trinity of such extremal tilling questions is completed by
the Quantizer problem [354], where the cells of the space filling tessellation
are sought to be as “spherical” as possible. Naturally, the cells cannot ob‐
tain perfect spherical shape without creating voids. It is conjectured that
a Voronoi‐tessellation based on a body‐centred cubic lattice is the closest
attempt to realise such packing of sphere‐like cells [355].

A way to measure the sphericity a the Voronoi cells 𝐶𝑖 with generator
points zi within a tessellation is the sum of their Quantizer energies 𝐸 (𝐶𝑖)∑

𝑖

𝐸 (𝐶𝑖) =
∑
𝑖

∫
𝐶𝑖

| |x − z𝑖 | |2𝑑x (3.74)

which favours centroidal Voronoi tessellations (CVT) [356] where the cen‐
tres of mass coincides with the generating points. This energy is reminiscent
of the chain stretching free energy of copolymers in the strong segrega‐
tion limit [357]. A gradient descent algorithm, known as Lloyd algorithm
[358] has shown to dynamically generate CVT point patterns [359]. Here the
generating points of the Voronoi diagram are shifted to the centres of mass,
consequently iteratively decreasing the Quantizer energy of Eq. (3.74).

Starting from different disordered point distributions and applying
POMELO for the Voronoi cell calculations, we could show that the point
pattern converges towards a universal amorphous state rather than a more

8So far the best known optimum is the Weaire‐Phelan foam structure [351].
9It has been proven that the face‐centered cubic is the perfect packing [353].
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Lloyd steps

Figure 3.7: Convergence of Lloyd’s algorithm in three dimensions. A subset of a three‐
dimensional system before, during (5 steps), and after (12202 steps) applying Lloyd’s algo‐
rithm. The distributions 𝑓 (𝑣) of cell volumes v demonstrate the high degree of uniformity in
cell volumes in the final states. The total energy converges to a value slightly above the value
of the optimal BCC lattice. The image is taken with permission from Ref. [349].

expected ordered structure like the “ideal” BCC lattice (see Fig. 3.7). The final
states are all both energetically slightly less beneficial than the BCC lattice
and hyperuniform. Hyperuniformity [360] is defined as an anomalous sup‐
pression of density fluctuations on large length scales which is indicated by
a vanishing structure factor 𝑆(𝑘) for small wavevectors 𝑘→0. This behaviour
suggests a hidden order on themacroscopic scale even though the point pat‐
tern showcases amorphous properties otherwise and has been observed and
applied in various fields of science [361, 362, 363, 364, 365, 366, 367]. The
stability of this energetically non‐ideal hyperuniform state could be related
to local configurations with lower energies than the global ground state.
These local domains frustrate the system geometrically and prevent it from
reaching the optimal state. Similar observations have also been made in two
dimensions.

The observed universal hyperuniform point patterns are closely related to
the geometrically frustrated equivalents in the Kepler (random close pack‐
ing limit [368]) and Kelvin problem (disordered structures in sheared soap
froth [325]). Hence there is a reasonable chance that also the hyperuniform
patterns resulting from Lloyd’s algorithm are present in physics and biology,
but have not been identified yet. To identify this possibility we, however,
have to analyse the stability of the anomalous state further by for example
applying a modified algorithm where we introduce a temperature similar to
the Metropolis Monte Carlo technique.
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Interlude II: Disordered minimal surfaces

A further geometrically frustrated minimisation problem is the problem of
minimal surfaces itself. Similar to theQuantizer problem, where a space tes‐
sellation of perfectly spherical cells is impossible, there is no “physical”, or
in other terms non‐self‐intersecting, embedding of a minimal surface with
constant negative Gaussian curvature in Euclidean space [369, 370]1010. It is
argued that the gyroid is the minimal surface with the least variation in
constant Gaussian curvature and thus the closest approach to a negative
constant‐Gaussian‐curvature surface [91, 167] (for a more in‐depth discus‐
sion about the homogeneity of TPMSwe refer to a later chapter, in particular
Sec. 8.1).

Due to the resemblance between the Quantizer and negative constant‐
Gaussian‐curvature surface problem, the question arises if for the latter sim‐
ilar amorphous surface structures exist which are locally stable but energet‐
ically not ideal. Here, very promising candidates are the lipidic 𝐿3 phases
known as sponge phases in soft matter physics [371]. The sponge phase can
be interpreted as a disordered cubic phase where a lipid bilayer separates
a bicontinuous aqueous channel network. Even though the sponge is well
studied, it is not yet clarified if this bilayer arrangement is fully disordered
or is indeed based on a pattern with some hidden order [372].

Consequently, we are interested if a connection between 𝐿3 phases and the
point patterns obtained by Lloyd’s algorithm can be found. This hypothesis
is strengthened by the symmetry of the conjectured ideal solutions of both
minimisation problems. As we mentioned above the Quantizer problem is
minimised by a Voronoi tessellation of a BCC lattice. The assumed global
minimum of the negative constant‐Gaussian‐curvature problem, the Ia3d
gyroid, also displays body centred symmetry. Hence, we try to create disor‐
dered sponge surfaces and suggest an algorithm to obtain them from hype‐
runiform point patterns by the following:

1. In the first stage, we generate the three‐dimensional hyperuniform
point pattern by performing Lloyd’s algorithm from a random initial
configuration of 100 points within a cubic simulation box with peri‐
odic boundary conditions.

10Hilbert even proved in Ref. [369] that there exists no complete regular surface of constant
negative Gaussian curvature immersed in R3 at all.
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Figure 3.8:The disorderedminimal surface structures obtained from the hyperuniformpoint
pattern which is generated by Lloyd’s algorithm. Left: The polygon interface between the
points of the different subgroups is calculated by POMELO. Right: The same surface after
the minimisation algorithm is applied by using Surface Evolver.

2. Afterwards the points are randomly assigned into two groups.

3. The Voronoi cell tessellation is calculated by applying POMELO on
the point distribution. All cells which belong to points of the same
subgroup are merged. The resulting volumes can be interpreted as a
bicontinuous network domain which is divided by a polygon interface
with surface area 𝐴.

4. A random point of one subgroup is interchanged with a random point
of the opposite subgroup.

5. Step 3 is repeated and the surface area 𝐴 is compared with the area 𝐴′

of the previous subgroup composition.

6. If 𝐴 > 𝐴′ the two points are switched back. Otherwise, the switch is
accepted.

7. The algorithm is iterated from step 4 until the partition with the min‐
imal 𝐴 has been found (see Fig. 3.8 left).

8. The interface is converted to a minimal surface without changing the
topology by minimising the surface area further by the software tool
Surface Evolver [97, 98]. The volume fraction between both channels
is set 50:50.
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The resulting surface is a disordered bicontinuous minimal surface which
is highly reminiscent of sponge phase structures (see Fig. 3.8 right). Note
that these surfaces have to be studied more before we can draw a final con‐
clusion. For example, it would be interesting to compare the variation in
Gaussian curvature with sponges in lipid systems. Another indication might
be given by the channel sizes of the labyrinths. In general, the sponges are
created by diluting and swelling the water channels. Also our surfaces re‐
veal some large regions can be found. However, there is also a good chance
that the algorithm has some need for improvement. For once, it sometimes
occurs that channel necks shrink down to single lines during the minimisa‐
tion protocol of the Surface Evolver. This might be prevented by coupling
the area with the curvature of the surface and using this new property as
the minimisation parameter. Secondly, we are dealing with the steepest de‐
scent method until now, which might be improved by some Markov chain
implementation.
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4 The gyroid phase in PHGO pear‐shaped
particle systems

“Only entropy comes easy!”
– Anton Chekhov

This chapter addresses the entropic self‐assembly of the bicontinuous Ia3d
double gyroid phase in PHGO pear‐shaped particle systems. It significantly
extends previous studies on this phase by Ellison et al. [241, 373]. We deter‐
mine reliable estimates for the unit cell size by determining the structure factor
of the gyroid network and test the hypothesis that this phase is analogous to
a “local smectic phase” with cubic symmetry. Moreover, we probe the mecha‐
nism by which interdigitating sheets of pears in these systems create surfaces
with negative Gaussian curvature. This is achieved by the use of a Voronoi tes‐
sellation, whereby both the shape and volume of Voronoi cells can be assessed
in regards to the local Gaussian curvature of the gyroid minimal surface. This
analysis shows that the mechanisms prevalent in this entropy‐driven system
differ from those found in systems which form gyroid structures in nature
(lipid bilayers) and from synthesisedmaterials (di‐block copolymers), systems
in which the formation of the gyroid is enthalpically driven.11

1This chapter is based, in parts, on the article P.W.A. Schönhöfer, L.J. Ellison, M. Marechal,
D.J. Cleaver, and G.E. Schröder‐Turk, “Purely entropic self‐assembly of the bicontinuous Ia3d
gyroid phase in equilibrium hard‐pear systems”, Interface Focus 7:20160161, 2017. All simula‐
tion methods, numerical procedures and data analyses of this paper were implemented and
executed byme (with theMD code based on earlier code by Laurence Ellison). Alongside the
senior authors, I was a major contributor to the conceptual questions and research methods
addressed in the article, and the interpretations presented as results. I created all 13 illustra‐
tions and graphs in the article and have written the manuscript, with help and comments
from Gerd Schröder‐Turk, Matthieu Marechal and Douglas Cleaver. In addition, parts of the
Set‐Voronoi analysis have been published in S. Weis, P.W.A. Schönhöfer, F.M. Schaller, M.
Schröter and G.E. Schröder‐Turk, “Pomelo, a tool for computing generic Set‐Voronoi dia‐
grams of aspherical particles of arbitrary shape”, Europhys. J., 140:06007, 2017. Pomelo was
developed by me and fellow PhD student Dr Simon Weis. My substantial contribution is
reflected in the ‘equal contribution’ statement in the author list. I created 5 of the 9 illus‐
trations and graphs in the article, and have written the manuscript together with the other
authors. Verbatim quotes from these papers may have been used without explicit citations.
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Microscopically, the pear‐shaped particle conveys a more or less plain and
unremarkable impression. Like many other basic colloidal shapes, however,
the simplicity of the pear hides the fact that assemblies of these particles can
display a high degree of complexity on the macroscopic level. In particular,
earlier computational research on the PHGO pear‐shaped particle model
(see Eq. (2.17) for the definition of the PHGO contact function) showcased an
interesting and, in terms of dominantly entropically driven systems, exotic
phase behaviour, worthwhile to undergo an in‐depth analysis. Pear‐shaped
particle systems have the capability to globally align which is revealed by
a nematic and smectic phase (for an analysis of these phases see Sec. 5.1).
They stand out, however, through the more complex collective behaviour,
namely through the spontaneous formation of the bicontinuous double gy‐
roid structure, as first observed by Ellison et al. in Ref. [241].

Ellison et al. have shown that the PHGO particles adopt this liquid crys‐
tal phase in a warped “bilayer”‐arrangement that fills space fairly uniformly,
at fluid‐like densities (see Fig. 4.1a). More specifically the blunt ends of the
pears point into the labyrinthine domains of the double gyroid structure.
Furthermore, it was conjectured that the pear positions adopt a distribu‐
tion of distances from the (hypothetical) minimal surface and that the pear
orientations create characteristic angles around the minimal surface normal
directions. The blunt ends, hence, can straightforwardly be subdivided into
two subsets, each occupying one or the other of the labyrinthine domains,
whereas the locations of the sharp ends are staggered near the minimal sur‐
face, see Fig. 4.1b.

In this chapter, we are particularly interested in deeper scrutiny of this
gyroid phase formed by pears interacting according to the PHGO contact
function to get a greater understanding of the relations between the pear‐
shaped particles arrangements and the geometry of the gyroid minimal sur‐
face. This presents the prospect to assess the hypotheses about the micro‐
scopic behaviour of pear‐shaped particles within the gyroid and to learn
more about the collective mechanisms which result in the self‐assembly of
one of nature’smost complex, most ordered, andmost symmetric structures.

We alreadymentioned in Sec. 1.3.2 that in various forms, the double gyroid
is a regularly observed structure in a variety of self‐assembled softmatter sys‐
tems [50, 374, 375]. Also the importance of entropy for the self‐assembly of
amphiphilic molecules – with energetic terms that favour local segregation –
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(a) (b)

Figure 4.1: (a) The PHGO pear‐shaped particles form a curved bilayer phase as observed by
Ellison [241, 373]. (b) This phase can be identified as the Ia3d gyroid phase by extracting the
channel domains on the basis of the positions of the pear blunt ends. The figures have been
obtained with permission from Ref. [241].

has been mentioned, implicit in both the molecular shape concept [50, 244]
and the Helfrich formalism [245, 246]. Indeed, soft matter physics is gener‐
ally concerned with systems in which entropy plays a significant role, that
is, where the relevant interaction terms are typically of the same order as
the thermal energy 𝑘𝐵𝑇 [376]. This is undoubtedly the regime in which the
bicontinuous double gyroid phase is formed by amphiphilic molecules.22

However, all of these “conventional” gyroid‐forming systems in soft matter
also have a clear enthalpic component, evident in the amphiphilic (segre‐
gating) nature of their constituent molecules. For instance, lipids (in water)
form minimal surface structures by facing the solvent with their solvophilic
moiety and, hence, create a head‐tail disparity enthalpically. This induces
a type of tapering, indicated by the shape parameter, necessary to stack the
molecules on the minimal surface effectively. Also the di‐block copolymers,
which are easier to compare with the pear‐shaped particle system because
they also fill space completely as a melt, break the symmetry due to the
different potentials between distinct pairings of monomers. This is a sig‐
nificant difference from the purely‐repulsive pear‐shaped particles studied
here, which interact via excluded volume only, albeit the excluded volume
cannot be reduced to an exact additive hard shape.

2The hydrophobic (tail‐tail) interactions are typically larger than ≈ 𝑘𝐵𝑇 , but these are con‐
cealed by other tails. Hence, their contribution can be seen as irrelevant.
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The proclaimed uniqueness of the double gyroid phase in this particular
system lies in its existence despite the lack of any attractive or modulated
forces, which give specific particle configurations energetic benefits. One
could indeed raise the argument that, based on its description in earlier
chapters (see Fig. 2.8), the self‐non‐additivity of the PHGO contact function
can be interpreted as an effective, attractive potential term or as “entropic
amphiphilic” (the extent to which the non‐additivity of the interaction can
be interpreted as a polarity is discussed in Chap. 6). However, even though
it might be a possible route to copy the non‐additivity of the PHGO contact
function in experiments by introducing attractive forces, in our simulations,
we do not explicitly include attraction but enforce merely repulsive forces
and even hard‐core interactions between particles. This, however, means
that the conditions of the PHGO system are of similar nature to hard sphere,
rod or the latter discussed HPR systems, as in all these models the parti‐
cles only interact via collision governed by a contact function. Moreover,
the high degree of complex long‐ranged order contained within the gyroid
morphology of the PHGO system emerges by the same mechanism as the
crystallisation transition in the hard sphere equilibrium fluid [206, 207] or
the nematic and smectic order in simple liquid crystal models like sphero‐
cylinders [213, 377, 378]: merely by maximising entropy!

This chapter is structured as followed. First in Sec. 4.1 we reproduce the
simulations of Ref. [241] to obtain the gyroid phase in PHGO particle sys‐
tems. In Sec. 4.2, we undertake a detailed structural analysis, where we de‐
termine the mesoscopic length‐scale/unit cell size of the gyroid structure
by calculating the structure factor for large systems of 10000 pear‐shaped
particles. Moreover, simulations of only a single unit cell are performed in
Sec. 4.3, through which we gain insight into the nature of the pear gyroid
and how it differs from those exhibited by different classes of experimen‐
tal systems. Those investigations include the use of Set‐Voronoi diagrams
to explain the mechanism behind stabilising the minimal surface structure.
Note that this chapter addresses only particle systems with the PHGO con‐
tact function. Hard pears of revolution do not form the gyroid phase (see
detailed discussion in chapter Chap. 5).

4.1 Creating the gyroid phase in PHGO pear‐shaped
particle systems

As an initial step, we reproduce the self‐assembly of the gyroid in systems
of 10000 monodisperse PHGO pear‐shaped particles as observed by Ellison
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[241, 373]. As already mentioned not all pear‐shaped particles form the de‐
sired mesostructure, such that we use the same parameter set as in that
study. In Ref. [241] Ellison obtained distinct gyroid phases for 10000 pears
with an aspect ratio 𝑘 = 3 and tapering parameter 3.0 < 𝑘 𝜃 < 4.6. Therefore,
we perform multiple simulations within the particle interval 𝑘 𝜃 ∈ {3.2, 3.3,
. . . , 4.5, 4.6} and 𝑘 = 3 to both cover a wide range of pears which are able
to assemble into the gyroid sufficiently and to compare their differences
and similarities. In terms of the tapering angle, the interval lies between
12.4◦ < 𝜃𝑘 < 18.9◦.

We here useMolecular Dynamics andMonte Carlo simulation techniques,
as discussed in Sec. 3.2, to generate the gyroid configurations of all different
pears by compression. In this thesis, we will, in general, describe the density
as the global volume density of the system

𝜌𝑔 =
𝑁 ·𝑉pear

𝑉box
, (4.1)

which corresponds to the packing fraction. Here, the pear volume 𝑉pear is
calculated numerically using a mesh of the particle’s surface and the volume
𝑉box describes the dimensions of the simulation box.

The interaction potential, which is used to represent the hard‐core inter‐
action of pears in the MD simulations, is the modified version of the purely
repulsiveWCA potential, see Eq. (2.21). Full simulation sets are performed in
the canonical 𝑁𝑉𝑇‐ensemble, where the simulation box is set up such that it
can adapt its three edge lengths independently while maintaining fixed total
volume. The time step and the temperature are set to Δ𝑡 = 0.0015 and 𝑇 = 1
like for the simulations to determine the phase diagram to keep consistency.

Additionally, MC simulations using the same parameters are performed
for 𝑘 𝜃 = 3.8. Here, the hard‐core PHGO contact function was used as a crite‐
rion for particle overlap (see Eq. (2.6) and Eq. (2.17)). TheMC translation step
and the rotation step are again initially set toΔ𝑞,max = 0.015𝜎𝑤 andΔ𝑢,max =
0.015𝜎𝑤 , respectively, but have been adjusted during the compression to
make certain that always roughly 50% of the displacement attempts are ac‐
cepted successfully. The results of these two simulation techniques show no
significant differences.
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4 The gyroid phase in PHGO pear‐shaped particle systems

(a) (b) (c)

Figure 4.2: (a) An assembly of 10000 pear‐shaped particles forming the gyroid structure (𝑘 𝜃 =
3.8, 𝜌𝑔 = 0.57). (b) The same gyroid configuration after the cluster determination process
(see Sec. 3.4.4). The colors indicate the cluster assignment of the pear‐shaped particles. (c)
Only the positions of the blunt ends of the pears are illustrated by spheres. The colors again
comply with distinct clusters.

For each set, the pears are initially placed for simplicity at the positions
of a large simple cubic lattice at a low density (𝜌𝑔 = 0.2) and developed for
500, 000 simulation steps to erase all configurational memory before being
slowly compressed to a density of 𝜌𝑔 = 0.555. Afterwards, the simulations
undergo an equilibration run of 1.5·106 steps before the final sequence of
2.0·107 steps is performed where the data is sampled. For an additional set
of simulation runs we also start from an artificial smectic phase at the target
density 𝜌𝑔 = 0.555, where all particles are perfectly aligned. For both initial
conditions we eventually obtain double gyroid structures like those depicted
in Fig. 4.2 for 𝑘 𝜃 = 3.8.

At first glance, the structures again do not differ substantially from a dis‐
ordered isotropic phase (see Fig. 4.2a) . In particular, the nematic order
parameter stays close to 𝑃2 = 0 for the whole compression process which
indicates that there is no global orientational order present. Also, with the
artificial smectic starting configuration, all systems quickly lose the global
nematic order already in the equilibration phase of the first 2.5·106 steps (see
Fig. 4.3). It is striking that more ellipsoidal particles keep the nematic order
longer than the more tapered pear‐shaped particles. After the equilibration
𝑃2 only fluctuates slightly around 0 which indicates the fluid‐like behaviour
of the gyroid phase.

For all simulated configurations, the gyroid networks are identified by
cluster analysis as described in Sec. 3.4.4. This is displayed in Fig. 4.2b+c.
Despite all the strong indications and the fact that we already called this
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Figure 4.3: The nematic order parameter 𝑃2 during the equilibration phase of different
PHGO pear‐shaped particle systems with 𝑁 = 10000 and 𝑘 = 3 at a density 𝜌 = 0.555. Per‐
fectly aligned artificial smectic configurations are used as initial structures.

phase as a gyroid, we can technically not yet conclusively confirm that the
emerging channel domains are, indeed, coincident with the skeletal net‐
work of the gyroid. However, without knowing the periodicity of the gyroid,
this is a difficult task to undertake. Fortunately, we can kill two birds with
one stone by taking the crystallographic route and calculating the struc‐
ture factor of the arrangement of the blunt ends. On the one hand, we are
able to obtain the symmetry of the structure from its scattering pattern and
eventually pinpoint the structure exactly. On the other hand, this approach
comes with the benefit of additionally providing information about the unit
cell size of the mesostructure, which is crucial for a detailed computational
analysis of this phase.

4.2 Crystallographic analysis of the gyroid structure

The triply‐periodic feature of the gyroid phase indicates that its structure is
governed by its periodicity. Like all simulations of periodic phases, all the
simulations of the gyroid phase presented in this thesis are subject to com‐
mensurability issues (between the lattice parameter, spontaneously adopted
by the phase, and the simulation box size). In experiments, the systems of
molecules are in the thermodynamic limit, such that the number 𝑁PUC of
particles within a translational unit cell and the lattice parameter 𝑎 stem
from thermodynamic equilibration. Resultant fluctuations in the number
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4 The gyroid phase in PHGO pear‐shaped particle systems

of particles within a unit cell or the dimensions of that cell can then be ad‐
justed since the total number of unit cells, and the total number ofmolecules
is effectively infinite. By contrast, only a finite system volume can be mod‐
elled using simulation techniques. In the hypothetical case where 𝑎 and
𝑁PUC are known a priori, it comes quite natural to arrange the edge lengths
of the simulation box such that they coincide with integer multiples of the
translational unit cell size. An alternative choice would be to impose a box,
which represents a larger, differently oriented translational periodicity of the
crystal structure (such as the one based on both {001} and {110} directions de‐
scribed later). However, for simulation boxes, which are not both correctly
oriented and commensurate with 𝑁PUC and 𝑎, the mesostructure would be
distorted compared to the infinite system. The system might accommodate
the poorly chosen simulation box dimensions by forming defects, adopting
a geometric structure that is not thermodynamically stable (but stabilised
by the imposed simulation box), or attaining a modified version of the true
equilibrium structure.

In practice, 𝑎 and 𝑁PUC are not known a priori. The challenge lies in de‐
tecting rigorous estimates for these parameters from simulations of finite
systems – and indeed determining beyond a reasonable doubt that an ob‐
served geometric phase corresponds to the equilibrium (i.e., infinite) struc‐
ture, rather than being stabilised by the finite simulation box. Even when
the geometry is known, determining 𝑎 and 𝑁𝑃𝑈𝐶 from simulations is not
straightforward. This problem has been considered in the context of cluster
crystals [379] and a low‐density low‐temperature gyroid phase [380]; how‐
ever, the methodology, similar to an 𝜇VT ensemble (see Sec. 3.1.2), applied
therein is not transferrable to our hard‐core PHGO pear systems at high
densities.33

In our case, we have to determine the periodicity by a sufficiently large
simulation where the boundary‐condition effects are as small as possible
such that no major defects are created. It turns out that our simulations of
10000 pear‐shaped particles are already large enough and a suitable candi‐
date to identify the unit cell size of the gyroid structure44. Admittedly, the
channel domain illustration in Fig. 4.2c suggests that also here the adopted

3Themethod ofMladek et al. [379] relies onWidom’s test particle insertionmethod [381, 382]
to determine the chemical potential, but sampling efficiency for this approach is very poor
for short‐ranged repulsive potentials, particularly at the packing fractions of interest in this
work.
4For 𝑘 𝜃 = 3.8 simulations with 𝑁 = 12000 and 𝑁 = 15000 give similar results.
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gyroid configuration is slightly affected by the incompatibility of the simu‐
lation box and unit cell dimensions as the crystallographic {100}‐direction of
the gyroids formed with particles 3.2 < 𝑘 𝜃 < 4.6 are generally not aligned
to the {100}‐direction of the simulation box. Nevertheless, we can make the
argument that the adjustable boundary walls successfully counteract the in‐
duction of substantive deformations. All systems exhibit a multitude of unit
cells which showcase only minor stretches and small distortions from the
ideal cubic symmetry.

4.2.1 Determination of the space group

To obtain the unit cell size and to confirm the Ia3d cubic symmetry group,
we calculate the three‐dimensional structure factor 𝑆(k) of large systems.
For our analysis, we perform the Fast Fourier Transform of the density pro‐
file of both identifiable network domains. Therefore, the three‐dimensional
point density distribution of the blunt ends, which constitute the backbone
of the two labyrinthine channels, is voxelised and used as an input to calcu‐
late the mean peaks of the resultant three‐dimensional scattering pattern.
The method to obtain the scattering pattern is discussed in Sec. 3.4.3.

In Fig. 4.4 projections of a representative scattering profile of 10000 pear‐
shaped particles with 𝑘 𝜃 = 3.8 are shown. Note here that for all the other
considered 𝑘 𝜃 the same behaviour has been observed as well. Already these
projections indicate that the pear structure is indeed the double gyroid. The
projections exhibit 6‐fold rotational symmetry in the {111}‐direction (plane
orbifold group: ∗632), 4‐fold rotational symmetry in the {100}‐direction
(plane orbifold group: ∗442) and 2‐fold rotational symmetry in the {110}‐
direction (plane orbifold group: 2∗22). To describe the two‐dimensional
space groups of the projections we here use the orbifold notation. Orbifolds
or “orbit‐manifolds” characterise symmetric patterns by encoding isome‐
tries into manifold singularities or topological features [383].55 A pictorial
description is shown in Fig. 4.4 to give a better understanding of the orb‐
ifold notation in relation to the scattering patterns. Even though there are

5Conway has introduced orbifold symbols to signify these orbifolds and the underlying trans‐
formations by a simple coding [384]. Integers 𝑖 left of the asterisk indicate cone‐points which
lead to 𝑖‐fold‐rotations around a gyration point. Integers 𝑖 right of the asterisk describe corner
singularities of the manifold or rotations of 𝑖‐th order around a kaleidoscopic point, where in
addition 𝑖‐mirror lines meet. For the sake of completeness, there are also two other symbols
which encode linear translations (◦) and glide reflections (×). However, those are not needed
to describe the symmetries of the 2D scattering patterns of the double gyroid.
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{100}: ∗442 {110}: 2∗22 {111}: ∗632

Figure 4.4: Representative scattering patterns of the density distribution of the channel do‐
mains (only the positions of the blunt ends are considered) in the gyroid phase (𝜌𝑔 = 0.555). 
The cuboidal system contains 10000 pears with 𝑘 = 3 and 𝑘 𝜃 = 3.8. The high‐symmetry 
projections of the three‐dimensional scattering patterns are depicted in the red boxes. They 
reveal a 4‐fold symmetry in the {100}‐direction, a 2‐fold symmetry in the {110}‐direction and a 
6‐fold symmetry in the {111}‐direction characteristic for the Ia3d double gyroid. In the violet 
boxes are the corresponding cell structures of the symmetry groups. Hexagons represent
6-fold rotations, squares 4‐fold rotations, triangles 3‐fold rotations and rhombi 2‐fold rotations. 
The black lines describe mirror lines. Dotted lines are just a guide to the eye.

also other space groups that are consistent with these high‐symmetry pro‐
jections, like the Fm3m [305] corresponding to an F‐RD minimal surface 
structure [87], the Ia3d is the most applicable candidate, especially once the 
other previously made observations are adduced.

The structure assignment as a body‐centered structure (specifically Ia3d)
is further supported by analysing the corresponding three‐dimensional scat‐
tering pattern directly. While they show that most of the analysed cells are 
compensating the incommensurability of mesoscale and boundary condi‐
tions by slightly elongating towards the {111}‐direction and becoming non‐
cubic, it proves possible to reliably determine the appropriate reciprocal lat‐
tice vectors of an FCC lattice in Fourier‐space, which is the reciprocal 
lattice of a BCC real space structure. Thus, the lattice vectors of the 
channel struc‐ture in the pear‐shaped particle system describe a BCC 
lattice and again match the underlying lattice of the Ia3d double gyroid.

4.2.2 Unit cell size and density

From the length of the lattice vectors in real space, the average unit cell di‐
mensions 〈𝑎〉 are obtained.  Also the average number of particles within each
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unit cell 𝑁𝑃𝑈𝐶 are calculated. To this end we simply extract the number of
particles with volume 𝑉pear within a unit cell volume 〈𝑎〉3 at density 𝜌𝑔 by

𝑁𝑃𝑈𝐶 =
𝜌𝑔 · 〈𝑎〉3

𝑉pear
. (4.2)

In general it is shown that the tapering parameter has a relatively small
influence on the gyroid unit cell as all systems yielding a mean cell size
〈𝑎〉 = 10.4𝜎𝑤 ± 0.2𝜎𝑤 and mean particle number of roughly 𝑁𝑃𝑈𝐶 = 380± 11
(see Fig. 4.5). For pear‐shaped particles with 𝑘 = 3 and 𝑘 𝜃 = 3.8 the same
procedure was repeated for larger system sizes 𝑁 = 12000 and 𝑁 = 15000
giving similar results.

Taking the mean number 𝑁𝑃𝑈𝐶 = 380 of particles within the unit cell of
all generated gyroid structures, we can create simulations which fit the peri‐
odicity of the gyroid phases better. Therefore, we perform MD simulations
with 𝑁 = 380 using the same protocol as for 𝑁 = 10000. A representative
structure for 𝑘 = 3 and 𝑘 𝜃 = 3.8 is depicted in Fig. 4.10. Cluster analy‐
sis shows that the system also assembles into the double gyroid structure.
Here, the 𝑁 = 380 system can be identified as a single unit cell structure.
In the context of the results summarized in Fig. 5.1, we also note that, for
𝑁 = 3040 particles with 𝑘 𝜃 = 3.8, a cubic simulation box with edge length
20.84𝜎𝑤 with the pear’s width 𝜎𝑤 was required to form eight unit cells of
the gyroid in a 2×2×2 arrangement. This can be illustrated by comparing
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Figure 4.5: The number of particles within a unit cell, which is obtained from the three‐
dimensional scattering profile of PHGO particle systems with different tapering parameters
𝑘 𝜃 forming the double gyroid structure, are plotted. The cuboidal systems contain 10000
pears with 𝑘 = 3 at a global density 𝜌𝑔 = 0.555.
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2 × 2 × 2‐arrangement{100}

{110}

{111}

Figure 4.6: An assembly of 3040 pear‐shaped particles forming the 2 × 2 × 2 unit cell of the
double gyroid structure (𝑘 = 3, 𝑘 𝜃 = 3.8, 𝜌𝑔 = 0.57) on the right. The colours indicate
the algorithmic cluster assignment (see Sec. 3.4.4) of the pear‐shaped particles. On the left,
only the positions of the blunt ends are depicted as spheres to showcase the labyrinth‐like
channels (first column). The system is shown in the {100}‐, {110}‐ and {111}‐direction and
compared with the channel domain (second column) and the skeletal‐graph (third column)
of the double gyroid structure. The former is generated using the nodal approximation of
the double gyroid.

the point clusters of the blunt ends of the pears with the skeletal network
or channel domain representation of the gyroid arrangements as shown in
Fig. 4.6.

We find that equivalent behaviour is obtained from repeated compres‐
sion sequences performed on a series of simulated systems in a range of be‐
tween 3000 and 3200 particles within the simulation box at the same num‐
ber density (𝜌𝑔 = 0.55). Cluster analysis (see Sec. 3.4.4) also shows that
for 𝑁 = 3200 the particles are distributed slightly more uniformly between
both gyroid clusters than for 𝑁 =3040. This might be a hint that the ac‐
tual number of particles within a unit cell is a bit larger than obtained from
the scattering function. However, the phase seems rather robust such that
we will set 𝑁𝑃𝑈𝐶 = 380 in the following. Finally, we also generate systems
with 𝑁 = 2𝑁𝑃𝑈𝐶 = 760 pears within a cuboidal simulation box which would
correspond to a

√
2 ×

√
2 × 1 unit‐cell system. In Fig. 4.7 the self‐assembled
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Figure 4.7: An assembly of 𝑁 = 760 pear‐shaped particles forming a double gyroid configu‐
ration. The positions of the blunt ends of the pears are depicted by spheres which are colour
coded to denote clusters calculated based on the proximity of pear blunt ends. The edge
lengths of the simulation box are set to a ratio

√
2 ×

√
2 × 1 to enforce the gyroid in a certain

orientation. The x‐axis points into the crystallographic {110}‐, y into the {1̄10}‐ and z into the
{001}‐direction.

structure displays both channel domains which are oriented differently, but
as expected in the simulation box, namely with the {110} lattice vectors along
the two lateral directions of the simulation box (of length ratio

√
2) and the

{001} direction corresponding to the vertical direction of the simulation box
(of length ratio 1).

Estimating the number of particles within the unit cell as 𝑁𝑃𝑈𝐶 = 380
within the gyroid phase at a density 𝜌𝑔 = 0.555, the cubic lattice parameter is
𝑎 = 10.4𝜎𝑤 in units of the width of the pears 𝜎𝑤 . It is instructive to compare
the number 𝑁PUC to that found in gyroid‐forming lipid systems. Considering
the fact that the surface area of the gyroid minimal surface is 𝑆 = 3.0915·𝑎2
and the average area of a single chain lipid such as monoolein is 37Å2 (at
25◦C, [385]), we can estimate the number of lipid molecules in an Ia3d cubic
gyroid phase with lattice parameter 𝑎 = 140Å to be 𝑁 = 2(3.0915·1402/372) ≈
9 [284]. Accordingly, the crystallographic order of pear‐shaped particle sys‐
tems is present on a smaller length scale and embraces a considerably greater
number of particles than in lipid systems.
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4.3 Geometric analysis of the PHGO gyroid structure

4.3.1 The gyroid minimal surface

To draw further comparisons between the lipid/water and copolymer sys‐
tems on the one hand and our pear‐shaped system on the other, we now
interrogate the microstructure of its underlying minimal surface and per‐
form Voronoi analysis to examine its correlations. Having determined the
unit cell size and having shown, in Fig. 4.2, Fig. 4.6 and Fig. 4.7, that pear‐
shaped particles can be attributed to a channel system by cluster analysis
of their blunt ends, we now take another important aspect of the observed
gyroid phase into account – the characterization and analysis of its minimal
surface on the microscopic level. In binary lipid/water systems, lipids pro‐
duce sheets of bilayers such that the surfactant‐water interfaces are draped
onto the gyroid minimal surface. The pears form bilayers as well, where two
opposite arrays or leaflets of aligned particles interdigitate (see Fig. 4.8c) and
which have the same topology as the gyroid. However, unlike the lipids in a
mixture with water, the pear bilayers have to homogeneously occupy space
as great density fluctuations are generally entropically penalised in hard‐
core colloidal systems. The distance between the interpenetrating bilayers
sheets has to be able to accommodate variable pore radii as the channel do‐
mains of the gyroid are not uniformly wide. As a result, the bilayer thickness
cannot be assumed to be constant, and the distance between each pear cen‐
tre and the hypothetical interface which optimally bisects that bilayer has to
be determined.

Hence, we define a local particle‐particle distance measure, called the bi‐
layer staggering length Δ, as the distance between the particle centers of the
two interpenetrating sheets. This length is used to quantify by howmuch the
pears interdigitate on average. For this calculation, we consider restricted
longitudinal distribution functions 𝑔 ‖

𝑟⊥𝑐
(𝑟 ‖) of the double unit cell systems

at a density of 𝜌𝑔 = 0.555 to avoid possible errors caused by the minorly de‐
formed gyroid in the 10000 particles system (see Eq. (3.62) for comparison)

𝑔 ‖
𝑟⊥𝑐
(𝑟 ‖) = 1

𝜌𝑁

𝛿𝑁 ‖
𝑟⊥𝑐
(𝑟 ‖)

𝜋 𝑟⊥2𝑐 𝛿𝑟 ‖
. (4.3)

The calculation of 𝑔 ‖
𝑟⊥𝑐

is restricted in such a way that only pears within
a cylinder of radius 𝑟⊥𝑐 = 0.9𝜎𝑤 around that axis are taken into account
(see Fig. 4.8c). The number of particles 𝛿𝑁 ‖

𝑟⊥𝑐
therefore corresponds to the
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Figure 4.8: (a) The longitudinal distribution function of pear‐shaped particle systems with
10000 particles at a density 𝜌𝑔 = 0.555. (b) The mean distance between the centre of the
particles and the gyroid minimal surface for different tapering parameters. The error bars
indicate the full width at half maximum of the first peak. Moreover, the dotted line is a
linear fit of the presented data. Note that the systems with 𝑘 𝜃 = 4.6 do not generate gyroid
but nematic structures. Nevertheless, these structures are regarded as representatives since
they reflect the corresponding changes in bilayer thickness and pear locations. (c) A sketch
of the calculation of the longitudinal distribution function. Only particles within a cylinder
around the reference pear (black lines) are considered. The radius 𝑟⊥𝑐 is chosen such that
particles of the same leaflet of the bilayer are outside the cylinder.

number of particles within a disk of radius 𝑟⊥𝑐 at longitudinal distance 𝑟 ‖

from the centre of the pear. This limiting radius is applied to ensure that
pears from the same layer are excluded from the calculation. Otherwise
the histogram would be dominated by the major peak contributed by those
pears which complicates the determination of Δ. The resultant profiles are
given in Fig. 4.8a.
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We extract the bilayer staggering length from the first peak attributed to
the mean relative distance of two next neighbouring pears of interpenetrat‐
ing sheets, measured along their rotational symmetry axes

Δ := sup{𝑔 ‖
𝑟⊥𝑐
(𝑟 ‖) : 𝑟 ‖ ∈ R+}. (4.4)

We only take positive distances in directions of the pointy end of the pears
into account as we are interested in neighbour particles of the same bilayer.

The location of this first peak shifts to larger 𝑟 ‖ with increase in 𝑘 𝜃 (the er‐
ror bars in Fig. 4.8b indicate the full width at half maximum of the first peak
in 𝑔 ‖

𝑟⊥𝑐
(𝑟 ‖) rather than the measurement error). This shift suggests that par‐

ticles with a smaller tapering parameter, and consequently a higher tapering
angle, interdigitate more deeply, hence implying a shorter distance between
these leaflets. The width of the first peak shows for all considered systems
that Δ is not constant within the gyroid. This is analysed in further detail in
Sec. 4.3.3. The 𝑔 ‖

𝑟⊥𝑐
(𝑟 ‖) curves could be terminated before their second peak

which roughly corresponds to the distance between two bilayers. The curva‐
ture of the sheets introduces unacceptable levels of uncertainty in the data at
this range of 𝑟 ‖ . This is substantiated by the occurrence of partly two distinct
peaks, where the longitudinal distance of the bilayer‐pairing of particles can
be estimated, and partly one broad single peak, where the information of the
longitudinal distance to the neighbouring bilayer is completely blurred. The
other noteworthy trend in Fig. 4.8a is that the peak heights drop and the tail
at intermediate 𝑟 ‖ grows with an increase in 𝑘 𝜃 . This behaviour indicates
that reducing the pear tapering angle widens the distribution of observed
stagger distances. Finally, we recall that these observations are made in the
context that, as noted in Sec. 4.2.2, the overall unit cell size does not change
with the tapering parameter.

4.3.2 Local density distribution

For the next stage of this analysis, we take one step further and switch our
perspective on the gyroid to a more microscopic level. Therefore, we study
the structural properties of each particle in the gyroid configuration indi‐
vidually by calculating the Set‐Voronoi diagram of the assembly. The Set‐
Voronoi diagram consists of a partition of space which is based on the posi‐
tion and shape of the particles. The idea behind the mathematical concept
and the construction algorithm of Set‐Voronoi tessellations is described in
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Figure 4.9: (a) The local density distribution for pear‐shaped particle systems with 𝑘 = 3
and different tapering angles in the gyroid phase at a global density 𝜌𝑔 = 0.555. (b) The
same data plotted in terms of 𝜌𝑙−𝜌𝑔𝜎 (𝜌𝑙) with the standard deviation of the local density 𝜎(𝜌𝑙).
The distributions collabse on the same line as Voronoi cell distributions of spherical and
ellipsoidal granulate packings. The sphere data with 𝜌𝑔 = 0.64 was provided by Sebastian
Kapfer. (c) The Voronoi cell of a single pear‐shaped particle with 𝑘 = 3 and 𝑘 𝜃 = 3.8 within
the gyroid phase at a global density 𝜌𝑔 = 0.555.

Sec. 4.3.2. The emerging Voronoi cells, which envelope the single particles,
relate to the local free‐volumes or vicinities of the pears and hence, give valu‐
able information about the local geometric properties of the system.

For this analysis, we apply the Set‐Voronoi analysis on systems with 𝑁 =
380 at density 𝜌𝑔 = 0.555 to only obtain the single unit cell structure of the
gyroid. A typical Set‐Voronoi cell of a single pear within such a unit cell
system is depicted in Fig. 4.9c. As the Set‐Voronoi cells 𝑉cell

𝑖 represent the
spaces of influence of the pear‐shaped particles with volume 𝑉pear we can
define a local density

(𝜌𝑙)𝑖 =
𝑉pear

𝑉cell
𝑖

(4.5)

around each pear which is proportional to the inverse volume of the Set‐
Voronoi cell of particle 𝑖.

   In Fig. 4.9a the volume distribution of the local densities in the gyroid 
phase is plotted.  It becomes apparent that the local density follows a
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4 The gyroid phase in PHGO pear‐shaped particle systems

bell‐shaped distribution around a mean value 𝜌𝑙 ≈ 0.553 for all studied 𝑘 𝜃 .
Also the width of the bell shape distribution, determined from the full width
at half maximum ≈ 0.086, seems to be unaffected by the particle’s taper.
Moreover, we can assume that the distributions indicate a different amount
of available space in different parts of the gyroid structure, which can be
occupied by the pear‐shaped particles. To investigate this further, we relate
the Set‐Voronoi cells to the gyroid structure in the following sections.

The distributions of Voronoi cells have been already studied extensively
for spherical particles in regards to granular materials [11, 313, 386, 387, 388]
and super cooled liquids [324]. During their studies on random jammed,
spherical granulate packings below the random closed packing limit, Aste et
al. [11] determined a universality which was also shown for the super cooled
liquids [324]. The universal behaviour appears in both cases by plotting the
local density distribution in the context of the Voronoi cells as a function of
𝜌𝑙−𝜌𝑔
𝜎 (𝜌𝑙) with the standard deviation of the local densities 𝜎(𝜌𝑙). Independent
of the global packing fraction 𝜌𝑔 the distributions all fall on a single curve.
Later those studies have been extended by Schaller et al. [12, 249, 389] who
showed that this collapse also holds for granular ellipsoid packings. Inter‐
estingly, the very same curve also roughly describes the local density distri‐
bution of pear‐shaped particles in the gyroid configuration (see Fig. 4.9b).
This suggests that the universality not only covers global density and aspect
ratio but also the degree of tapering.

4.3.3 Local arrangement within interdigitated bilayers

Aswe have seen, the pear gyroid phase can be understood as pears occupying
the two labyrinthine domains defined by the gyroid surface. In this section,
we will analyse the arrangement of pears relative to the gyroid TPMS, in
terms of the relative orientation of pear‐directors to the surface normal vec‐
tors and the relationship of local density to surface curvature.

Algorithmic best‐fit identification of theminimal gyroid interface for
given pear configurations

The position of a pear‐shaped particle within the gyroid configuration can
be specified in terms of the local measures of the gyroid minimal surface in
close vicinity. A suitable approach is to designate a certain point 𝑝 on the
gyroid minimal surface and assign the corresponding Gaussian curvature
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4.3 Geometric analysis of the PHGO gyroid structure

𝐾 (𝑝) and distance 𝑑 (𝑝) to the pear. Our attempt to successfully encode the
pear position by 𝑝, however, raises two issues on how to place the minimal
surface into the system correctly first.

1. Even though we have already determined in Sec. 4.3.1 that the pears
have to cut the surface with their tips such that the two channel do‐
mains occupied by the blunt ends are divided adequately, it is highly
non‐trivial to embed the minimal surface in space accurately. The bi‐
layer staggering length Δ, which was determined in the very same sec‐
tion, does not compensate defects and fluctuations, caused by the fluid
nature of the gyroid mesophase, well, so construction of the surface
from the pears based on Δ seems hardly feasible.

2. The difficulties are aggravated by the particles being diffusive in the
gyroid phase. Therefore, it is very likely that the dividing surface is
not stationary in the course of the simulations and rather translates
along with the particle system. Therefore, the placement of the gyroid
surface has to be determined for each snapshot separately.

As we only consider simulations of one unit cell (𝑁 = 380), where the simu‐
lation box fits exactly the periodicity of the gyroid we do not have to worry
about rotations of the minimal surface.

To solve this algorithmic problem we take a reversed route and rather fit
the pear assembly to a fixed embedding of the gyroid surface than the sur‐
face to the fluid‐like system. Hence, we create multiple pear configurations,
which we will refer to as the “constraint” gyroid, by artificially restricting
the particles close to the minimal surface during the MC simulations. Those
systemwill act as reference configurations to fit the imposed surface embed‐
ding accurately. The constraint is implemented in such a way that the pears
are only allowed to be located within a range 𝜖 = 0.5 which is determined by
the nodal approximation of the gyroid surface (see Eq. (1.5)):

𝑓 (𝑥, 𝑦, 𝑧)B
����sin(2𝜋𝑥𝑎 ) cos(2𝜋𝑦

𝑎
)+ sin(2𝜋𝑦

𝑎
) cos(2𝜋𝑧

𝑎
)+ sin(2𝜋𝑧

𝑎
) cos(2𝜋𝑥

𝑎
)
����<𝜖,
(4.6)

with (𝑥, 𝑦, 𝑧) is the position of the pear and 𝑎 is the unit cell length of the
gyroid surface. Here the function 𝑓 (𝑥, 𝑦, 𝑧) will serves roughly as a distance
measure, even though 𝑓 (𝑥, 𝑦, 𝑧) = 𝜖 does not strictly coincide with an enve‐
lope of the gyroid surface.
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4 The gyroid phase in PHGO pear‐shaped particle systems
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Figure 4.10: The channel domains of the gyroid unit cell using 𝑁 = 380 hard PHGO particles
with 𝑘 = 3 and 𝑘 𝜃 = 3.8 (𝜌𝑔 = 0.555). The channel domains are obtained by only visu‐
alising the positions of the blunt ends of the pear‐shaped particles represented by spheres.
On the left the gyroid phase is created artificially by Monte Carlo simulation with particles
restricted to the nodal approximation (see Eq. (4.6)) in such a way that the particles cut the
gyroid surface within the range of 𝜖 at the distance determined in Sec. 4.3.1 and Fig. 4.8. Also
their orientations are constrained to lie close to the nodal surface normal at all Monte Carlo
steps as indicated in the sketch. On the right, the equivalent unit cell surface generated by
unrestricted self‐assembly is shown. The blunt end density distribution of the restricted and
the unrestricted self‐assembled unit cells can both nicely be separated by the gyroid minimal
surface (green) and can be compared by using anMC algorithm tomaximise their correlation
concerning simulation box translation.

Computationally, the contiguity to the surface is ensured by rejecting
a translational step attempt if the particle would leave the 𝜖‐domain (see
sketch in Fig. 4.10). The parameter 𝜖 = 0.5 is chosen such that the par‐
ticles are both sufficiently bounded by the predefined macrostructure but
also theoretically capable of being placed at the distance Δ

2 to the mini‐
mal surface. Additionally, their orientations are constrained to lie within
a cone in regards to the nodal surface normal (in the range of ±15◦) at all
Monte Carlo steps as indicated in the sketch of Fig. 4.10. An exemplary con‐
straint configuration is depicted in Fig. 4.10. Afterwards, the positions of the
blunt ends of all constraint gyroid configurations are combined to a point
set 𝐺(con) and compared to the density distributions of the blunt ends of
the pears in the self‐assembled gyroid systems for different simulation box
translations. Here, the sum of all Euclidean distances between the position
𝑞𝑖 of the blunt ends of all pears 𝑖 within the self‐assembled system and the
coordinate 𝑞 ∈ 𝐺(con), which is closest to 𝑞𝑖, is minimised:

𝐷 B
∑
𝑖

dist(𝑞𝑖 , 𝐺(con)) =
∑
𝑖

min
∀𝑞∈𝐺(con)

dist(𝑞𝑖 , 𝑞). (4.7)
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4.3 Geometric analysis of the PHGO gyroid structure

The translation vector which maps the self‐assembled to the constraint gy‐
roid best is used as an initial guess for a steepest descentmethod tomaximise
their correlation and minimise 𝐷 further. In Fig. 4.10 the channel systems
of both the constraint and the translated, but self‐assembled – and conse‐
quently unconstraint – unit cell are separated by the gyroid minimal surface
parametrised by the Enneper‐Weierstrass representation [48, 85]. Whilst for
the unrestricted unit cell the placement of the gyroid surface has to be seen
as the best estimate we note that the two systems are qualitatively indistin‐
guishable (see also the movie in supplementary materials or in Ref. [390]).66

Local smectic order on the gyroid surface

As the first measure of the correlation between the local structure of the
pears and the geometry of the gyroid, the orientational arrangement of the
particles relative to the minimal surface is determined. Therefore, we de‐
fine the point 𝑝 on the minimal surface, which determines the position of
the pear‐shaped particle, as the intersection of the rotation symmetry axis
of the particle and the minimal surface (see the sketch in Fig. 4.11a). The
relative direction is specified by the scalar product cos(𝜏) B n̂(𝑝) · u𝑖 of the
orientation vector u𝑖 of pear 𝑖 and the normal vector n̂(𝑝) of point 𝑝 which
encodes the angle 𝜏 between n̂(𝑝) and u𝑖 and also the position of the par‐
ticle in terms of the gyroid surface. The angle distribution is illustrated in
Fig. 4.11a. Here, the plots exhibit distinct peaks at 𝜏 = 0 across the whole
range of considered tapering parameters 𝑘 𝜃 . This corresponds to an align‐
ment of the particle directions and the surface normals.

An even more striking observation is that the distributions are very nar‐
row. This can be clarified by the full width at half maximum values of the
distributions. In the gyroid configuration half of the PHGO pears generate
an angle with the minimal surface normal which falls within 𝜏 ≲ 19.5◦ for all
considered 𝑘 𝜃 (see Table 4.1). Even by considering 90% of the pear‐shaped
particles and by determining the full width at tenth of maximum the range
of adopted angles is still very tight 𝜏 ≲ 36.3◦ for all 𝑘 𝜃 (see Table 4.1). Thus,
we can conclude that the pears tend to orientate perpendicular to the min‐
imal surface and that the gyroid phase, as already conjectured earlier, can

6We have also tested other approaches like to find the best translation which minimises∑[ 𝑓 (𝑥, 𝑦, 𝑧)]2. However, the approach with constraint reference structures provided the
most reliable results.
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Figure 4.11: (a) The relative orientation distribution between the pear direction u𝑖 and the
normal direction n̂(𝑝) of the gyroid minimal surface at point 𝑝 where the pear crosses the
surface for pear systems with different tapering angles in the gyroid phase at a global density
𝜌𝑔 = 0.555. The data is plotted in dependence of the angle 𝜏 between the two vectors cos(𝜏) =
u𝑖 ·n̂(𝑝) as indicated in the sketch. (b) The distribution of the lateral distance 𝑑 (𝑝) between
the center of the pear and the minimal surface is depicted for the same systems (see sketch).
The orange outline of a particle with 𝑘 𝜃 = 3.2 serves to relate 𝑑 (𝑝) relative to the pears.

indeed be interpreted as a curved smectic phase with a director which is
predetermined by the normal vector of a gyroid surface. Note related work
on possible nematic ordering in block copolymers [391].

The smectic order perpendicular to the minimal surface is reminiscent of
the cubic phases observed in X‐shaped bolapolyphiles [392, 393, 394]. The
cores of these molecules can be interpreted as sticky rods with side chains,
which link neighbouring particles via 𝜋‐conjugations, and are stacked in
the normal direction on the minimal surface. However, in contrast to the
pear‐shaped particles, the bolapolyphiles form monolayers instead of inter‐
digitated bilayers. The similar order poses the question, nevertheless, if it
is possible to assimilate both systems further by shifting the bolapolyphile
from an X‐shape to a more inversion asymmetric =‐shape.

Another observable, which supports the conclusion of local smectic or‐
der in the pear gyroid phase, is the distances 𝑑 (𝑝) from the centre of the
pear to the corresponding point 𝑝 on the minimal surface. The distance dis‐
tribution of Fig. 4.11b displays the bilayer formation as most pears intersect
the minimal surface with their narrow parts. Also the bilayer staggering pa‐
rameter Δ

2 ≈ 0.85 can be determined by the pronounced peak. However,
the interdigitation depth which is associated with 𝑑 (𝑝) is rather flexible and
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4.3 Geometric analysis of the PHGO gyroid structure

tapering relative orientation distribution Fig. 4.11a

𝑘 𝜃 full width at half of maximum full width at tenth of maximum

3.2 𝜏 ∈ [0◦, 19.3◦] 𝜏 ∈ [0◦, 35.7◦]

3.8 𝜏 ∈ [0◦, 19.4◦] 𝜏 ∈ [0◦, 36.2◦]

4.4 𝜏 ∈ [0◦, 20.0◦] 𝜏 ∈ [0◦, 37.2◦]

Table 4.1:The full width at half and tenth ofmaximumof the relative orientation distribution
between the gyroid minimal surface and the pear‐shaped particle orientation are listed for
different tapering parameter 𝑘 𝜃 . The data is obtained from Fig. 4.11a.

varies by a greater margin. This might be a hint that locallyΔ is not constant
throughout the unit cell and that for example at high curvature points the
particles are more interdigitated, whereas at the flat curvature points the
leaflets within a bilayer are more separated. To quantify this, however, we
have to relate the Gaussian curvature 𝐾 (𝑝) and the distances 𝑑 (𝑝) which is
the subject of the following section.

We can, furthermore, claim that both observations regarding 𝑑 (𝑝) and
u𝑖 are qualitatively independent of the tapering angle of the pear‐shaped
particles. The two distributions, hence, provide a quality measure for the
presented surface fit algorithm and indicate that the surfaces are satisfacto‐
rily placed within the system for further analysis.

4.3.4 Mechanism to generate negative Gaussian curvature

Now that we have established the local smectic nature of the pear gyroid
phase, we need to argue where the predisposition for negatively curved in‐
terfaces stems from. To do so, we first correlate the particle/Voronoi cell
properties to the Gaussian curvature of the penetrated section on the min‐
imal surface. Afterwards, we thematise why the pear‐assembly ostensibly
contradicts the shape of space tilings based on parallel surfaces, which are
required to generate homogeneous packings on negatively curved surfaces.
Yet, we also give a solution to how this packing law is fulfilled collectively by
a combination of particle arrangement and pear‐shape.
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4 The gyroid phase in PHGO pear‐shaped particle systems

Creating curvature via bilayer‐thickness modulation

In order to relate curvature and interdigitation depth, the minimal surfaces
which are shown in Fig. 4.10 are triangulated and tessellated according to
their intersections with the configuration‐derived Voronoi diagrams. As a
result, characteristics of the Voronoi diagram and the gyroid are assigned
to every point/triangle 𝑝𝑡 on the minimal surface such that 𝑝𝑡 shares the
same quantities with a pear if it lies within the particle’s domain according
to the Set‐Voronoi diagram. This method to obtain the correlations is more
meaningful than considering the point 𝑝 to average over a wider range of
Gaussian curvatures and it suppresses fluctuations more effectively.

In Fig. 4.12 the local Gaussian curvature and the mean (from 1000 config‐
urations) volume of intersecting Voronoi cells are, respectively, depicted on
two gyroid minimal surfaces. From this, it is apparent that highly curved
regions at the necks of the gyroid tend to be intersected by cells with higher
volume, whereas more tightly packed particles reside in lower curvature
zones (particularly the nodes). This can be interpreted as meaning that
higher curvature requires lower particle density since this avoids the restric‐
tions otherwise associated with leaflet interdigitation and induces flexibility
to create curvature. To achieve a more quantitative measure of this effect,
the area 𝐴0 occupied by each Voronoi cell 𝑉cell is summarised in a plot of
〈𝑉 cell

𝐴0
〉 against |𝐾 | ‐ an anti‐correlation is observed (see Fig. 4.13a).
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Figure 4.12: Left: The gyroid surface coloured by Gaussian curvature. More curved areas are
blue, less curved areas are white. Right: By comparison, the gyroid is coloured in respect
of the mean volume of intersecting Set‐Voronoi cells. Blue sections are intersected by cells
with high volume whereas white sections are intersected by cells with low volume. For the
calculation 1000 systems of 𝑁 = 380 pear‐shaped particles with 𝑘 = 3 and 𝑘 𝜃 are used.
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Figure 4.13: Gaussian curvature of the gyroid minimal surface plotted against the mean vol‐
ume of intersecting Set‐Voronoi cells (a), against themean distance between the center of the
pear and the gyroid surface 〈𝑑〉 (b) and against the relative orientation between the particle
and the gyroid surface n̂·u𝑖 and its variance (c) using pears with 𝑘 𝜃 = 3.8. Every point rep‐
resents a triangle 𝑝𝑡 of the triangulated gyroid surface (d). For the calculation 1000 systems
are used. The dotted line in (a) indicates Steiner’s theorem (Eq. (4.8)), where 𝑙 = 𝑑MS (𝑝𝑡 ) is
the distance between 𝑝𝑡 on the gyroid surface and its corresponding point on the medial sur‐
face (see Sec. 1.2). The Gaussian curvature 𝐾 (𝑝𝑡 ), 𝑑 (𝑝𝑡 ) and n̂(𝑝𝑡 ) are calculated numerically
using the gyroid minimal surface parametrised by the Enneper‐Weierstrass representation
[48, 85]. The mean curvature 𝐻 (𝑝𝑡 ) is 0 at every point 𝑝𝑡 on a minimal surface.

Similarly, another anti‐correlation is found when the mean distance be‐
tween the points 𝑝𝑡 on the gyroid surface and the pear positions was plotted
against the Gaussian curvature (see Fig. 4.13b). This means that the pears re‐
main further away from the minimal surface at the nodes than at the necks.
This is both expected and intuitive. It is expected as the pears have to fill
more space in the channel domain with their blunt ends at the nodes and,
therefore, are not able to interdigitate as deeply without leaving unphysical
void space around the medial axis (see the definition for the medial surface
in Sec. 1.2).
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4 The gyroid phase in PHGO pear‐shaped particle systems

Furthermore, both anti‐correlations (the one between Voronoi cell vol‐
ume and Gaussian curvature, and the one between the distance to minimal
surface and Gaussian curvature) are mutually consistent since low curvature
is compatible with high interpenetration. For the intuitive explanation that
greater interdigitation leads to more curvature, we take a closer look at the
particles within the bilayer. By reaching further into the opposite leaflet of
the bilayer, the pears act as wedges, which occupy more space and creates
larger angles between direct neighbouring particles. This, in turn, intro‐
duces more curvature into an otherwise flat bilayer. The penetration depth,
thus, acts as a mechanism to control the local Gaussian curvature of the
membrane. Here we also want to refer to mixtures in Sec. 8 where a similar
mechanism is observed.

Lastly, we demonstrate that the nematic order on the gyroid surface is
present and independent of the position of the particle and the correspond‐
ing local Gaussian curvature (see Fig. 4.13c). The only observable difference
can be seen by plotting the variance of the tilt between the normal vector of
the gyroid surface and the pear orientation (see the smaller plot in Fig. 4.13c).
It shows that the fluctuations of the tilt increase with growing |𝐾 |. However,
this trend is explained by the heightened susceptibility of the relative pear
orientation to translational fluctuations at surfaces of high curvature. By
slightly translating the pears in flat regions of the gyroid, the relative tilt
angle stays roughly constant and is not affected by the displacement. In
contrast, small changes in the particle’s position within highly curved areas
lead to more considerable variations of the tilt.

The regulation of Gaussian curvature via interdigitation and the simulta‐
neous nematic order on theminimal surfacemight also explain the existence
of the smectic/nematic phases on either side of the gyroid phase, which we
just addressed briefly at the beginning of this chapter and which will be dis‐
cussed in great detail in the next chapter Chap. 5 (note especially Fig. 5.1):

• If 𝑘 𝜃 is too large, the particles are in principle able to generate the
full range of 𝐾 needed for the gyroid formation. However, the particle
shape itself shows a lack of head‐tail‐asymmetry which mostly pre‐
vents the arrangement into bilayers and leads to nematic global order
and a planar interface.

• On the other hand if 𝑘 𝜃 is too small, the particles cannot interdigitate
deeply enough to both introduce the maximum amount of curvature
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and simultaneously keep the internal bilayer structure of two antipar‐
allel particle arrays intact, so again, the planar nematic and smectic
phases form.

In between the taper of the particles77 just allows for a compromise between
the ability to form bilayers and to create enough curvature via interdigitation
such that stabilisation of curved surfaces (aka the gyroid minimal surface)
is facilitated.

Thedifference betweenVoronoi and Steiner cell in PHGOparticle sys‐
tems

Comparing these findings for our pear system with those for lipids and poly‐
mers, differences are apparent. The molecular geometry of lipids and di‐
block copolymers is often described by the ”surfactant parameter” 𝑣

𝐴0 ·𝑙 where
𝑣 is the effective surfactant chain volume and 𝑙 is the chain length [50]. By
invoking the relationship between molecular shape and resulting interface
curvatures, one can then express the so‐called Steiner’s formula [395] as:

𝑣(𝑙) = 𝐴0(𝑙 + 𝐻 · 𝑙2 + 1

3
𝐾 · 𝑙3). (4.8)

The volume cell 𝑣(𝑙) is defined by the space which is spanned between the
surface patch d𝑆 with area 𝐴0 on the surface 𝑆 and its counterpart d𝑆′𝑙 on the
parallel surface 𝑆′𝑙 at distance 𝑙. The parallel surface patch d𝑆′𝑙 is themapping
of d𝑆 by the function 𝑓 ‖,𝑙 which translates all points 𝑝𝑡 ∈ 𝑆 by a distance 𝑙
on a surface in normal direction n̂(𝑝𝑡 ):

𝑓 ‖,𝑙 : 𝑆 → 𝑆′𝑙
𝑓 ‖,𝑙 (𝑝𝑡 ) = 𝑝𝑡 + 𝑙 · n̂(𝑝𝑡 ).

(4.9)

If 𝑙 = 𝑑MS(𝑝𝑡 ), such that the 𝑣 is defined between the minimal surface and
its medial surface, we call the volume Steiner cell (see Fig. 4.14g).

According to Steiner’s formula the surface patch 𝐴(𝑙) increases or de‐
creases with 𝑙 depending on the mean and Gaussian curvatures 𝐻 and 𝐾.
The gyroid surface is characterised by its mean curvature 𝐻 = 0 and negative
Gaussian curvature 𝐾 ≤ 0 at every point p𝑡 . Therefore, lipids and copoly‐
mers which form the gyroid surface are conventionally sketched as cones

7We will show in Chap. 5 that for 𝑘 = 3 the tapering parameter to form gyroid phases ranges
between 2.5 < 𝑘 𝜃 < 4.5.
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(a)

Pears

(b)

(e)

water

Lipid+Water

(c)

(f)
medial axis

minimal surface

IMDS

Copolymers

(d)

(g)

Figure 4.14: The three different arrangements within the gyroid phase (a) generated by ta‐
pered liquid crystalline pears, (b) lipids in a mixture with water, (c) and di‐block copolymers
(d). The lipids and copolymers follow Steiner’s theorem and taper towards the medial axis
(f+g) and the inter‐material dividing surface (IMDS) (g). In contrast, the pears form inter‐
penetrating bilayers and, consequently, get wider as they approach the medial axis (e).

( 𝑣
𝐴0 ·𝑙 < 1) tapered towards the medial axis, whereas in the lamella phase

the molecules are considered as cylinders ( 𝑣
𝐴0 ·𝑙 = 1) [50, 244]. This is illus‐

trated in Fig. 4.14f+g. Plotting Steiner’s formula in Fig. 4.13a and analysing
the shape of the tapered Voronoi cell of a single pear (see Fig. 4.9c), shows
that the pear‐shaped particles have a surfactant parameter greater than 1
which usually corresponds to positively curved surface phases like micelles.

However, while molecular flexibility means that it is often feasible for
lipids and copolymers to have differing surfactant parameters in opposing
leaflets, this is patently not the case in the systems studied here. Here the
difference in obtainable space is directed by the interdigitation mechanism.
Due to this interdigitation and the fixed particle shape in our pear‐shaped
particle systems (see Fig. 4.14b+e), it is necessary for pear blunt ends to point
into the opposing channels. This means, however, that the pear system ap‐
pears to violate Steiner’s theorem based on the volume occupied by sin‐
gle particles, leading to the poor agreement between simulation data and
Eq. (4.8). The interlocking bilayer arrangement rather suggests that multi‐
ple particles have to be considered collectively. This is because, in contrast
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minimal surface

Set‐Voronoi cell

medial surface

Steiner cell

Figure 4.15:Apossible way howpears collectively fulfil Steiner’s theorem in gyroid phases. As
the pears do not occupy space exclusively in one channel domain, the tips of the neighbouring
particles might contribute to the local surfactant parameter 𝑠 and turns it from 𝑠 > 1 for a
single pear to 𝑠 < 1. Hence, the Voronoi cell does not coincide with the Steiner cell.

to the lipid and copolymer systems, where the molecules are only within
one channel domain, the pear‐shaped particles occupy space on both sides
of the separating membrane. Hence, the Voronoi cell of a single particle can
not be equated with the Steiner cell in the pear‐shaped particle systems. It is
more than plausible that the surfactant parameter becomes smaller than 1 by
taking the blunt end of one pear and the tips of the surrounding antiparallel
pears into account and joining the Steiner cell from multiple particles (see
Fig. 4.15). This is hardly feasible to quantify as it is highly nontrivial to pre‐
dict which exact collection of pears complies with Steiner’s theorem. Even
though we cannot prove this conjecture, the behaviour of pear‐shaped par‐
ticles within the gyroid structure leads us to the conclusion that the mech‐
anisms behind the formation of the gyroid by lipids/copolymers and pear‐
shaped colloids are fundamentally different from one another.

4.4 Conclusion and outlook

In this chapter, we have performed a crystallographic and geometric analysis
to determine key characteristics of the gyroid phase in PHGO particle sys‐
tems, such as the unit cell size, number of particles per unit cell and the bi‐
layer staggering length. Moreover, we could confirm earlier observations and
also substantiate hypotheses which weremade in Ref. [241]. In particular, we
were able to identify a multitude of different gyroid configuration with dif‐
ferent protocols (see Table 4.2) indicating the robustness of the gyroid phase
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4 The gyroid phase in PHGO pear‐shaped particle systems

Orientation Gyroid observed

x y z
𝑁pear

Init Iso Init Sm
Unit cell Ref.

{100} {010} {001}
370‐400 3 3 1×1×1 Fig. 4.10

3000‐3200 3 3 2×2×2 Fig. 4.6

{110} {1̄10} {001} 760 3 –
√
2×

√
2×1 Fig. 4.7

– 10000 3 3 25‐27
Fig. 4.2

Fig. 4.4

Table 4.2: The different PHGO particle systems where the gyroid structure has been iden‐
tified. This table holds for both Molecular dynamics (with a WCA potential) and Monte
Carlo (with a hard‐core potential) simulations of pear‐shaped particle systems with 𝑘 = 3,
3 < 𝑘 𝜃 < 4.5 and 𝜌𝑔 = 0.555. The simulations to generate the gyroid structures either include
a compression sequence form the isotropic phase (Init Iso) or start to form a pre‐prepared
smectic configuration at the targeted global density (Init Sm).

(in Chap. 5 the robustness of the PHGO gyroid phase will be further tested
in terms of the particle shape). The main results of the gyroid phase formed
by PHGO particle systems are listed below:

• We analysed the scattering patterns of the density distribution of the
pear’s blunt ends to ascertain the symmetry and reciprocal lattice vec‐
tors of the Ia3d double gyroid.

• The PHGO particles arrange in space filling (no solvent needed) in‐
terdigitated bilayers and orientate parallel to the normal of the divid‐
ing gyroid minimal surface. Hence the gyroid phase corresponds to a
curved smectic in which the director is locally determined by the nor‐
mal of the minimal surface.

• Correlations between the curvature of the gyroid surface and theVoronoi
cells of the pears show that amore open structure is adopted in regions
of higher curvature and that the gyroid’s range of channel widths are
accommodated by variation in leaflet interpenetration.

• We were able to identify a multitude of different gyroid configuration
with different protocols (see Table 4.2) indicating the robustness of the
gyroid phase (in Chap. 5 the robustness of the PHGO gyroid phase will
be further tested in terms of the particle shape).
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𝑎meso𝑎meso𝑎meso𝑎meso𝑎meso𝑎meso𝑎meso𝑎meso𝑎meso𝑎meso𝑎meso𝑎meso𝑎meso𝑎meso𝑎meso𝑎meso𝑎meso 𝑎micro𝑎micro𝑎micro𝑎micro𝑎micro𝑎micro𝑎micro𝑎micro𝑎micro𝑎micro𝑎micro𝑎micro𝑎micro𝑎micro𝑎micro𝑎micro𝑎micro

Figure 4.16: Left: The gyroid phase in a system of pear‐shaped particles with 𝑘 = 3, 𝑘 𝜃 = 3.8
and 𝜌𝑔 = 0.555. The gyroid exhibits long‐ranged order on a mesoscopic length‐scale 𝑎meso
which is determined by the unit cell of the gyroid. Right: A sketch of the crystallisation in
hard sphere systems. The periodicity of the crystalline order is on the microscopic level such
that the determining length‐scale 𝑎micro is on the same order of magnitude as the particle
size.

In general, we have confirmed that the gyroid structure can be obtained
purely via entropic self‐assembly of the PHGOparticle systems. Even though
the PHGO contact function features some non‐additive properties, the ob‐
served gyroid phase stems from the same principles as the crystallisation
of hard spherical colloids or the nematic phase in hard rod‐like systems.
However, there is one particular way in which the behaviour of these pear‐
shaped systems is distinguished from those of other entropy‐driven ordering
processes. The onset of the double gyroid phase creates crystallographic or‐
der over multiple particles and thus, introduces a larger length‐scale than
the particle or molecular scale. This “mesoscopic” length‐scale 𝑎meso is de‐
fined by the unit cell whose dimension is one or more orders of magnitude
larger than the constituent’s size. This contrasts with the ordered phases
of hard spheres and liquid crystals where the crystallographic parameter
matches the translation from one particle to its nearest neighbour and hence
to the molecular scale 𝑎micro itself. A sketch is provided in Fig. 4.16. While
the formation of emergent meso‐scale order by self‐assembly is by now a
well‐established concept, a clear discrimination between the energetic and
entropic contributions is an only partially understood question and one to
which we hope to contribute with our results.
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5 The phase diagrams of single‐component
pear systems

“Ordeeerrrrrr!!!”
– John Bercow

This chapter focuses on the self‐assembly of pear‐shaped particle systems on
a broader aspect in which we both resume and significantly extend previous
studies on entropic self‐assembly by Barmes [243] and Ellison [241]. Specif‐
ically, we introduce the complete phase diagram of the mono‐disperse sys‐
tem of hard‐core pear‐shaped particles using the pear hard Gaussian overlap
(PHGO) model, with global density and particle shape as the two variable pa‐
rameters. The phase diagram incorporates the bicontinuous double gyroid
phase, which we started to analyse in detail already in Chap. 4 and which we
put into more perspective here, as well as disordered isotropic, smectic and
nematic phases. Furthermore, we also provide the phase diagram of the hard
pears of revolution (HPR) particle system which can be used for comparison.
Here we show that the entropic self‐assembly of highly symmetric phases like
the gyroid is sensitive to shape changes. In particular, we demonstrate that the
small differences between the PHGO and the HPR model destabilise the for‐
mation of bilayer phases (including the gyroid) such that only isotropic and
nematic phases remain.11

1This chapter is based, in parts, on the article P.W.A. Schönhöfer, L.J. Ellison, M. Marechal,
D.J. Cleaver, and G.E. Schröder‐Turk, “Purely entropic self‐assembly of the bicontinuous Ia3d
gyroid phase in equilibrium hard‐pear systems”, Interface Focus 7:20160161, 2017. All simula‐
tion methods, numerical procedures and data analyses of this paper were implemented and
executed byme (with theMD code based on earlier code by Laurence Ellison). Alongside the
senior authors, I was a major contributor to the conceptual questions and research methods
addressed in the article, and the interpretations presented as results. I created all 13 illustra‐
tions and graphs in the article and have written the manuscript, with help and comments
from Gerd Schröder‐Turk, Matthieu Marechal and Douglas Cleaver. Verbatim quotes from
that paper may have been used without explicit citations.
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5 The phase diagrams of single‐component pear systems

Even though different pear‐shapes have been investigated since the PHGO
model has been introduced, an in‐depth study of the phase behaviour for a
wide range of differently tapered PHGO pears has not yet been provided
in full detail. To take an example, Barmes et al. [243] showed that, for
long, tapered monodisperse particles with aspect ratio 𝑘 = 5 and 𝑘 𝜃 = 5,
the nematic, bilayer smectic and crystalline phases are formed. For shorter
particles, however, this initial study only found a ”domain ordered” arrange‐
ment on compression of systems of 1000 tapered particles, which could not
be assigned successfully to an exact structure. Subsequently, by simulating
10000 particles with 𝑘 = 3 , Ellison et al. [241] showed for 𝑘 𝜃 = 3.8, and we
confirmed for the range and 3.0 < 𝑘 𝜃 < 4.5 in the last chapter that, on com‐
pression from the isotropic fluid and on decompression from an artificial
smectic phase, the system was actually entering gyroid arrangement with
long‐range, three‐dimensional periodicity like the one shown in Fig. 4.16.
The pears adopt this liquid crystal phase in an arrangement that fills space
fairly uniformly, at fluid‐like densities (see Chap. 4 for an in detail analysis
of the gyroid phase). Additionally, Ellison considered in his PhD thesis [373]
a couple of other values of 𝑘 𝜃 within an aspect ratio of 𝑘 = 3 showing similar
phase behaviour as the pear‐shaped particles with 𝑘 = 3 and 𝑘 𝜃 = 3.8, which
was the initial attempt to determine the phase diagram thoroughly. Based
on this, we will extend this phase diagram in Sec. 5.1.

Up to this point, also no comparison between the PHGO model and the
HPR model has been undertaken, a fortiori, as for the ellipsoidal counter‐
parts (the hard Gaussian overlap (HGO) ellipsoids and the hard ellipsoids
of revolution (HER) ) small differences between the two models are known
[396]. The phase transitions between the isotropic and orientationally or‐
dered liquid crystal phases do not match perfectly for both ellipsoid mod‐
els as the HGO interaction profile (see Eq. (2.13)) promotes the alignment
of particles by a greater margin. This can be seen by comparing the ex‐
cluded volumes in Fig. 2.5, where the HGO model slightly overestimates the
contact distance when the two ellipsoids are perpendicular to each other.
Consequently, the phase transition of the HGO ellipsoids occurs for lower
densities than for HER ellipsoids. Nevertheless, the distinct transition den‐
sity does not change the characteristics of the observed phase behaviour
significantly. Both models exhibit a similar nematic phase in between the
isotropic and solid state without the HGO ellipsoids adding more complex
phases. Thus, the two types of ellipsoids are qualitatively equivalent and
their small differences in particle‐shape are of only marginal consequences.
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5.1 Phase diagram of the pear hard Gaussian overlap (PHGO) system

However, the double gyroid phase is a much more complex structure than
the “simple” nematic.

It seems plausible that higher complexity goes along with increased re‐
sponse and that especially the self‐assembly of configurations like the dou‐
ble gyroid is more sensitive to the interaction of the particles. Hence, we
will provide a second phase diagram using the HPR model in Sec. 5.2. Here
we will show that the gyroid phase, which can be interpreted as a warped
bilayer phase, is not universal for tapered pear particles and that the special
features of the PHGO contact function promote the formation of otherwise
unfavourable bilayer‐configurations.

Finally, as a conclusion in Sec. 5.3, the entropy‐driven gyroid phase formed
by the PHGOpear system is evaluated. Through this, a compelling argument
is made that it is a realisation of a modulated splay‐bend phase in which the
conventional nematic has been predicted to be destabilised at the mesoscale
due to a molecular‐scale coupling of polar and orientational degrees of free‐
dom as suggested by Selinger [397].

5.1 Phase diagram of the pear hard Gaussian overlap
(PHGO) system

For the first part of the chapter, Molecular Dynamics and Monte Carlo simu‐
lations, as per the procedure described in Sec. 4.1, are performed on systems
with 𝑁 = 3040 and 𝑁 = 3200 monodisperse PHGO particles, that is, par‐
ticles of the same size and shape. For a description of the PHGO model
see Sec. 2.2. The simulations are set up such that the particles are confined
within a cubic box with three‐dimensional periodic boundary conditions.
The tapering parameter 𝑘 𝜃 lies between 2.0 and 6.0 which corresponds to
tapering angles between 28.1◦ and 9.5◦. The lower boundary of 𝑘 𝜃 = 2 is
set to ensure that there is no particle concavity. The interaction potential,
which is used to approximate the hard‐core interaction of pears in the MD
simulations, is the modified version of the purely repulsive WCA potential
which we introduced in Eq. (2.21). Here, full simulation sets are performed
in the canonical 𝑁𝑉𝑇‐ensemble, with the time step Δ𝑡 = 0.0015 and the di‐
mensionless temperature 𝑇 set to 1.

Additionally, MC simulation sets using the same parameters and the same
compression protocol are performed for 𝑘 𝜃 = 2.2, 𝑘 𝜃 = 3.8 and 𝑘 𝜃 = 5.4. In
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Figure 5.1: Phase diagram of hard PHGO pear‐shaped particles with 𝑘 = 3.0 obtained by
compression (from isotropic) and decompression at fixed tapering parameter 𝑘 𝜃 for systems
of 3040 particles in a cubic simulation box. Grey regions between the isotropic and ordered
phases indicate parameter values for which phase hysteresis is observed between compres‐
sion and decompression sequences. The same phase diagram obtained by an alternative
route of changing the particle shape is shown in Fig. 5.8. The schematics above the graph
indicate the cross‐sectional shape of the particles associated with each 𝑘 𝜃 value.

this case we used the hard‐core potential with the PHGO contact function
instead of the WCA potential. The MC translation step and the rotation step
are initially set as Δ𝑞,max = 0.015𝜎𝑤 and Δ𝑢,max = 0.015𝜎𝑤 , respectively, but
have been adjusted in an equilibration phase to guarantee an acceptance rate
of roughly 50% for the displacement attempts at every global density. The
results of the MC and MD simulation sets show no significant differences.

For each value of 𝑘 𝜃 , an initial, crystalline ordered configuration generated
at low density (𝜌𝑔 = 0.28) is run to provide isotropic starting conditions be‐
fore being compressed to the density 𝜌𝑔 = 0.44. Subsequently, a sequence of
small compression steps is imposed (see symbols in Figure 5.1) each of which
entails an equilibration run of 1.5·106Δ𝑡 and a production run of 5.0·106Δ𝑡.
Compressions are made up to 𝜌𝑔 = 0.67, which is found to be a solid state
for all 𝑘 𝜃 . We perform expansion sequences in an equivalent, but reverse,
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5.1 Phase diagram of the pear hard Gaussian overlap (PHGO) system

manner from each 𝜌𝑔 = 0.67 state. The resultant phase diagram is shown in
Fig. 5.1. To examine the sensitivity of the phase diagram in terms of used
particles, additional simulations with different system sizes from 𝑁 ≈ 1750
to 𝑁 ≈ 10000 are performed. These simulations show only modest changes
in the phase diagram concerning system size and box shape. We, therefore,
come to the conclusion that the very small crystallographic moduli at play
here mean that commensurability effects in terms of the simulation box di‐
mensions, while undoubtedly present, are surprisingly weak [398].

Phase identification is based on four main observables, described in detail
in Sec. 3.3 and shown in Fig. 5.2:

1. The first of these was the excess pressure 𝑃ex, like described in Eq.
(3.45), which is dependent on the distance 𝑟𝑖 𝑗 of the center positions
and the forces 𝑓𝑖 𝑗 between particles 𝑖 and 𝑗 . All forces 𝑓𝑖 𝑗 are repulsive,
since the PHGO model is a soft‐repulsive particle model [242, 243].
The excess pressure, however, has to be treated with caution, as we
deal with a potential close to the hard‐core limit (maximally 1.5%over‐
lap according to the PHGO‐contact function), in which 𝑃ex is much
harder to determine computationally (see Sec. 3.3.2 for more informa‐
tion). Therefore, 𝑃ex is only obtained by the Molecular Dynamics.

2. The second key observable is the nematic order parameter 𝑃2 as de‐
scribed in Eq. (3.51).

3. The third measured quantity is the standard deviation of local orien‐
tations

𝜎(𝛼𝑖) =

√√√√√
1

𝑁 − 1


(
𝑁∑
𝑖=1

𝛼2𝑖

)
− 1

𝑁

(
𝑁∑
𝑖=1

𝛼𝑖

)2 , (5.1)

based on the scalar product 𝛼𝑖 = u𝑖 ·u 𝑗 of the orientation vectors of
nearest neighbour particles 𝑖 and 𝑗 .

4. Lastly, the diffusion coefficient 𝐷 is determined from the diffusive‐
regime slope of the mean squared displacement such as those shown
in Fig. 5.3 and explained and defined in Eq. (3.48) in more detail.

These observables, except 𝐷, also serve to confirm system equilibration by
using stationarity or constancy of these properties as an indication for how
converged the configurations are.
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Figure 5.2: (a) The excess pressure 𝑃ex (Eq. (3.45)), (b) nematic order parameter 𝑃2 (Eq.
(3.51)), (c) standard deviation of angles between nearest neighbour particles 𝜎(𝛼) (Eq. (5.1))
and (d) diffusion coefficient 𝐷 obtained from the compression sequences of 𝑘 𝜃 = 2.2 (strong
particle tapering), 𝑘 𝜃 = 3.8 (intermediate particle tapering) and 𝑘 𝜃 = 5.4 (weak particle
tapering) PHGO particles, as depicted in (e). The diffusive character of the isotropic (I),
nematic (N), smectic (Sm) and gyroid phase (G) and the non‐diffusive character of both solid
phases (SSm and SG) are shown by themean squared displacement in Fig. 5.3. All observables
are obtained by both MD and MC simulation with the exception of 𝐷 and 𝑃ex (MD only),
showing statistically no significant differences.
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Figure 5.3: The mean squared displacement at different global densities for 𝑘 𝜃 = 2.2 (a),
𝑘 𝜃 = 3.8 (b) and 𝑘 𝜃 = 5.4 (c). A slope of 1 implies diffusive behaviour. At a density of 𝜌𝑔 =
0.546 with 𝑁 = 3040 particles, the mean squared displacement of 20.84𝜎𝑤 corresponds to a
displacement of the linear size of the simulation box. Depending on the phase parameters,
such a displacement is achieved by a number of steps between ≈ 90000 steps (smectic, 𝑘 𝜃 =
2.2) to ≈ 160000 (gyroid, 𝑘 𝜃 = 3.8).

Additionally, systems are analysed by calculating the pair‐correlation func‐
tions, which are defined in Eq. (3.62) and Eq. (3.63) (see Fig. 5.4) and using
the cluster identification algorithm which was introduced in Sec. 3.4.4. For
all following cluster constructions we use 𝑟cl = 1.35𝜎𝑤 to later color the pears
according to their cluster affiliation.

The scattering patterns of the blunt end density distributions are con‐
sulted especially to distinguish the gyroid and isotropic phase (see the more
detailed analysis of the scattering pattern in Sec. 4.2.1). This is important
as occasionally the clustering algorithm cannot perfectly separate the two
network domains of the double gyroid and instead combines them to one
large cluster due to defects. From this, six distinct phases are identified ‐
isotropic, nematic, smectic (bilayer and monolayer), gyroid, solid smectic
and solid gyroid ‐ as well as narrow biphasic or hysteretic regions (marked
in grey on Fig. 5.1) between isotropic and ordered fluid phases. Since the
resultant phase diagram, Fig. 5.1, can readily be divided into three sections
with regard to the particle tapering parameter 𝑘 𝜃 , details of observable char‐
acterisation are now given in the three Sections 5.1.1–5.1.3 .
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Figure 5.4: The longitudinal pair‐correlation function 𝑔 ‖ (𝑟 ‖) (left column) and the lateral
pair‐correlation function 𝑔⊥ (𝑟⊥) (right column) of the smectic bilayer (𝑘 𝜃 = 2.2,𝜌𝑔 = 0.57),
the gyroid (𝑘 𝜃 = 3.8,𝜌𝑔 = 0.56), the nematic (𝑘 𝜃 = 5.4,𝜌𝑔 = 0.56) and the smectic monolayer
phase (𝑘 𝜃 = 5.4,𝜌𝑔 = 0.585). The pair‐correlation functions are additionally weighted by
the polar order parameter 𝑃1 (second row) and the nematic order parameter 𝑃2 (third row).
The definitions of the different pair‐correlation functions are decribed in Sec. 3.4.2 (see also
sketch in Fig. 3.3).
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5.1 Phase diagram of the pear hard Gaussian overlap (PHGO) system

5.1.1 Strong taper (2.0 < k𝜃 < 2.4: I→SmB→SSm)

The first class of particles is composed of pears with small tapering param‐
eters between 𝑘 𝜃 = 2.0 and 𝑘 𝜃 = 2.4, which correspond to tapering an‐
gles between 𝜃𝑘 = 28.1◦ and 𝜃𝑘 = 23.5◦. We will refer to these particles as
strongly tapered. In this range, the pear particle systems undergo three dif‐
ferent states: the isotropic, the bilayer smectic and the solid smectic phase.
Characteristic structures for 𝑘 𝜃 = 2.2 are depicted in Fig. 5.5 to visualize the
progression of structures.

For low densities below 𝜌𝑔 = 0.49 (𝑘 𝜃 = 2.0) and 𝜌𝑔 = 0.52 (𝑘 𝜃 = 2.4) the
systems have low orientational order, and cluster algorithms cannot iden‐
tify a global arrangement into lamella structures. The simulations do display
short thread‐like clusters of a few (around 8‐12) intertwined particles, such
as those appearing in Fig. 5.5 (especially in nematic representation), when
the ordered phase is approached frombelow the isotropic phase. Those clus‐
ters are randomly oriented within the systems and unjoined such that they
do not form long‐ranged structures. Nevertheless, their existence can be in‐
terpreted as a precursor to the formation of interdigitated bilayers. Similar
pre‐order has been obtained, for example, at the isotropic‐nematic phase
transition of disk‐shaped particles [399, 400].

On compression from the isotropic, the system exhibits bilayer smectic
and solid‐smectic phase behaviours. Whilst the excess pressure is an effec‐
tive indicator of the transition from isotropic to smectic lamellar (Fig. 5.2),
the main signal of this transition is the adoption of high orientational or‐
der parameter (see Fig. 5.2b or Fig. 5.5 right). As depicted in Fig. 5.5 (left), in
the smectic phase, flat layers of interdigitating bilayer leaflets are formed in
which all particles are orientationally aligned either parallel or antiparallel
to one another.

The formation of bilayers becomes apparent also in the signature of the
different longitudinal pair‐correlation functions 𝑔 ‖ (𝑧) (see Fig. 5.4 left). All
three plot indicate multiple distinct peaks suggesting both long ranged tran‐
sitional, polar and nematic order in the longitudinal direction but also a pil‐
ing of multiple sheets of pear‐shaped particles. Moreover, the bifurcation of
peaks in Fig. 5.4a implies an organisation into stacks of interdigitated bilay‐
ers rather than monolayers. Here, the arrangement into parallel leaflets (left
peak), where the polar order parameter 𝑃1 locally exhibits positive values,
and antiparallel leaflets of the bilayers (right peak), where 𝑃1 changes sign,
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Figure 5.5: Representative configurations of 3040 pear‐shaped particles with 𝑘 = 3 and 𝑘 𝜃 =
2.2 forming the isotropic (first row: 𝜌𝑔 = 0.49) and bilayer smectic (second row: 𝜌𝑔 = 0.56)
phases. The structures are illustrated in the cluster representation (first column) and the
blunt end representation (second column) where the colors indicate the cluster affiliation. In
the third column the particles are additionally colored according to their relative orientation
to the director n.

can be identified. The leaflets are also affirmed by the 𝑔 ‖𝑃2 (𝑧) profile of this
phase in the form of small dips at each maximum.

Also the lateral pair‐correlations indicate the smectic bilayer phase (see
Fig. 5.4 right). Firstly, the weighted functions show that the particles are
aligned for large lateral distances suggesting that the layers are flat. Sec‐
ondly, a small peak before the main peak is observable in Fig. 5.4d+f, which
can be assigned to the immediate antiparallel and parallel neighbours of the
reference pears in the same bilayer, respectively.

Lastly, mobility remains diffusive at intermediate densities, whereas the
particle motion is dominated by in‐leaflet diffusion but also involves occa‐
sional ‘flips’ of pear‐shaped particles from one into another neighbouring
sheet. A second transition, between smectic and solid‐smectic, is charac‐
terised by a steep drop in mobility (see Fig. 5.2d) as well as features in the
excess pressure and order parameter characteristics.
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5.1 Phase diagram of the pear hard Gaussian overlap (PHGO) system

5.1.2 Weak taper (k𝜃 > 4.6: I→N→SmM→SSm)

On the other end of the phase diagram, for pear‐shaped particle systems
with 𝑘 𝜃 > 4.6, the simulations exhibit four different phases over the density
range 0.46 < 𝜌𝑔 < 0.65. From compression of the isotropic phase these
weakly tapered pears adopt nematic order between the isotropic and smec‐
tic regions (see Fig. 5.2b and representative structures for 𝑘 𝜃 = 5.4 in Fig.
5.6). Here, the clustering algorithm fails to highlight any transitional order
indicating a nematic phase. This window of nematic phase stability inte‐
grates straightforwardly into the phase diagram, as can be seen from the
excess pressure and diffusion characteristics in Fig. 5.2a+d, neither of which
distinguish between the nematic and the gyroid. Also the pair‐correlation
functions in Fig. 5.4 clearly suggest a nematic phase as the positional corre‐
lations quickly decay both in parallel (a) and perpendicular (d) direction to
the pears. However, the orientational correlations (c+f) remain large also
for larger distances. Other more intricate signatures, like the bifurcation
observed in the bilayer smectic phase, are not obtained.

On the upper bound of the nematic phase, the weakly tapered pears form
a smectic phase. A representative structure of this phase is shown in Fig. 5.6.
Even though the cluster analysis also shows the formation of sheets like for
highly tapered particles, the algorithm identifies twice as many clusters in
terms of the position of the blunt ends as for highly tapered particles (see
Fig. 5.5). The pair‐correlation functions confirm that the particles are not
arranged within a bilayer formation and rather create separate monolayers.
Although both translational and orientational order is still present, the cor‐
relations are weaker than for bilayer arrangements. Furthermore, the plots
not only differ quantitatively but also qualitatively. On the one hand, the
division into two maxima per peak for 𝑔 ‖ (𝑟 ‖) in Fig. 5.4a vanishes. On the
other hand, the small secondary peak which was contributed to the opposite
leaflet of a bilayer also disappears for small 𝑟⊥ in 𝑔⊥(𝑟⊥) (see Fig. 5.4d). Both
of these phenomena can be explained by the lack of inversion asymmetry.
In this regime, the particles are not tapered enough to interdigitate into a
neighbouring sheet and rather form a separate monolayer. Moreover, the
weak taper causes the polarity within a sheet to be less pronounced (indi‐
cated by 𝑃1) as in the bilayer smectic phase, such that antiparallel particles
can be found within the same leaflet more often.

We note from the phase diagram that the density range of smectic phase
stability narrows as 𝑘 𝜃 increases. This behaviour is expected since there is
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PHGO
Cluster Blunt end Nematic
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Figure 5.6: Representative configurations of 3040 PHGO pear‐shaped particles forming the
nematic (first row: 𝑘 𝜃 = 5.4, 𝜌𝑔 = 0.55), monolayer smectic (second row: 𝑘 𝜃 = 5.4, 𝜌𝑔 = 0.59)
and gyroid (third row: 𝑘 𝜃 = 3.8, 𝜌𝑔 = 0.60) phases. The structures are illustrated in the clus‐
ter representation (first column) and the blunt end representation (second column) where
the colors indicate the cluster affiliation. In the third column the particles are additionally
colored according to their relative orientation to the director n.

no smectic phase for particles with 𝑘 𝜃 → ∞, which represent ellipsoids, and
systems exhibit transitions directly from the solid to the nematic phase [214].
Also the transition density for the most ellipsoidal pears from the isotropic
to the nematic phase is in good agreement with the values that have been
obtained for the HGO model of ellipsoids: The nematic transition lies be‐
tween 𝜌𝑔 = 0.4785 and 𝜌𝑔 = 0.4860, accordingly [401, 402].
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5.1 Phase diagram of the pear hard Gaussian overlap (PHGO) system

5.1.3 Intermediate taper (2.4 < k𝜃 < 4.5: I→G→SG)

In between the two globally orientationally ordered regimes of the phase dia‐
gram, the pears are classified as intermediately tapered. This regime ranges
from 2.4 < 𝑘 𝜃 < 4.5 and 23.5◦ > 𝜃 > 12.7◦ respectively. For small val‐
ues of 𝜌𝑔, they form an isotropic fluid which also features short bilayer‐like
threads. As the density is increased for these disordered systems, the gyroid
arrangement is adopted rather than the nematic or bilayer smectic phase.
The isotropic‐gyroid transition occurs at densities of between 𝜌𝑔 = 0.52
(𝑘 𝜃 = 2.4) and 𝜌𝑔 = 0.55 (𝑘 𝜃 = 4.5); see Fig. 5.1. For a full identification
and analysis of the gyroid phase, we refer to Chap. 4. Therefore we here just
briefly repeat the most important properties of this phase and focus on the
new insight gained by the observables in Fig. 5.2 and Fig. 5.4.

At the phase boundary from the isotropic to the gyroid phase, the ori‐
entational order parameters of these intermediate particle tapering systems
remain low during both compression and decompression (Fig. 5.2b) in sharp
contrast to what is seen for strong and weak particle tapering. This is quite
surprising as this type of orientational order is typical for elongated particles.
However, the associated drop in the standard deviation of local orientations
𝜎(𝛼) (Fig. 5.2c) suggests that the systems have adopted short‐range orienta‐
tional order. The transition from isotropic to gyroid phase is also indicated
by a feature in the excess pressure (Fig. 5.2a), which coincides with the point
of inflection of 𝜎(𝛼). Entering the gyroid phase is also associated with a
decrease in the gradient of the diffusion coefficient concerning density (Fig.
5.2d).

Also the pair correlation functions prove that the arrangement of single
particles within the interdigitating curved bilayers is locally similar to those
observed in the flat bilayer‐smectic phase of strongly tapered pears. The bi‐
furcation of peaks (a) and the clear bump at the location of the secondary
minor maximum for small 𝑟⊥ in the bilayer smectic phase (d) coincide with
the architecture of interdigitated bilayers. Yet, both of these plots also point
to considerable differences on a larger length scale. The correlations are
less distinct and diminish faster in the longitudinal and lateral direction
which can be explained by the inherent curvature of the minimal surface
structure. The influence of the warped bilayers is reflected even more in
the characteristics of the weighted pair correlation functions. Firstly, the
polar order vanishes in (b+e) for large distances and is less periodic (see es‐
pecially the double peak at 𝑟 ‖ = 4 in Fig. 5.4b). Secondly the nematic order
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5 The phase diagrams of single‐component pear systems

in (c) oscillates around 0 and, like the plot in (f), eventually approaches this
very value for 𝑟 ‖ . This means that the stacks of bilayers do not lie parallel
to each other anymore and also that largely separated particles within the
same leaflet are likely to be differently oriented.

Especially by using cluster analysis (see Sec. 3.4.4), the configurations can
be identified as interdigitating curved bilayer super‐structures characterised
by two interpenetrating, triply‐periodic channel networks (see Fig. 5.5), where
the thick ends are situated. In addition to being bicontinuous and triply‐
periodic, the labyrinth‐like networks also feature nodes with three branch
junctions, as is characteristic for the double gyroid. This is displayed in
the second column of Fig. 5.5, where only the blunt ends of the pears are
depicted by spheres rather than the pears themselves. These clusters are,
indeed, readily identifiable with the network domain of the gyroid and close
to the 2×2×2. In this phase, the pear‐shaped particles can traverse the sim‐
ulation box in all directions, through both in‐leaflet diffusion and leaflet to
leaflet flip‐flop. All these results confirm the observation which was already
made in Sec. 4.3.3 that the PHGO particles obtain a smectic order on the
gyroid minimal surface.

Above a density of 𝜌𝑔 = 0.62, a change in the diffusion characteristic is
seen a second time. In this density range, the pear particles no longer tra‐
verse the simulation box in the course of a simulation run, such that we
characterise the system as solid. Due to the kinetic character of this method
to ascertain solidification, the transition between the diffusive and solid state
is not defined distinctly and, consequently, is indicated as a dotted line in
the phase diagram.

Compared to the solidification of the smectic bilayers, where the particles
eventually obtain crystalline ordered domains, the gyroid systems remains
diffusive for higher densities. This leads to an apparent discontinuity of the
solidification line at the transition 𝑘 𝜃 = 2.4 between the smectic and gyroid
phase. This may be an indication that the solid gyroid phase is an arrested
glassy state of the system caused by an extended relaxation time for high
densities. Therefore, a solid lamellar arrangement, which is kinetically inac‐
cessible for MD and entropically barely differentiable for MC, might be the
true stable phase at these high densities. Another explanation might be the
differences in the diffusion of the particles in the gyroid phase (mostly 3D)
and the smectic phase (mostly 2D).
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5.1 Phase diagram of the pear hard Gaussian overlap (PHGO) system

A potential method to clarify the equilibrated state at high densities and
hone the phase diagram, in general, is using simulations to measure the free
energy of the structures. Even though different techniques to obtain the rel‐
ative free energy between two structures exist [381, 382, 403, 404, 405, 406],
they are not readily adaptable to compare the stability between the gyroid
and bilayer smectic phase. For example, the Widom’s test particle insertion
method [381, 382] is impractical for short‐ranged repulsive potentials, par‐
ticularly at the packing fractions of interest in this work. We also face some
challenges in integration methods, like Einstein [403] or thermodynamic
[404] integration schemes, where the free energy difference is determined by
a continuous transition between phases via a perturbative external potential.
For instance, accurate parametrisations of the bilayer phases are needed.22 A
common approach is also density functional theory [405, 406]. Here, how‐
ever, we refer to Chap. 7 where we will introduce density functional theory
and its applications to hard pear‐shaped particles in great detail.

5.1.4 Phase boundary between bilayer smectic/gyroid (k𝜃=2.4)

Additionally, systems of pears simulated at this phase boundary (or as close
to it as numerically possible) between the bilayer smectic and gyroid phases,
i.e. those with 𝑘 𝜃 = 2.4, cannot be unambiguously assigned to either phase
since both phase transition cycles (isotropic–smectic–solid and isotropic–
gyroid) are observed for different compression anddecompression sequences.
At this apparent transition region in terms of 𝑘 𝜃 between the smectic and gy‐
roid phases, some configurations even show long‐lived coexistence between
regions of parallel and curved bilayers. Here, however, we have to consider
that commensurability with the periodic boundary conditions might be a
subtle issue.

The coexistence structures of the lamellar and gyroid phase (see Fig. 5.7)
are reminiscent of the intermediate structures during the rearrangement
from an artificial bilayer smectic to the gyroid structure, which was investi‐
gated in Ref. [241]. Here, the pears form interconnected layers, such that two
leaflets are connecting each other by perforating through an intermediate bi‐
layer and thus, form a channel between the two leaflets. The structures can

2One idea is to use the nodal approximation of the gyroid (see Eq. (4.6)) as a parametrisation.
However, as the nodal approximation is not perfectly exact and the bilayer interdigitation
depth varies in terms of the Gaussian curvature (see Sec. 4.3.4), it is nontrivial to apply the
nodal approximation accurately. However, this approach might help not only to determine
the equilibrated state but can also lead to more accurate results for the gyroid unit cell size.
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Figure 5.7: Left: Representative configurations of 3040 pear‐shaped particles forming a per‐
forated smectic macrostructure at the phase transition between smectic and gyroid phase at
𝑘 𝜃 = 2.4 and 𝜌𝑔 = 0.56. Center: Only the position of the blunt ends are depicted by spheres.
Colour coding of particles is used to indicate clusters calculated based on the proximity of
the pear’s blunt ends. Right: The Scherk minimal surface which might be a good model for
this configuration.

also be compared to so‐called perforated lamella phases in di‐block copoly‐
mer systems [407, 408, 409]. Here different layers of the same monomer
type are linked by hexagonally arranged channels which create holes in the
domain of the opposite monomer type.

In mathematical terms, the coexistence structure is also reminiscent of
another bicontinuous minimal surface, the so‐called double Scherk surface
[410]. A variation of this surface, which has been introduced by Karcher
[411], the Scherk saddle tower has the same morphological features and
might be a good mathematical model to describe the pear‐shaped parti‐
cle structure. This hypothesis can be reinforced as large twist angle grain
boundaries between layered structures, causing similar perforations, are of‐
ten described by a Scherk surface in di‐block copolymers and smectic liquid
crystals [412, 413, 414, 415, 416, 417, 418]. For comparison, the pear‐system
and the Scherk saddle tower are depicted in Fig. 5.7.

5.1.5 Phase behaviour upon changes of particle shape

To investigate this co‐existence behaviour further and to investigate if the
Scherk‐like structure is indeed subject to commensurability effects, a sec‐
ond phase diagram is generated by performing simulation sequences with
changing 𝑘 𝜃 and constant 𝜌𝑔 (see Fig. 5.8). Even though this procedure of
changing the shape of particles is hardly possible for experiments on hard
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Figure 5.8: Phase diagram of hard pear‐shaped particles with 𝑘 = 3.0 obtained by increasing
(from smectic) and decreasing 𝑘 𝜃 at fixed global density 𝜌𝑔 for systems of 3040 particles in
a cubic simulation box. Grey regions between phases indicate parameter values for which
phase hysteresis is observed between the increasing and decreasing sequences of 𝑘 𝜃 . The
schematics above the graph indicate the cross‐sectional shape of the particles associatedwith
each 𝑘 𝜃 value. For the solid (dense) phases in Fig. 5.1 it is not possible to dynamically adapt
the particle shape.

particles, we follow this idea which is inspired by the “molecular shape con‐
cept” in lipid self‐assembly [419, 420]. In binary lipid‐water mixtures, many
facets of the phase diagram can be understood simply by the recognition
that changes in pressure, pH, salt concentration or temperature translate
to changes of the shape of the individual molecules. Recently also colloids
have been synthesised which can shift their shape by introducing different
chemical or light stimuli [421, 422].

Starting from smectic configurations with 𝑘 𝜃 = 2.0 the tapering parame‐
ter is increased by Δ𝑘 𝜃 = 0.1 steps until 𝑘 𝜃 = 6.0. In the MD simulations,
the tapering angle of the PHGOparticles is simply switched to the new value
due to the soft‐core WCA potential. In case of the MC simulation and the
hard‐core particle interactions, the transition from particles with lower 𝑘 𝜃 to
higher 𝑘 ′𝜃 is only accepted if no particles overlap according to the PHGO con‐
tact function. Otherwise, the simulations are continued for 1000 simulation
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5 The phase diagrams of single‐component pear systems

steps with 𝑘 𝜃 , before the change to 𝑘 ′𝜃 is attempted again. After 𝑘 𝜃 = 6.0
is reached, the tapering parameter is decreased again with the same tran‐
sition rules until the particles take their original shape. Note here that the
particles also change volume during the shape change such that the simu‐
lation box has to be adjusted accordingly to keep the global density constant.

The disposition of the phases is similar compared to the phase diagram
in Fig 5.1. This indicates that the gyroid phase is a robust liquid crystal
state within the PHGO particle system and not an artifect of the simulation
method. However, the grey area indicates major hysteresis effects between
the smectic/nematic and gyroid phase, which mainly reduce the parameter
space where the gyroid phase forms. The hysteresis effect is more domi‐
nant for higher densities, which suggests again that for these high densities
lamellar structures are similarly stable as the gyroid.

5.1.6 Comparison to phase behaviour of amphiphilic systems

Given that geometric theories exist for bicontinuous phase formation in
lipid/water [244, 423] and copolymer systems (strong segregation limit) [424],
we summarise our findings about the PHGO phase behaviour by comparing
the phase diagrams of lyotropic [50, 419], AB di‐block copolymer [188] and
PHGO particle systems (see Fig. 5.1, Fig. 5.8 and Fig. 5.9). It is apparent that
the phase diagrams exhibit both similarities and differences. As we already
mentioned in Sec. 4.3.4 the effective shape of amphiphilic particles can be
quantified by a shape parameter of the particles Steiner cell (see Sec. 4.3.4
and Eq. (4.8))

𝑠 =
𝑣

𝐴0𝑙
. (5.2)

The parameter 𝑣, 𝐴0 and 𝑙 denote the volume, base area and height of the
Steiner cell, respectively, which encapsulates themolecule (see Fig. 5.9where
we used the example of lipids). The shape parameter can be varied for ex‐
ample by controlling the volume fraction of the solvophilic and solvopho‐
bic parts, like the length fraction between the monomer chains in di‐block
copolymers.

For 𝑠 = 1 amphiphiles obtain a cylindrical shape and typically form lamella
phases similar to weakly tapered hard pear‐shaped particles. By decreasing 𝑠
and 𝑘 𝜃 , respectively, and making the particles more and more cone‐shaped,
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Figure 5.9: Left: The diagram of the typical phase behaviour of amphiphilic particles. The
diagram is plotted in terms of the shape parameter 𝑠 (see Eq. (5.2)) and the apolar volume
fraction of the molecules and recreated from Ref. [50]. Right: The concept of the shape pa‐
rameter is portrayed by the example of lipids.

all three systems first transition into the bicontinuous gyroid phase. Close to
𝑠 = 0, lipid/water and copolymer systems form cylindrical hexagonal phase
structures and eventually spherical micelles, whereas hard pear‐shaped par‐
ticles with small 𝑘 𝜃 generate smectic structures again, which are, as already
mentioned, characteristic for cylindrically shaped lipids and copolymers
with 𝑠 = 1 and 𝑓 = 0.5. Note here, however, that the molecular shape
for the hexagonal columnar phase is wedge‐like rather than cone‐like as for
the cubic phases. Thus it is just impossible for hard particles to make this
“shape‐transition”.

The major differences for small shape parameters can be explained by
the interdigitation mechanism of the pear‐shaped particles which we dis‐
cussed in Sec. 4.3.4. In this chapter, we identified that in the gyroid phase
the Steiner cells of the pear‐shaped particles, which lead to curved surface
structures, do not coincide with the Set‐Voronoi cells as the pears occupy
space in both channel domains. This is in contrast to lipid and di‐block
copolymer assemblies where this equivalence between the two cells is valid.
Hence, the shape parameter of pear‐shaped particle arrangements cannot
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be directly related to the shape of single particles but instead has to be ex‐
panded to an array of neighbouring pear colloids (see Fig. 4.15). This leads
us to the conclusion that also in the bilayer smectic phase the strongly ta‐
pered pear‐shaped particles within a bilayer collectively form Steiner cells
with a cylindrical outline. For weakly tapered pears, on the other hand, the
interdigitation breaks such that the Set‐Voronoi cells become a sufficient es‐
timate for 𝑠 again and the phase behaviour is consistent with Fig. 5.9. Conse‐
quently, the gyroid phase, where interdigitation introduces tapered Steiner
cells, is framed in Fig. 5.1 by smectic phases with collective (bilayer smectic)
and singular (monolayer smectic) cylindrical Steiner cells.

5.2 Phase diagram of the hard pear of revolutions
(HPR) system

After we created the phase diagram of the PHGO particle model, we put the
obtained phase diagram of Fig. 5.1 into perspective. In the following, wewant
to highlight especially the sensitivity of the special collective behaviour of
PHGO pears in terms of particle shape. On that account we perform further
simulations where the second approach to represent pear‐shaped particles
is applied, namely the HPR model. Here the contact criteria of the pears are
based on the overlap of triangulated surface meshes (see Sec. 2.2.1 for the
exact methodology). Thus a second reference phase diagram is determined
(see Fig. 5.10) next to the phase diagram of amphiphilic particles in Fig. 5.9.

The phase diagram is based onMonte Carlo simulations with 𝑁 = 400 and
𝑁 = 1600monodisperse HPR particles interacting via a hard‐core potential.
The simulation runs follow roughly the compression and decompression
protocol of Sec. 5.1. Hence, the boundary conditions of the cuboidal simula‐
tion box are set as periodic in all three directions. The tapering parameter
𝑘 𝜃 lies between 2.0 and 5.0 which corresponds to tapering angles between
28.1◦ and 11.4◦. The MC translation step and the rotation step are like for
the PHGO particles initially set as Δ𝑞,max = 0.015𝜎𝑤 and Δ𝑢,max = 0.015𝜎𝑤 ,
respectively, but have been adjusted in an equilibration phase to guarantee
an acceptance rate of roughly 50% for the displacement attempts.

We cannot use Molecular Dynamics to simulate the HPR systems as this
method is rather impractical. The contact of particles is determined numer‐
ically rather than analytically such that it turns out unfeasible to construct
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Figure 5.10:Phase diagramof hardHPRparticleswith 𝑘 = 3.0 obtained by compression (from
isotropic) and decompression at fixed tapering parameter 𝑘 𝜃 for systems of 400 and 1600 par‐
ticles in a cubic simulation box. Grey shaded regions indicate configurations which showcase
a high degree of local orientational order and basic features, which could lead to bilayer for‐
mations according to their pair‐correlation functions (see Fig. 5.13). However, this should not
be seen as a separate phase from the isotropic state. The schematics above the graph indicate
the cross‐sectional shape of the particles associated with each 𝑘 𝜃 value. The definitions of
the different pair‐correlation functions are decribed in Sec. 3.4.2 (see also sketch in Fig. 3.3).

a WCA soft‐shell potential and calculate inter‐particle forces. As a result,
some of the observables which were used to identify phases of the PHGO
pears are either not or hardly obtainable by MC simulations. On the one
hand, the hard‐core potential complicates the calculation of the excess pres‐
sure 𝑃ex. On the other hand, the diffusion 𝐷 cannot be extracted due to the
non‐dynamic nature of the MC sampling method. Therefore, we confine
ourselves to the nematic order parameter 𝑃2, the longitudinal and lateral
pair‐correlation functions and the clustering algorithm to determine possi‐
ble bilayer structures.

Every simulation starts from an initially crystalline arrangement of parti‐
cles at very low density, which is then slowly compressed to the 𝜌𝑔 = 0.44.
Subsequently, the systems are slowly compressed (see symbols in Fig. 5.10).
For each step of the sequence, the assembly is equilibrated for 2·106 steps and
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Figure 5.11:The nematic order parameter 𝑃2 during the compression of HPR particle systems
with 𝑁 = 400 for different tapering parameters 𝑘 𝜃 .

afterwards analysed for 1.8·107 steps. We chose the upper limit of 𝜌𝑔 = 0.63
for all compressions due to equilibration issues. At those high densities, the
mean square displacement of the individual pears indicates trapped parti‐
cles. Those particles hardly “travel” (diffuse) within the simulation box dur‐
ing simulation runs. However, we avoid the claim that this phenomenon is
an indicator of a solid state as we lack information about its diffusion. Thus,
solid phases are not drawn in the phase diagram. Afterwards, expansion
sequences are performed in an equivalent, but reverse, manner from each
𝜌𝑔 = 0.63 state. The resultant phase diagram is shown in Fig. 5.10.

Already at first sight, the phase diagram differs starkly from the phase
diagram of Fig. 5.1. It becomes apparent that the remarkable division into
three different regimes in terms of shape is absent. Independent of shape all
particles feature a similar phase behaviour. For low densities, the particles
adopt the expected isotropic phase. However, during the compression, the
pear‐shaped particles begin to globally align with the director of the system
and eventually transition into a nematic state (see nematic order parameter
in Fig. 5.11). A characteristic configuration of a nematic HPR assembly is pic‐
tured in Fig. 5.12. The influence of the tapering parameter 𝑘 𝜃 is manifested
in a shift of the transition density from the isotropic to the nematic phase.
A greater head‐tail asymmetry of the pear shape induces stabilisation of the
nematic order such that the transition occurs for larger densities. Also note
that the hysteresis effects are marginal compared to those observed in the
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HPR
Cluster Blunt end Nematic

0 0.2 0.4 0.6 0.8 1
|n·u𝑖 |

Isotropic
(2.0,0.58)

Nematic
(3.0,0.58)

Figure 5.12: Representative configurations of 1600HPR particles forming the locally ordered
isotropic (first row: 𝑘 𝜃 = 2.0, 𝜌𝑔 = 0.58) and nematic (second row: 𝑘 𝜃 = 3.0, 𝜌𝑔 = 0.58)
phases. The structures are illustrated in the cluster representation (first column) and the
blunt end representation (second column) where the colors indicate the cluster affiliation. In
the third column the particles are additionally colored according to their relative orientation
to the director n.

process of constructing Fig. 5.1. The hysteresis is not drawn in this phase
diagram consequently. Moreover, the transition line nicely coincides with
previous observations of the isotropic‐nematic transition for prolate ellip‐
soids with 𝑘 = 3 and 𝑘 𝜃→∞ (𝜌𝑖𝑛 = 0.541 [214, 425]).

As the nematic phase arches over all values of 𝑘 𝜃 it becomes evident that
HPR pears seem to be unable to form bilayer‐structures via self‐assembly:
Neither a plane bilayer smectic phase nor a warped bilayer gyroid phase is
not observed during any of the compression runs.

Even when the systems are initially prepared as an artificial smectic or
gyroid arrangement, the stabilisation of those phases turned out to be un‐
successful in obtaining an equilibrated bilayer configuration. Here the pre‐
constructed structures destabilise and transition into nematic configura‐
tions upon equilibration.
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Figure 5.13: The longitudinal pair‐correlation function 𝑔 ‖ (𝑟 ‖) (left column) and the lateral
pair‐correlation function 𝑔⊥ (𝑟⊥) (right column) of the isotropic (𝑘 𝜃 = 2.0:𝜌𝑔 = 0.58 and
𝑘 𝜃 = 3.5:𝜌𝑔 = 0.55) and nematic (𝑘 𝜃 = 2.0:𝜌𝑔 = 0.6 and 𝑘 𝜃 = 3.5:𝜌𝑔 = 0.58) in systems of
𝑁 = 400 HPR particle. The pair‐correlation functions are additionally weighted by the polar
order parameter 𝑃1 (second row) and the nematic order parameter 𝑃2 (third row).
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5.2 Phase diagram of the hard pear of revolutions (HPR) system

To analyse this nematic phase further, we look at the pair correlation func‐
tions shown in Fig. 5.13. The profiles of the nematic and the isotropic phase
close to the transition line exhibit both similarities and differences to the
liquid crystal phases of the PHGO pear systems in Fig. 5.4. The lateral pair‐
correlation functions 𝑔⊥(𝑟⊥) of the nematic phases of both pear models, for
example, produce similar plots, also comparable to the monolayer smec‐
tic of the PHGO model. The characteristic minor peak before the first major
peak, however, which have been attributed to interdigitating bilayer arrange‐
ments, is not present. Only for pears close to 𝑘 𝜃 = 2.0 this peak is implied
by a bump. Also the profiles of 𝑔⊥𝑃2 (𝑟

⊥) are akin (even if the alignment is
not as strong) to the not‐bilayer forming liquid crystal phases of the weakly
tapered PHGO pears.

The most significant difference in terms of lateral correlation, however,
is in the polarity of the neighbouring particles. For HPR pears the nearest
neighbours show basically no preference of parallel or anti‐parallel orienta‐
tion. The high degree of local polar order for PHGO pears is at best vaguely
reflected and largest for 𝑘 𝜃 < 2.5.

The plots of the longitudinal pair correlations 𝑔 ‖ (𝑟 ‖) in Fig. 5.13 give some
additional indications why no bilayer structures are obtained. The most no‐
ticeable one is the missing peak at 𝑟 ‖ = 0. This signifies that this particular
correlation is crucial for the formation of bilayer phases as it corresponds to
particles sitting side by side to another. All other peaks can be attributed to
their counterparts in the 𝑔 ‖ (𝑟 ‖)‐signature of the nematic/smectic phases of
the PHGO pears, but seem to be closer together. Furthermore, the weighted
functions indicate that the reference pears barely influence the polar prefer‐
ence of their neighbour’s orientation, not even longitudinal direction. On a
similar note, the local nematic order indicated by the minor peaks, even
though obviously present, is not as pronounced and long ranged in this
model, not to mention the double peaks, which can be observed for all liq‐
uid crystal phases in Fig. 5.4, but are not noticeable here.

Despite these distinctions, similarities can be determined as well. For
once, the pears tend to aggregate preferentially at the blunt ends (𝑟 ‖ < 0)
rather than the pointy end (𝑟 ‖ > 0) of other particles. This leads to the as‐
sumption that in principle the mechanism which brings the pears together
with their blunt ends to form clusters also exists in the HPRmodel. Unfortu‐
nately, the impact of this mechanism is not strong enough to indeed induce
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5 The phase diagrams of single‐component pear systems

the self‐assembly of bigger clusters (see cluster representation in Fig. 5.12).
More intriguing, however, is the observation that for highly tapered particles
𝑘 𝜃 < 2.5 the peaks of 𝑔 ‖ (𝑟 ‖) and 𝑔⊥𝑃2 (𝑟

⊥) split into two. This can be already
observed in the isotropic phase close to the phase transition. The areawithin
the systemwhich showcases this bifurcation is shaded in the phase diagram.
Thus, some of the basic conditions for bilayer formation are also met at least
for highly tapered HPR particles. Nevertheless, without additional features
to the contact function, those effects are too weak to produce a more com‐
plex phase behaviour than nematic.

5.3 Conclusion and outlook

In this chapter, we have described the phase behaviour of two pear‐shaped
particle systems (PHGO and HPR). Even though the underlying potentials
are very similar in shape and closely related the resulting phase diagrams
exhibit big differences.

First, we simulated and analysed systems of PHGO pear‐shaped particles
capable of forming the Ia3d gyroid phase. We have reproduced in various
ways the spontaneous formation of the gyroid phase and, consequently, con‐
firmed that attractive interactions are not necessary for the formation of this
structure and that the gyroid can be stabilised by purely entropic effects. The
phase diagram obtained here indicates that particles with a range of taper‐
ing parameters, corresponding to tapering angles of between 12.4◦ and 23.5◦,
are able to form the gyroid phase in various ways, which are summarised in
Table 5.1. However, here we only restricted ourself to pears with aspect ra‐
tio 𝑘 = 3, such that the parameter space is not fully exhausted. Hence, it is
certainly interesting to expand the phase diagram further by controlling the
aspect ratio. Some preliminary simulations have shown, for example, that
the gyroid phase can still be assembled for PHGO particles between 𝑘 = 2.75
(with 𝑘 𝜃 = 3) and 𝑘 = 3.5 (with 𝑘 𝜃 = 3). Globally orientationally ordered
phases have been obtained for PHGO pears as far as 𝑘 = 2.5 (𝑘 𝜃 = 3). Nev‐
ertheless, those systems should be investigated in more detail in the future.

The discussion of Sec. 4.3.4 has been continued as we could show that
the phase behaviour of the PHGO pear systems differs from those of lipids
and copolymers in terms of the shape parameters appropriate to particles
in a bilayer. In particular, we note that also the phase boundaries found
here for the gyroid are fundamentally different from those seen in many
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Pear model

full‐name abbrev.
Potential Sim. Protocol Gyr Ref.

Pear hard
Gaussian
overlap

PHGO
Eq. (2.17)

hard‐core
Eq. (2.6) MC

compression 3 Fig. 5.1

initial smectic 3 Fig. 4.3

shape‐change 3 Fig. 5.8

WCA
Eq. (2.20) MD

compression 3 Fig. 5.1

initial smectic 3 Fig. 4.3

shape‐change 3 Fig. 5.8

Hard pear
of

revolution

HPR
Eq. (2.8)

hard‐core
Eq. (2.5) MC

compression 7? Fig. 5.10

initial smectic 7

initial gyroid 7?

Table 5.1: Summary of the ability of different pear potentials to form double gyroid phases.
The sign 7? indicates that in this case no equilibrated gyroid has formed, but features which
are characteristic to bilayers have been found.

experimental systems. Conventionally, the gyroid is sandwiched between
planar lamellar and hexagonal phases, and its stability is argued in terms of
curvature elasticities. This, though, is difficult to reconcile with the phase
diagram of Fig. 5.1, in which the gyroid borders isotropic and nematic flu‐
ids for which there is no curvature elasticity. A possible explanation for
this is offered by recent arguments from the Selinger group [397] that suf‐
ficiently strong bulk splay‐bend coupling between polar and orientational
degrees of freedom can destabilise the nematic concerning supra‐molecular
modulations (i.e. periodic structures). These arguments, in turn, hark back
to the classic paper of Dozov [426] in which the central ideas of the twist‐
bend nematic were set out. Given that our hard pear systems clearly possess
steric coupling between molecular‐scale splay and bend, there appears to be
a strong argument that the gyroid region observed here is indeed a realisa‐
tion of a modulated splay‐bend phase predicted by Dozov and Selinger.

Moreover, we generated a second phase diagram based on particles inter‐
acting according to strict hard‐core interactions. Here we observed only a
rudimentary phase behaviour in comparison to the PHGO particles. For all
particle shapes analysed (i.e. all 𝑘 𝜃) the systems form nematic liquid crystal
phases, where more highly tapered particles visibly destabilise the nematic
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5 The phase diagrams of single‐component pear systems

order and push the transition to higher densities. Both the gyroid and the
bilayer smectic phase vanish (see Table 5.1). According to these observations
the small differences in the contact function, which can easily, but mistak‐
enly, be considered negligible, have a major impact on the self‐assembly of
pear‐shaped particles. Even though most features of a pear (like aspect ra‐
tio and tapering parameter) are present in both models, the PHGO particles
have to offer additional morphological properties, to which the stability of
the gyroid phase is ascribed. This is also supported by the fact that only the
nematic phase is obtained which also have been found for PHGO pears with
small tapering angles. In this regime of large 𝑘 𝜃 the two pear models differ
the least in terms of contact functions (see Fig. 2.8). Hence, their collective
behaviours are very similar. All these results lead to the assumption that
the formation of bilayer structures, including the double gyroid phase, is
due to the special orientation dependency of the PHGO contact function.
Especially the self‐non‐additive features in reference to the pear shape (see
Sec. 2.2.1) seem to magnify the spontaneous placement of pears side to side.
This mechanism would naturally lead to sheets, which then interdigitate
due to the pointy ends of the individual particles. However, to confirm this
hypothesis, we have to examine the next‐neighbour interactions of the two
pear‐shaped particle models, which will be the main topic of Chap. 6.

Despite the differences in phase behaviour, the self‐assembly of someHPR
particles with small 𝑘 𝜃 close to the phase transition showcases also interest‐
ing properties, which were attributed as necessary precursors to the forma‐
tion of bilayers. Therefore, it is conceivable that the HPR particles might
be able to form similar phases like the PHGO pears, if we, for instance, add
suitable changes to the pear‐shape or introduce non‐additivity to the HPR
contact function. These particle modifications also have the potential to
be utilised as a regulating mechanism to control the coupling strength be‐
tween the blunt ends. This might allow us to create a model for pear‐shaped
particles, based on those indicated by the grey area in Fig. 5.10, with an inter‐
mediate degree of blunt end aggregation. These particles could potentially
form phases with a short‐range order, sufficient to display a bicontinuous
network, but also displays with disorder over larger length scales. Those dis‐
ordered cubic phases are known as L3 sponge phases [371] and are formed
typically in lipid‐watermixtures by swelling the cubic phases due to the pres‐
ence of additives [165, 427, 428, 429, 430, 431, 432, 433, 434].
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As a closing note, we want to mention here that it is difficult to judge
which of the two pear models represents the interactions of pear‐shaped
particles, which might be synthesised in the future, better. For example,
it is well established that colloids in experimental systems are never truly
hard and the interparticle potential always inherits some degree of softness
[207, 279, 280, 281]. Therefore, the potentials we used here – both the PHGO
and the HPR potentials – have to be considered as approximations of a real
pear‐shaped colloid. Additionally, pear‐shaped particles have not been syn‐
thesised yet. In principle, many different strategies to produce nanopar‐
ticles with aspherical shapes have been developed like methods via tem‐
plates [435, 436, 437], particle swelling and phase separation [226, 438, 439],
seeded emulsion polymerisation [440, 441, 442, 443], controlled deformation
of spherical colloids [235, 444, 445], particle confinement [446] or lithogra‐
phy [447, 448, 449]. However, many of these techniques are still limited in
either their customizability of the particle shape, rely on colloids as a basic
shape or cannot bemass‐produced easily. These difficulties seem to be exac‐
erbated by the big contrast of the two phase diagrams in Fig. 5.1 and Fig. 5.10,
which highlights that in both experiments and simulations even small nu‐
ances of the interaction profiles of molecules have to be taken into account
to predict the right phase behaviour. Also the composite sphere method,
where complexly shaped particles are modelled from multiple sphere con‐
stituents, are known to faces issues with inaccuracies due to the degraded
smoothness of the particle surface [262, 263, 264].
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6 Depletion interactions between pears in a
hard sphere fluid

“Entropy is the price of structure.”
– Ilya Prigogine

This chapter analyses depletion effects that enable further contrast between
the two pear‐shaped particle models – the PHGO and HPR pear‐shaped parti‐
cles. After a brief introduction to depletion mechanisms and excluded volume
computations for colloidal systems, we investigate the depletion attraction for
both pear models. Furthermore, we compare the favourable two pear‐shaped
particle arrangements in terms of excluded volume, which are determined by
MC simulations of PHGO and HPR particles in a pool of a hard spherical sol‐
vent, with the numerically obtained and, according to the Bézier‐curv‐curvee
representation of the pear‐shape, ideal configurations. While the HPR model
behaves as expected from the analysis of excluded volumes, the PHGO model
showcases a preference for splay between neighbouring particles which can be
attributed to the non‐additive characteristics of the PHGO contact function.
Lastly, we propose a third pear‐shaped particle model, the non‐additive hard
pear of revolution (NAHPR) model, which is based on the HPRmodel but also
features non‐additive traits to copy the depletion behaviour of the PHGO par‐
ticles.

The previous chapter showed that minor discrepancies between contact
profiles of the PHGO and the HPR particles lead to significant differences in
the appearance of mesophases, most notably the presence of bilayer and
gyroid phases in PHGO pears and their absence in the HPR model (see
Chap. 5). However, until now only single‐component configurations have
been considered. The distinct mannerisms in the self‐assembly of one‐
component systems is a clear indicator that the two pear‐shaped particle
models have to be distinguished. Nevertheless, the exact nature of the dif‐
ference on a microscopical level and a specific reason why the phase dia‐
grams differ for the two contact functions is not yet clear, and is the subject
of this chapter.
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In all liquid crystal phases, obtained both for the PHGO and the HPR par‐
ticlemodel, the arrangement of each pear is highly affected by amultitude of
next nearest neighbours. This elaborate interplay of particles coupled with
the aspherical pear‐shape, which features a significant degree of complex‐
ity, makes a more detailed analysis of the direct influence between adjacent
particles impracticable. Hence, we reduce the complexity of our simula‐
tions in the following and shift our focus to systems which encapsulate the
fundamental features of pure two particle interactions. In particular, we are
interested in the specific depletion interactions of the pear‐shaped particles.
Within a sea of hard sphere particles acting as a solvent, depletion causes
an effective attraction between two objects. Moreover, this can be seen as
an initial step to add a second “solvent” component to the pure‐pear liquid
crystal phases in order to mimic lipid‐water systems in Chap. 8.

This chapter is structured as follows: We first discuss the physics of de‐
pletion phenomena and the historical background of depletion interactions
in Sec. 6.1. Here, however, we focus mainly on the central physical concepts.
For a more detailed description of depletion, we refer to Ref. [450]. Then in
Sec. 6.2 the optimal arrangement of pears in terms of their excluded volume
is identified using numerical tools. Next (Sec. 6.3) we perform MC simula‐
tions of two large pear‐shaped particles within a solution of smaller hard
spheres; This is done for both the PHGO and HPR particle models to com‐
pare the computational results with the previous predictions of the ideal
excluded volume, obtained by the numerical technique. These allow us to
pinpoint the specific differences between the two models more efficiently
and to make better assumptions why the PHGO particle favours the forma‐
tion of bilayer phases like the bilayer smectic or gyroid phase in contrast to
the HPR particle. Finally in Sec. 6.4, we will give a short outlook, how bilayer
phases could possibly be stabilised in monodisperse systems based on the
HPR interactions by introducing non‐additivity to the contact function.

6.1 Basic concept of entropic forces

6.1.1 Depletion interaction of spherical colloids

Depletion describes the effect of small solvent particles, like polymers or
small hard spheres, on the self‐assembly of larger colloids. Already in the
1950s Asakura and Oosawa [451, 452] predicted an effective attraction be‐
tween two plates and between two hard‐core spheres within a diluted system
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of smaller polymers, which was later also revisited by Vrij [453]. Moreover,
they were able to relate this attractive force to a purely entropically driven
effect similar to the entropic self‐assembly of colloids into liquid crystal
phases. In their calculations, the polymer depletants are modelled as an
ideal gas of spheres, which, however, interact via a hard‐core potential with
the larger colloids. This model of the solvent is also referred to as the pen‐
etrable hard spheres model [450, 454]. Applying these approximations, the
main physical process behind depletion can be simplified.

The free energy 𝐹 of the system is predominantly governed by the degrees
of freedom of the polymer particles. If the number of colloids 𝑁coll is much
smaller than the number of solvent particles 𝑁depl, that is 𝑁coll�𝑁depl, the
total free energy can be approximated purely by the ideal gas free energy of
the depletant (see Eq. (3.13)) [451, 455]

𝐹depl = 𝑁depl ln
(
𝑁depl𝜆

3

𝑉 ′

)
− 𝑁depl. (6.1)

with the thermal de Broglie wavelength 𝜆 =
√
ℎ2𝛽
2𝜋𝑚 of particles with mass

𝑚. Furthermore, 𝑉 ′ is the volume which is available to the ideal gas. As the
solvent cannot penetrate the large colloids we can identify 𝑉 ′ = 𝑉 − 𝑉excl,
where 𝑉 is the volume of the system and 𝑉excl is the volume, from which the
excluded to the solvent by the colloids. Inserting this into Eq. (6.1) we get

𝐹depl = 𝑁depl ln
(
𝑁depl𝜆

3

𝑉 −𝑉excl

)
− 𝑁depl

= 𝑁depl ·
[
ln

(
𝑁depl𝜆

3

𝑉

)
− 1

]
+
𝑁depl

𝑉
𝑉excl + O

(
𝑉2excl
𝑉2

)
.

(6.2)

To find the minimum of the global free energy, which is associated with
its equilibrium, the system practically minimises 𝐹depl as the contribution
of the large colloids and, hence, their degrees of freedom can be neglected.
The dominance of the solvent particles implies that the particle configura‐
tion tries to decrease 𝑉excl as much as possible, which corresponds to max‐
imising the available space for the solvent spheres. The excluded volume of
a single sphere is composed of its volume plus the volume of a thin film or
“envelope” around the particle with thickness 𝑟depl (radius of depletants) as
depicted in Fig. 6.1. When additional colloids are introduced, their collective
excluded volume depends on the position of the colloidal particles. If the
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Figure 6.1: The concept of depletion is sketched by the example of two hard‐core spheri‐
cal colloids (left), three hard‐core spherical colloids (centre) and two hard‐core pear‐shaped
colloids (right) dissolved in a liquid of smaller hard spheres (indicated in light blue). The
system is driven mainly by the entropy of the solvent particles and maximises the free energy
by minimising the excluded volume of the bigger colloidal particles. The excluded volume
cannot be penetrated by the depletant due to the presence of the colloid (indicated by the
dashed line). Thus, the larger objects pack together such that their excluded volumes max‐
imally overlap (indicated in orange) and more space is provided for the depletants. Overall
this mechanism can be interpreted as an effective, entropically driven attraction between the
colloids.

colloidal spheres are separated from each other by a distance greater than
the solvent diameter the excluded volume is merely a multiple of the ex‐
cluded volumes of the single spheres. However, if the colloids are within
each other’s vicinities, such that no solvent particle can be placed between
them, the individual excluded volumes overlap and decrease the overall ex‐
cluded volume. Hence, the entropy maximisation leads to the large colloids
coming together as close as possible and form tight clusters (see Fig. 6.1).

This behaviour can be interpreted as an effective short‐range attraction
in addition to the hard‐core potential also known as the Asakura‐Oosawa
potential [450, 451]. Note that the attraction results from a purely repulsive
system and can then be categorised as an entropic force. The strength of
the entropic force can be related to the osmotic pressure which is acting on
the colloidal cluster by the depletant. Later the Asakura‐Oosawa potential
has been improved significantly by extending the theory to finite densities
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6.1 Basic concept of entropic forces

[456, 457] and confirmed using computational simulations [458, 459]. In
this improvements also an entropically driven repulsion was determined for
high solvent packing fractions [457, 458, 459, 460]. In this regime, the sol‐
vent particles form shells around the colloid leading to effective repulsive
forces. The higher order shells around the colloids even cause the depletion
forces to oscillate [461, 462, 463].

Even though the initial depletion model by Asakura and Oosawa appears
to reduce the problem to a very simplified system, the same entropic concept
could be applied to other depletion theories which cover more realistic de‐
pletantmodels. Other theories approach polymers for example based on the
ideal chain‐model [464, 465], as hard‐core spheres [456, 459, 462], as hard
rods [466, 467, 468] or as hard disks [469, 470]. Note here, that depletion
has been also predicted in classical density functional theory [462, 471, 472]
(for more information about density functional theory see also Chap. 7).

The first successful attempt to measure depletion forces was made by
Evans and Needham, who measured the strength of the attraction between
two bilayer membranes in a solution of macromolecules [473]. Later also the
second part of the Asakura‐Oosawa theory was confirmed experimentally
by directly determining the attractive forces between two large hard spheres
[461]. However, already prior to the direct measurements, many phenom‐
ena in systems of hard spherical colloids have been successfully explained
by depletion. For example, the ordering of spheres in a solution of polymers
close to a hard wall could be attributed to depletion [474, 475, 476]. Also, the
demixing of binary hard sphere mixtures into an ordered crystalline cluster
of large spheres and a fluid of the small spherical solvent is a result of the
excluded volume effects [477, 478, 479, 480, 481, 482, 483].

6.1.2 The effect of colloid shape on depletion

Similar to other self‐assembly processes, the shape of themolecules/colloids
naturally impacts how a pair of two colloidal particles in a solvent eventually
arranges under the influence of depletion. By changing colloids from a sim‐
ple sphere to objects with more complicated shapes, the excluded volume
does not only depend on the separation but also the relative orientation of
the particles (see Fig. 6.1). Consequently, depletion does not only induce
convergence between colloids but also an orientational rearrangement of
the particles. For instance, it has been shown that by adding dimples to one
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Figure 6.2: (a) The lock‐and‐keymechanism in colloidal systems is sketched for hard spheres
with concavities within a hard sphere solvent (indicated in light blue). The depletion forces
try to minimise the excluded volume (indicated by the dashed line) of the lock (colloids with
concavities) and key (colloids without concavities) particles. Hence, depletion leads to the
key objects anchoring at the fitting dimples of the lock particles. (b) The time sequence of
an experimental system of spherical colloids with and without dimples. The green and red
arrows indicate a successful and unsuccessful lock‐key binding via depletion, respectively.
Scale bar: 2 𝜇m. (b) is adapted with permission from [484].

of the spheres the other colloid attaches at this concavity [484, 485]. This
“lock‐and‐key” mechanism can be used as a tool to control the depletion
of particles (see Fig. 6.2). Another sort of directionality can be introduced
by creating elongated colloids. At a wall, hard prolate ellipsoids [486, 487]
and spherocylinders [488] align with their long axis along the flat inter‐
face due to depletion. Moreover, it is known theoretically [489, 490] and
from experiments [491, 492] that rod‐like colloids self‐assemble into clus‐
ters with nematic order when non‐absorbing polymers are added. Excluded
volumemechanisms provide access to rich phase behaviours for variousmix‐
tures of hard aspherical particles and depletant particles [489, 493, 494, 495,
496, 497, 498], including fascinating effects like depletion induced shape‐
selective separation in colloidal mixtures by the addition of non‐adsorbing
polymers [499, 500, 501, 502].

Depletion also takes a fundamental role in more complex biological or
technological settings, like providing beneficial conditions for polymer crys‐
tallisation [503, 504] or describing the physics within the cytoplasm of cells.
In the dense and crowded environments of cells [505, 506, 507] themolecular
conformations of proteins and othermacromolecules are not only influenced
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6.2 Excluded volume of two pear shaped particles

by steric interactions but also partially driven by the excluded volume of
the molecule [508, 509, 510]. In biology those effects are mostly known
as “crowding” [508, 511, 512, 513, 514]. Prime examples are the influence
of crowding agents on protein folding [513, 515, 516], the stabilisation of
helicoidal structures due to excluded volume arguments [517, 518] or the
bundling of fibres ormicrotubes by introducing polymers [519, 520]. The de‐
pletion interactions are known to affect biochemical reactions [521, 522, 523]
and dynamical properties [524, 525, 526] within cell systems due to its im‐
pact on the molecular configurations. It is even argued that the interactions
caused by crowding are strong enough to alter observations between in vivo
and in vitro experiments, where for the latter the crowded environments
tend to be neglected often [514, 527, 528, 529].

6.2 Excluded volume of two pear shaped particles

Herewe performnumerical calculations to predict the ideal particle arrange‐
ment of two pear‐shaped particles. For rotationally symmetric particles like
pears defined by Bézier‐curves, three degrees of freedom have to be consid‐
ered in addition to the particle separation to define a specific constellation
between two pears. Two of them can be dedicated to the relative orientations
of the particles u and v. The last one relates to the flexibility to select the
contact point 𝑝𝑐 on the surface of one colloid, in the case both particles are
in touch and the separation is 0. The choices of u, v and 𝑝𝑐, automatically
determine the contact point on the surface of the other object. Theoreti‐
cally, we are able to sweep the whole configurational space of the two‐pear‐
depletion‐problem and identify the configuration with the largest excluded
volume overlap. The most important steps of the used sampling algorithm
are both sketched in Fig. 6.3 and itemised below:

1. In the first step, an initial arrangement of two pear‐shaped particles
is chosen. We only consider arrangements where the two pears are in
contact, as those configurations provide the minimal excluded volume
for convex particles in terms of separation.

2. Afterwards, the surfaces of the particles are triangulated (𝐵1 and 𝐵2).
The same method is used for creating the meshes for the HPR model
(see Sec. 2.2.1).
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Step 1+2:

Surface meshes

𝐵2

𝐵1

Step 3:
Parallel surface
construction

𝐵′
2

𝐵′
1

Step 4:
Excluded volume

merging

𝑉excl

Figure 6.3: The main steps of the algorithm to predict the ideal two pear‐shaped particle
arrangement in terms of excluded volume. In the first and second step (left) a configuration
is chosen, and the surface meshes 𝐵1 and 𝐵2 of the pear‐shaped particles are created. In
the third step (centre) the individual excluded volumes of the pears 𝐵′

1
and 𝐵′

2
are created

by constructing the parallel surface of 𝐵1 and 𝐵2. Afterwards, (right) the two meshes are
merged and the total excluded volume𝑉excl is computed. The steps are repeated until enough
configurations are sampled.

3. In the next step, the parallel surfaces of the triangulations are gener‐
ated. The construction of the parallel surface was already introduced
in Sec. 4.3.4 (more specifically Eq. (4.9)), where the vertices of the tri‐
angulation are translated in normal direction by 𝑟depl. The resulting
new meshes 𝐵′

1(𝑟depl) and 𝐵′
2(𝑟depl) correspond to the interface sep‐

arating the impenetrable and available space of virtual hard spheres
with radius 𝑟depl caused by the first and second pear, respectively.

4. Subsequently, 𝐵′
1(𝑟depl) and 𝐵′

2(𝑟depl) are merged to calculate the col‐
lective excluded volume defined by 𝑉excl(𝑟depl) = 𝐵′

1(𝑟depl) ∪ 𝐵′
2(𝑟depl).

5. Another configuration, which has not been observed yet, is chosen and
the algorithm returns to step 2. This procedure is repeated until the
configuration space is sampled sufficiently densely.

In the following this algorithm is applied to pears with aspect ratio 𝑘 = 3
and tapering parameter 𝑘 𝜃 = 3.8, which, as we showed earlier, lie well within
the gyroid phase for the PHGO model (see Fig. 5.1) but does not form cubic
phases for the HPR‐model as indicated in Fig. 5.10. Moreover, we use 𝑟depl =
0.31𝜎𝑤 , which corresponds to spheres with 𝑉sph = 0.08·𝑉pear. The computa‐
tions are performed with the 3D animation software tool Houdini [530].
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Figure 6.4: The excluded volume of two pear‐shaped particles with 𝑘 = 3, 𝑘 𝜃 = 3.8 and
𝑟depl = 0.31𝜎𝑤 in relation to the relative orientation of the pears on the unit sphere. The
contact point 𝑝𝑐 is fixed for the reference pear and chosen such that the configuration with
the global minimum can be adopted. In the centre (c), the orientation of the free pear v is
given in spherical coordinates dependent on the orientation of the reference pear u and the
direction towards 𝑝𝑐 u⊥

1
. On the right, the unit sphere is viewed from the top (d), bottom (e)

and side (f) perspective. On the left (a)+(b) two exemplary configurations are shown. The
locations of their corresponding orientations v1 and v2 on the unit sphere are indicated.

We first show that the three‐dimensional excluded volume problem can
be narrowed down to its two‐dimensional counterpart to sample the con‐
figuration space as efficiently as possible. In more mathematical terms, we
only consider arrangements of pears where the orientation vectors of the
two pears u and v and their relative position vector R are linearly depen‐
dent. Only those positions are in line to find the ideal placement of pears. It
is somewhat intuitive that, due to the pear’s rotational symmetry, the con‐
figuration which occupies the least amount of space falls into the category
of those linearly dependent arrangements rather than of asymmetric con‐
figurations. Moreover, any expansions of the excluded volume in the form
of dilatations into the third dimension (like those indicated in Fig. 6.3) can
be prevented by restricting the particles to a plane. This guess is confirmed
by computing the excluded volume for different relative orientations with a
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6 Depletion interactions between pears in a hard sphere fluid

fixed contact point 𝑝𝑐 of one of the pears as plotted in Fig. 6.4c. Here the
pear with constant 𝑝𝑐 acts as a reference (see Fig. 6.4a+b) such that v can be
written in spherical coordinates with respect to the frame defined by u and
𝑝𝑐. The azimuthal angle 𝜙 = 0 of the spherical coordinate system is defined
by the direction from the contact point 𝑝𝑐 to the centre of the reference
pear. For all the tested values of 𝑝𝑐, the extremal values in 𝑉excl, and hence
both its global maximum and minimum, are attained by linearly dependent
configurations, that is where the polar angle of v is either 𝜙 = 0 or 𝜙 = 𝜋.

To reduce the configuration domain even further, we can utilise another
argument about the symmetry of the system. Specifically, the contact, which
leads to the maximal or minimal excluded volume, has to be at the same
point on both pear surfaces as the choice of the reference pear is arbitrary.
Otherwise, the system would have two solutions with the same relative ori‐
entations, which is not possible for convex particles. Overall this leaves us
with a sampling domain which practically only depends on one degree of
freedom, namely on the shared 𝑝𝑐. By adding the constraint of linearly de‐
pendent orientations with 𝜙 = 0/𝜙 = 𝜋 the polar angle, 𝜃 is restricted to
maximally two possible orientations. The excluded volume calculations for
the “roll” and “slide” sampling of the different contact points 𝑝𝑐 are plotted
in Fig. 6.5.

• Roll route: The particles start froman antiparallel configuration, when
the pears touch with their blunt ends, pass through a parallel align‐
ment next to each other and eventually end up antiparallel againwhere
their pointy ends meet. This sampling can be interpreted as one pear
is rolled over the other.

• Slide route: During the ”slide” sampling the pears are perfectly an‐
tiparallel for all 𝑝𝑐 which resembles a slide of one pear along the sur‐
face of the other.

Hence, the duality of 𝜃 is covered by those two computational pathways. The
contact 𝑝𝑐 is given by the angle 𝛽 between u and the normal vector into the
pear at 𝑝𝑐.

Interestingly, the different paths reveal two distinguishable relative posi‐
tions at the same contact point 𝑝𝑐 = 𝑝𝑐, which both can be associated with
the global minimum of the excluded volume 𝑉excl. In one solution the pears
are placed side‐by‐side and oriented perfectly antiparallel towards one an‐
other: u · v = −1 (see Fig. 6.5). The minimum, however, does not occur for
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Figure 6.5: The excluded volume of two pear‐shaped particles with 𝑘 = 3, 𝑘 𝜃 = 3.8 and
𝑟depl = 0.31𝜎𝑤 along the “roll” (blue) and “slide” (red) route, where the particles share the
same contact point 𝑝𝑐 , in terms of the angle 𝛽 between the orientation of the pears and
the normal direction into the pear at 𝑝𝑐 . Both sampling pathways are sketched above. The
plots show a minimum of the same value which can be identified as the global minimum of
the system. The corresponding optimal configurations are highlighted in the small coloured
boxes.

𝛽 = 𝜋
2 when the pears are at the same height. The particles are rather shifted

towards their blunt ends by a small distance. The second ideal configura‐
tion exists due to the broken inversion symmetry of the pear‐shape and is
found when the two pears point roughly in the same general direction (see
Fig. 6.5). However, here the colloids are not perfectly aligned but slightly
tilted towards each other. This tilt also becomes apparent by looking at
the excluded volume plot of different orientations at 𝑝𝑐 in Fig. 6.4d–f. The
top, bottom and especially side view of the unit‐sphere clearly show that the
minimum at the northern hemisphere is shifted away from the north pole.
The tilt can be related directly to the pear‐shape. In particular, the angle be‐
tween the pear‐shaped solids is identified as their tapering angle of 𝜃𝑘 = 15◦.
Hence, 𝜃𝑘 also defines the shift in the antiparallel domain, as both optimal
configurations are attained for 𝑝𝑐.
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6 Depletion interactions between pears in a hard sphere fluid

Furthermore, the computations show that configurations, where the blunt
ends touch (𝛽 < 𝜋

2 in Fig. 6.5), tend to be often more favourable than ar‐
rangements where the pears come together with their pointy ends (𝛽 > 𝜋

2 ).
Also in Fig. 6.4c a similar observation can be made. If the particle is ori‐
ented away from the reference pear and comes in contact with the blunt
end, the excluded volume is smaller than if the pear points directly towards
𝑝𝑐. This general behaviour indicates that during the rearrangement of in‐
version asymmetric particles from a separated state due to depletion inter‐
actions the colloids are likely to first approach each other with their bigger
ends before eventually equilibrating into the most compact formation. This
effective blunt end attraction suggests that even the hard HPR pears should
have a tendency to cluster with their blunt ends. However, for HPR particles
the mechanism seems to be weaker than the tendency in the PHGO model,
and not strong enough to lead to equilibrated blunt‐end‐clustering as we
showed in Sec. 5.2.

6.3 Monte Carlo simulations of depletion effects of
pear‐shaped particles

Having determined the most favourable conformations of pairs of pear‐
shaped particles in regards to their excluded volume, we compare the com‐
putational predictions to results obtained by computer simulations. Our
goal, in particular, to replicate the behaviour of pear‐shaped colloids due to
depletion and, moreover, to study if the pears indeed prefer the states cal‐
culated in Sec. 6.2.

One very successful theoretical approach to describe depletion is density
functional theory (DFT) which is discussed in more detail in Chap. 7. Roth
introduced a so‐called “insertion approach” [462, 531] within DFT, where the
depletion potential is calculated from the solvent density distribution close
to one fixed colloid by insertion of a second colloidal particle and use of the
potential distribution theorem [532]. The interactions in a mixture of hard
spheres [462], a system of a spherocylinder close to a hard wall [488], and
a mixture of aspherical, but inversion symmetric particles [531] have been
derived with this ansatz. Also, other theories have been applied to calcu‐
late depletion interactions [458, 459, 533] but have shown to be less efficient
as every single configuration has to be treated individually. However, all
those theoretical approaches only cover a set of particles with simple shapes
and have not been applied to pear‐shaped particles prior to this thesis. This
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6.3 MC simulations of depletion effects of pear‐shaped particles

difficulty is enhanced even more as we would have to develop a functional of
orientational‐dependent contact functions like for PHGO particles. We will
derive a density functional for hard pear‐shaped particles later in Sec. 7.2,
such that we might be able to implement a theoretical description of the
pear‐shaped particle depletion based on DFT in the future.

Alternatively, depletion interactions have been obtainedwithMonte Carlo
simulation techniques. A typical procedure to calculate the depletion forces
between various particles is the “acceptance” approach where the free ener‐
gies between two different configuration states are compared. During these
simulations, the positions and orientations of both colloids are fixed, and
only the hard sphere solvent is displaced in the process of the Monte Carlo
step. Finally, the free energy difference between two states can be related to
the acceptance rate to jump fromone colloid particle’s relative position to the
other and vice versa without causing particles to overlap [292, 487, 534, 535].
This procedure has been advanced using Wang‐Landau Monte Carlo ap‐
proaches [536, 537, 538, 539]. Also, a hybrid of simulation and DFT has been
suggested [540]. Those approaches are, however, very complicated for the
pear shape (in case of the hybrid approach) or very time inefficient, as for
every configuration state a separate MC run has to be performed in the ac‐
ceptance approach. Combining these issues with the already computation‐
ally demanding overlap check between two meshes for the HPR particles
and hard spheres (see Sec. 2.2.1), the mentioned techniques are all impracti‐
cable. However, in general, we are not necessarily interested in the specific
free energy‐calculations of the different states but merely want to clarify the
distinctions between the HPR and PHGO model. Therefore, the question of
depletion is tackled by applying Monte‐Carlo simulations in the following
and more straightforward fashion.

6.3.1 Depletion interactions between HPR particles

Monte Carlo simulations are performed on systems with 𝑁pear = 2 hard‐
core pear‐shaped particles within a solvent, which is approximated by a large
number 𝑁sph = 1498 of surrounding smaller hard spheres, within a cubic
box with periodic boundary conditions in all three dimensions. The aspect
ratio 𝑘 = 3 and tapering parameter 𝑘 𝜃 = 3.8 of the pear‐shaped particles
are chosen to easily compare the simulation results with the calculations
of Fig. 6.4. For the same reason the sphere radii of the solvent 𝑟depl is set
to 0.31𝜎𝑤 , which corresponds to the volume ratio between the spheres and
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Figure 6.6: Representative progressions of the separation 𝑅 of two pear‐shaped particles
(red: HPR, blue: PHGO, orange: NAHPR.) in a sea of 1498 hard spheres, acting as a solvent
during the Monte‐Carlo simulations. The simulations are performed at a global density of
𝜌𝑔 = 0.45. All models show an effective attraction into the zone of influence induced by
depletion effects. The shaded area approximates this zone of influence where the particles
can be considered in contact.

pears 𝑣 = 𝑉depl
𝑉pear

= 0.08. An acceptance rate of roughly 50% has been achieved
by setting the maximal translation Δ𝑞,max = 0.085𝜎𝑤 and the maximal ori‐
entational displacement Δ𝑢,max = 0.085𝜎𝑤 per step. The greater number of
depletants assures that the simulations are not affected by the boundary con‐
ditions and the system can indeed be interpreted as two pear colloids within
a sea of a hard sphere solvent. Furthermore, the sphere size is small enough
to see depletion interactions between the particles occurring at higher den‐
sities. All sets are performed in the 𝑁𝑉𝑇‐ensemble starting from different
diluted initial states at

𝜌𝑔 =
𝑁pear·𝑉pear + 𝑁sph·𝑉sph

𝑉box
= 0.1. (6.3)

After a sequence of compressions to the final density 𝜌𝑔 = 0.45 the system
is studied for 5.0·106 steps.

We first simulateHPRpears in a hard sphere fluid. Aswe performMC sim‐
ulations, we can use the hard sphere‐pear interactions based on the sampled
Bézier‐contour as described in Sec. 2.1. For every simulation run, the en‐
tropic depletion attraction between the pear‐particles can be noticed when
the colloids are in each other’s vicinity, which means that their excluded
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6.3 MC simulations of depletion effects of pear‐shaped particles

volumes overlap. More precisely, the particles stay together for a consider‐
able number of MC steps (see Fig. 6.6), which leads to the conclusion that
the system indeed favours the particles coming in contact. However, the
entropic attraction seems to be short range and rather weak. This can be
seen in Fig. 6.6, where the particles often separate again from a nearby con‐
figuration after some MC steps before they typically approach their zone of
influence again. Here, we have to mention once more that this “approach”
is not dynamic. Nevertheless, the preferred sampling of close pear arrange‐
ments is a strong indication for depletion interactions.

Even though the particles are affected by the presence of the second col‐
loid, the determination of the relative arrangements of the colloid pair faces
some difficulties. The main issue which has to be overcome is poor statis‐
tics. As we are studying a two‐particle problem, it is hardly feasible to gather
enough data for a detailed combined analysis of the possible states due to
computational time constraints. Therefore, we decouple the degrees of free‐
dom and only investigate one relative parameter at a time. In Fig. 6.7a the
relative polar angle between two close HPR particles is plotted. For these
plots, only configurations are considered if the excluded volumes overlap.
This ensures that the sampled relative orientations are actually influenced
by the close distance between the particles. The relative angle 𝛼 between the
orientation vectors of the pears u and v is split into two domains to char‐
acterise the orientational states further. For positive angles, the pears point
away from each other such that their blunt ends are in contact. A negative
angle indicates that the pears face towards one another and that their pointy
ends are closer together. In the following we will refer to these two domains
“V”‐configurations (𝛼 > 0) and “A”‐configuration (𝛼 < 0).

The histogram of the relative pear orientations shows three distinct peaks
which match perfectly with the ideal configurations predicted in Fig. 6.4c
and Fig. 6.5. The first preferred orientation is measured at 𝛼 = −0.26 = −15◦,
and hence categorised as anA‐configuration. This relative angle corresponds
directly to the parallel solution for minimal excluded volume as it coincides
with the tapering angle 𝜃𝑘 = 15◦. The configuration can also be extracted
from the simulations directly (see a snapshot in Fig. 6.7c). The second and
third peak at 𝛼 = ±𝜋 = ±180◦ can be combined into a single characteristic
orientation due to the duality of the A‐ and V‐configuration for cos(𝛼) = −1.
Moreover, this orientation also coincides with the predictions as it fits the
second solution of the excluded volume calculations, where the particles are
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Figure 6.7: The relative orientation (a) and lateral distance distribution (b) of two HPR par‐
ticles in a sea of 1498 hard spheres, acting as a solvent at global density 𝜌𝑔 = 0.45, on the

left. The particle parameters are set to 𝑘 = 3, 𝑘 𝜃 = 3.8 and 𝑟depl = 0.31𝜎𝑤 (
𝑉depl
𝑉pear

= 0.08).
Only pair‐configurations are considered if the pear‐shaped particles are close to each other
such that the excluded volumes overlap. Positive angles 𝛼 indicate V‐configurations (blunt
ends together), whereas negative 𝛼 values describe A‐configurations (pointy ends together).
On the right, two typical arrangements, extracted from the simulations, are shown. The top
snapshot (dashed line, (c)) corresponds to the indicated peak and coincides with the paral‐
lel solution for maximal excluded volume overlap. The bottom configuration (dash‐dotted
line, (d)) contributes to the second peak and matches the anti‐parallel solution in terms of
minimised excluded volume.

aligned anti‐parallelly next to each other. A snapshot from the MC simula‐
tion of this particular configuration is depicted in Fig. 6.7d.

The observations are corroborated by the lateral distance distribution be‐
tween two particles when in contact. Fig. 6.7b highlights that the neighbour‐
ing pears are not distributed around the centre point of the reference parti‐
cles. The distribution is rather slightly shifted towards the pointy end. The
inversion asymmetric shape of the HPR particle consequently introduces a
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6.3 MC simulations of depletion effects of pear‐shaped particles

move of the optimal contact point above the centre‐point. Hence, the HPR
particles behave precisely as expected according to Sec. 6.2 and according to
the solutions of the ideal configurations to maximise the available space for
the hard spheres.

6.3.2 Depletion interactions between PHGO particles

We established that the HPR particle model describes the imposed pear‐
shape very well in terms of depletion and reproduces the analytical predic‐
tions. Therefore, it acts perfectly as a reference for other models which de‐
scribe pear‐shaped particles like the PHGOmodel. This gives us an excellent
opportunity to study the ramifications to describe a pear using a hard Gaus‐
sian overlap approach. Thus, the depletion MC simulations are repeated.
The same parameters are applied except that the HPR contact function is
replaced with the PHGO contact function to approximate the particle over‐
lap.

The first distinction between the PHGO and HPR system becomes ap‐
parent during the MC sampling already. By tracking the distances between
both particles for every MC step in Fig. 6.6 the depletion attraction between
two PHGO pears seems to be stronger than in the equivalent HPR case. This
can be explained by the development of the separation once the two PHGO
pears are close together. After the pears pass a sequence of arbitrary dis‐
placements and eventually approach each other, the touching configuration
stays stable for a significantly longer time. This is in contrast to the split‐
ups of the HPR particles where very short periods of configurations close
together alternate with stages of separation and subsequent recombination.
This means the depletion attraction is of the order of 𝑘𝐵𝑇 or less for HPR
and considerably more for PHGO particles. The increased strength of the
entropic force, however, can be related to the contact function of the PHGO
pear. Presuming the particles are in the optimal state, an attempted transla‐
tional step and especially an attempted rotational step ismuchmore strongly
penalised for PHGO than for HPR particles. This is manifested in the con‐
tact profile of roughly perpendicular arrangements. Here, the pear size is
overestimated, and a particle pair is accounted as overlapping even though
they are not in contact according to the Bézier‐curve depiction (see Fig. 2.8
for a comparison of the contact profiles between PHGO and HPR model).
The effect is comparable to the PHGO pears and HGO ellipsoids entering
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Figure 6.8: The relative orientation (a) and lateral distance distribution (b) of two PHGO
particles in a sea of 1498 hard spheres, acting as a solvent at global density 𝜌𝑔 = 0.45, on the

left. The particle parameters are set to 𝑘 = 3, 𝑘 𝜃 = 3.8 and 𝑟depl = 0.31𝜎𝑤 (
𝑉depl
𝑉pear

= 0.08). Only
pair‐configurations are considered if the pear‐shaped particles are close to each other and the
excluded volumes overlap. Positive angles 𝛼 indicate V‐configurations (blunt ends together).
Negative 𝛼 values describe A‐configurations (pointy ends together). This is also indicated
above the plot. On the right two typical arrangements, extracted from the simulations, are
shown. The top snapshot (dotted line, (c)) shows aV‐configuration, which corresponds to the
indicated peak. This configuration does not coincide with the parallel solution for maximal
excluded volume overlap of Bézier pears. The bottom configuration (dash‐dotted line, (d))
contributes to the second peak and matches the anti‐parallel solution in terms of minimised
excluded volume.

11

orientationally ordered phases already for low densities [396]. The depth
of the effective potential does not necessarily indicate that the two models

1Note here a slight difference to the data in the version of this thesis originally submitted
for examination. In the original version, a small error (a missing prefactor) occurred in the
PHGO overlap determination. This increased the observed depletion effects. However, the
main conclusion from this data has not changed. What has changed is the relative height
of the peaks. In particular, the probability of finding pears in the V‐arrangement is, after
the correction, higher than that of finding two pears positioned in anti‐parallel orientation.
Apart from this, the central message of this chapter has not changed.
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6.3 MC simulations of depletion effects of pear‐shaped particles

differ qualitatively, but suggests that the depletion is more guided towards
the equilibrium states.

The relative orientation distribution between two PHGO particles in close
contact is plotted in Fig. 6.8a. Two distinct peaks are perceivable similar to
the equivalent HPR system. The smaller peak is found at 𝛼 = ±𝜋 which again
corresponds to an antiparallel configuration. Therefore, the orientation dis‐
tribution suggests that the PHGO pear model reproduces the antiparallel
solution sufficiently. In this domain, the HPR and PHGO differ the least
from each other, such that it is quite intuitive that in the antiparallel case
both models share the same solution. Additionally, we can find many con‐
figurations as depicted in Fig. 6.8d, which contribute to this smaller peak
at 𝛼 = ±𝜋 and coincide with the ideal solution to a sufficient degree. By
focusing on the second major peak, however, we observe two major differ‐
ences compared to the HPR system. Firstly the peak is significantly more
intense. This indicates that for PHGO particles the parallel configuration
is more beneficial than the antiparallel solution. This is explained by the
PHGO particles coming closer together than HPR particles when parallelly
aligned. By changing the relative angle between the pear‐shaped particles,
the overlap tends to be underestimated by the PHGO model which conse‐
quently leads to a lower excluded volume. Thus, the duality of the ideal
configuration is broken by the particular angle dependence of the PHGO
contact function and weighted to the benefit of parallel arrangements.

The second difference is the position of the peak, which is shifted from
𝛼 = −15◦ to a positive value close to 𝛼 = 20◦. Hence, the particles form
V‐configurations rather than the expected A‐configurations. To clarify the
reason behind this transition we take a closer look at those V‐configurations
which can be obtained from the simulations directly. A representative pair
is portrayed in Fig. 6.8c. It becomes apparent that the pears slightly over‐
lap. Here, the term “overlap” might be misleading as the particles do not
technically overlap in terms of their PHGO contact function but accord‐
ing to the best possible illustration using the Bézier representation. How‐
ever, it also has to be mentioned that the spheres interact with the pear
according to this Bézier shape. Thus, the solvent particles effectively experi‐
ence the pear shape differently than another PHGO particle. Furthermore,
the underlying underestimation of the PHGO‐contact function enables the
pear‐shaped particles to occupy space, which by design cannot be reached
by hard spheres andwould also be prohibited forHPR particles. This effect is
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6 Depletion interactions between pears in a hard sphere fluid

known as pairwise non‐additivity and is well studied for hard binary sphere
mixtures [274, 275, 276, 277, 278], which successfully model the behaviour of
binary alloys [541, 542] or organic mixtures [543, 544]. It is known that non‐
additivity leads to repelling and attracting effects [276, 545], which open the
door for exotic crystalline phases [544, 546] and also shift the critical demix‐
ing density to lower values [547, 548]. Already Asakura and Oosawa studied
a non‐additive system to describe the depletion interactions where the large
colloids “see” the polymers as hard spheres with finite radius whereas the
polymers act as point particles among themselves [451].

The V‐configurations can also be associated to the second type of non‐
additivity effects which are present between two PHGO pears, namely the
self‐non‐additive features discussed in Sec. 2.2.1. Here the excluded volume
is decreased instead of simple alignment by an alternative route, namely by
increasing the overlap of the two particles due to self‐non‐additivity. For
pears with 𝑘 = 3 and 𝑘 𝜃 = 3.8 the maximal overlap occurs roughly at an
angle of 𝛼overlap ≈ 30◦. This is considerably higher than the measured angle
between the pears in the V‐configuration observed in the simulations. How‐
ever, we can argue that the adopted angle results from the intricate interplay
of reducing excluded volume via overlap and alignment and the sphere ra‐
dius of the solvent. For small volume ratios the overlap is more dominant
and the V‐arrangement more favourable, whereas for large ratios the con‐
tribution of the overlap becomes negligible and the aligned A‐configuration
will be adopted.

To complete the comparison between the HPR and PHGO particles, we
investigate the lateral distance of the PHGO pears to its fellow pear in close
contact in Fig. 6.8b. Compared to Fig. 6.7b the distribution is narrower and
shifted towards the blunt end which leads the impression that the HPR par‐
ticles are more flexible to obtain the equilibrium state whereas the PHGO
pears are more restricted in terms of fluctuations from the ideal configura‐
tion. The emergence of the shifted peaks can again be attributed to the non‐
additive characteristics of the PHGO model. Furthermore, the two maxima
at lateral distance 𝑧 = −0.17 and 𝑧 = 0.70 indicate the existence of two differ‐
ent contact points. One is associated with the V position (𝑧 < 0), the other
peak can be identified as the contact for the antiparallel solution 𝑧 > 0.
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6.4 Conclusion and outlook

6.4 Conclusion and outlook

In this chapter, we studied depletion effects on pear‐shaped particles due
to a solvent of hard spheres as preparation for Chap. 8 where the range of
mixture is expanded. To this end, we investigated the depletion interactions
of a pair of pear‐shaped particles in a sea of a hard sphere solvent. In the
course of this study, we first determined the optimal pear configurations
in terms of minimised total excluded volume based on the Bézier curves
to predict the equilibrated particle formation. Using numerical calculation
techniques, we could compute two global minima; a parallel and antiparallel
solution, which both share the same contact point on the pear surface. Both
configurations could be related directly to the taper of the particle. After‐
wards, the predicted states could be obtained in Monte Carlo simulations of
two HPR pear particles dissolved in a hard sphere solvent. However, deple‐
tion attraction is weak for the chosen parameters.

In comparison, the PHGO pear particles revealed differences to the pre‐
dictions. Even though the antiparallel configuration was also reproduced
for PHGO pears, the parallel solution was found to be more dominant and
shifted from an A‐ to a V‐configuration with a different contact point. We
argued that the V‐configuration is governed by the PHGO contact function
which underestimates the pear overlap slightly and causes overlaps. More‐
over, it has been shown that the depletion attraction between two PHGO
particles is much stronger than between HPR particles.

The discrepancies in the depletion behaviour also give improved insight
into the diminished and aided spontaneous creation of bilayer‐phases in
monodisperse HPR and PHGO particle systems, respectively. It is more than
likely that specific details of the relative positions between neighbouring
pear‐shaped particles are varied due to the enhanced complexity of the ex‐
cluded volume effects in one‐component assemblies. Nevertheless, we can
reason that the quality of the arrangements would not change and hence,
general statements about the local formations can bemade. Especially three
contributions to the stabilisation mechanisms of bilayer configurations are
identified.

1. By breaking the duality of the optimal configurations the systems in‐
troduce a local polar order. In the PHGO model, this leads to a domi‐
nant formation of parallel alignments between adjacent pears. This ex‐
act orientational order is also observed in the pair‐correlation functions
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Figure 6.9: The procedure to obtain the second mesh in the NAHPR model which deter‐
mined the overlap between the blunt ends of two pears with 𝑘 = 3 and 𝑘 𝜃 = 3.8. First, two
pears are placed symmetrically at an angle 𝛼 = 30◦ such that the pears are exactly in contact
according to the PHGO contact function. The distance is decreased by −0.035𝜎𝑤 also to
compensate the contact overestimation for A‐configurations. Afterwards, the overlap is cut
from the initial contour (dashed) such that a concavity occurs (dotted line). The equivalent
non‐additive contour is obtained from its convex hull (dash‐dotted). This procedure is re‐
peated for different angles between 𝛼 = 30◦ ± 15◦. The final contour (solid line) is the basis
of the solid of revolution from which the mesh is generated.

weightedwith the polar order parameter of the one‐component PHGO‐
particle systems (see Fig. 5.13 in Sec. 5.2). Hence, the system is guided
towards the formation of sheets, which are a prerequisite of interdigi‐
tated bilayers.

2. The interdigitation is enhanced by the preferred parallel order into
V‐ rather than A‐configurations. It is quite intuitive to imagine that
sheets, which consist of an array of V‐aligned pears, interlock analo‐
gous to a zip mechanism in a “zig‐zag”‐pattern and subsequently de‐
velop bilayers.

3. The greater fluctuations of the contact point in HPR systems hinder
a targeted alignment of particles. This consequently leads to an in‐
creased susceptibility for defects within the bilayers, and a weaker cor‐
relation of translational order as those observed in typical smectics let
alone gyroid or lamellar phases.

These three factors raise the question of how pear‐shaped particles adopt‐
ing bilayer phases can be realised in experiments. Assuming that colloids
interacting via the HPR potential will be more likely to be synthesised in
the future22, the question can be rephrased as such. How does the HPR

2This assumption is merely based on the fact that the HPR contact profile resembles the
Bézier shaped more closely than the PHGO model. However, if this premise is indeed true
cannot be answered to date as modern‐day synthesis techniques do not yet offer the amount
of detail that is needed.
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Figure 6.10: The concept of the overlap determination for the NAHPR model. The pear
consists of an inner contour (solid line, non‐additive part) and an outer contour (dotted
line, similar to the HPR model). If the pears coms together with their blunt ends (left) the
particles are considered in contact if their inner contours touch. Otherwise (centre) the outer
contours determine the overlap. The interactions with hard spheres are also according to the
outer contour (right).

contact profile have to be modified to obtain the key characteristics of the
PHGO contact function? In the following, we want to propose a promising
approach as an outlook and introduce non‐additive features to the mesh‐
description of pears as well.

The non‐additive features are added to the blunt ends of the pear parti‐
cles. Using this approach we specifically try to engineer an HPR potential
which favours the formation of V‐configurations due to depletion interac‐
tions. The mesh which describes the interaction between two blunt ends is
based on the distance of two PHGO particles with the largest overlap. As
already mentioned this occurs for 𝛼overlap = 30◦. However, the distance is
decreased even a bit further by −0.035𝜎𝑤 to additionally compensate for the
contact overestimation for A‐configurations which otherwise would not be
considered. The contour of the non‐additive shape is created by introduc‐
ing a flat line between the two points where both Bézier curves meet (see
Fig. 6.9). Taking this new contour as a basis, we repeat the procedure for
different angles 𝛼 = 30◦±10◦ to allow some flexibility of the adopted orien‐
tations. Afterwards, a triangulated mesh of the solid of revolution of the
resulting contour is generated. The mesh is implemented into the MC al‐
gorithm such that only the blunt ends of the pears are allowed to overlap
according to the Bézier shape. To put it differently, the particles interact
via the non‐additive mesh exclusively if the particles come together with
their blunt ends. Otherwise, the overlap is determined by the regular mesh
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Figure 6.11: The relative orientation (a) and lateral distance distribution (b) of two non‐
additive HPR particles in a sea of 1498 hard spheres, acting as a solvent at global density 𝜌𝑔 =

0.45, on the left. The particle parameter are set to 𝑘 = 3, 𝑘 𝜃 = 3.8 and 𝑟depl = 0.31𝜎𝑤 (
𝑉depl
𝑉pear

=

0.08). Only pair‐configurations are considered if the pear‐shaped particles are close to each
other and the excluded volumes overlap. Positive angles 𝛼 indicate V‐configurations (blunt
ends together). Negative 𝛼 values describe A‐configurations (pointy ends together). This
is also indicated above the plot. On the right two typical arrangements, extracted from the
simulations, are shown. The top snapshot (dotted line, (c)) corresponds to the indicated peak
and shows the engineered V‐configuration. The bottom configuration (dash‐dotted line, (d))
is a defect of the non‐additive mesh and contributes next to the anti‐parallel solution also to
the second indicated peak.

describing the pear surface (see Fig. 6.10). Furthermore, the pear‐sphere in‐
teractions stay unmodified such that the hard solvent still experiences the
HPR pear. We will refer to this model as the non‐additive hard pears of rev‐
olution (NAHPR) model. In experiments, the underlying contact function
might be realised by preparing pear colloids with a rougher surface at the
pointy than at the blunt ends. By using different roughness, the strength
between different parts of a colloid can be controlled, and therefore an
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effective entropic attraction between specific moieties of the colloid can be
introduced [240, 549].

After implementing the non‐additive contact function, the depletion MC
simulations are again repeated with the same parameters. Both Fig. 6.6
and Fig. 6.11 reveal that some of the features of the PHGO model have been
adopted by the NAHPR model. By investigating the separation during the
MC simulation in Fig. 6.6 it becomes apparent that the depletion interaction
increases. Even though the PHGO particles show slightly weaker attraction,
theNAHPRparticles remain in the zone of influence similarly as soon as they
are within their vicinities. More interesting, however, is the orientation dis‐
tribution for NAHPR particles in contact (see Fig. 6.11a). The non‐additivity
at the blunt ends indeed stabilises the desired V‐configurations creating a
dominant peak at around 𝛼 = 20◦. Nevertheless, by taking a close look, a
small peak at the A‐configurations can be observed as well. This leads to
the conclusion that two minima for the excluded volume can be obtained
within the parallel configurations. The global one is attributed to the V‐
configuration and the non‐additivity, the second minor one can be ascribed
to the A‐position and the parallel alignment of the pears according to their
tapering parameter.

The NAHPR model can also reproduce the lateral distance distribution
of the PHGO particle roughly. Even though the distribution in Fig. 6.11b is
broader than the one in Fig. 6.8b, most of the contact points are located un‐
derneath the centre point of the pear‐shaped particle as well. However, the
NAHPR model still does not recreate all feature of the PHGO‐particles per‐
fectly. For instance, some of the simulations end up in configurations which
contribute to the preferred antiparallel alignment but do not coincide with
the prediction. Although the prediction is still the dominant configuration,
the non‐additivity allows the particles also to overlap with the blunt ends in
an antiparallel configuration (S‐configuration, see Fig. 6.11d) and also intro‐
duces in the antiparallel case a secondary minimum.

To put it in a nutshell, the NAHPR particles can recreate some of the fea‐
tures of the PHGO contact function, like the formation of V‐configurations,
the enhanced depletion attraction or the shift of the contact point towards
the blunt ends. Some other features like the symmetry breaking into heavily
favoured parallel configuration could not be resolved by the modified model
yet. However, the introduction of non‐additivity between blunt ends seems
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to be a pivotal factor to enable bilayer formation. The present issues might
be resolved by further alternations of the NAHPR interactions. One solu‐
tion might be to add additional angle dependence to the non‐additivity,
such that blunt ends are only able to overlap if the particles are pointing
roughly in the same direction. This would probably diminish the formation
of S‐configurations. Another approachmight be to replace the rounded pear
surface with a partially flat surface. This would allow us to control not only
the non‐additivity attraction but also the depletion attraction via alignment
by introducing more or less curvature to the surfaces.
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7 Density functional theory of pear‐shaped
particles

“Someone told me that each equation I included in the book
would halve the sales.”

– Stephen Hawking

This chapter addresses the differences of the two pear‐shape particle models
(PHGO and HPR) on the basis of a theory that calculates approximations for
the free energy values of the assembled configurations. To this end, we de‐
velop a density functional for hard solids of revolution with smooth features
(including particles without inversion‐symmetric shapes) within the frame‐
work of fundamental measure theory. Moreover, this theory is applied to a
system of pear‐shaped particles described by Bézier‐curves and the structure
of the isotropic phase of such particles near a hard wall is investigated. This
application to the pear‐shaped particles can be seen as a preliminary study
for possibly higher density phases like the nematic or even the gyroid phase.
Here, we can predict a complex orientational ordering within the vicinity of
the hard wall which is governed by the particle shape directly. We can iden‐
tify a good agreement between the theory and our simulations by comparing
both approaches, even though the HPR pears showcase better agreement than
the PHGO‐particles, which implies that the density functional cannot be ap‐
plied to the PHGO gyroid phase directly. Furthermore, both theory and MC
simulations suggest the possibility of the formation of layers, which consist
of particles with alternating orientations, due to the lack of particle inversion‐
symmetry.11

1This chapter is based, in parts, on the article P.W.A. Schönhöfer, G.E. Schröder‐Turk, and
M. Marechal, “Density functional theory for hard uniaxial particles: Complex ordering of
pear‐shaped and spheroidal particles near a substrate”, J. Chem. Phys. 148(12):124104, 2018.
All simulation methods, numerical procedures and data analyses of this paper were imple‐
mented and executed by me. Alongside the senior authors, I was a major contributor to the
conceptual questions and research methods addressed in the article, and to the interpreta‐
tions presented as results. I created all 4 illustrations and graphs in the article, and have
written the manuscript, with help and comments from Gerd Schröder‐Turk and Matthieu
Marechal. Verbatim quotes from that paper may have been used without explicit citations.
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So far, this thesis has relied upon MD and MC simulation methods to
study colloidal particle assemblies, their capability to form cubic phases and
the sensitivity of the phase space in terms of the particle shape. This is re‐
flected by the precedent chapters where our investigations are exclusively
assisted by particle simulation methods which generate the particle config‐
urations and act as the backbone for all of our results. An alternative strategy
to study the collective interactions between particles in statistical physics,
however, is based on theoretical techniques, like density functional theory.
The importance of those theories is substantiated not only in better under‐
standing the fundamental principles of self‐assembly but also in paving the
way for experimental implementations of particle systems. Hereof, both
theoretical descriptions and simulations are essential, inexpensive and time
efficient early steps to, for example in colloidal physics, test the fitness of
new particle shapes to form complicated mesophases and eventually to de‐
velop their synthesis. Therefore, the advance of theories is of great interest
and is addressed in terms of pear‐shaped particles and other solids of revo‐
lution in the following chapter.

Density functional theories (DFT) [405] are one of the few microscopic
theories that underpin the collective behaviour of particle ensembles in clas‐
sical statistical mechanics. Classical DFT is based on the similar description
of quantum systems by Kohn [550] who demonstrated that all the infor‐
mation of the ground state of an electron system can be derived from an
energy functional which is written in terms of the electron density distribu‐
tion rather than solving the 𝑁‐particle Schrödinger equation. After it was
shown that the same principles also can be applied to electron systems at
temperature 𝑇 > 0 [551], DFT has been successfully adopted to ensembles
in classical statistical mechanics [405]. Since then DFT has become one of
the most commonly used frameworks for describing inhomogeneous classi‐
cal fluids. Often this theoretical description comes with the benefit of being
less time‐consuming then state‐of‐the‐art simulation techniques. In addi‐
tion, free energy‐based quantities, such as interfacial tensions [212, 552], can
easily be extracted from DFT. However, the construction of functionals and
the underlying weighted densities to describe collective phenomena of dif‐
ferent liquids is often very complicated and not a straightforward procedure
(for a detailed survey of the different proposed weighted densities see Ref.
[553]).
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Figure 7.1: Several examples of solids of revolution (from left to right: pear‐shaped particle,
ellipsoid, spherocylinder, “world‐cup trophy”). The radial component of these shapes 𝑅(𝑧)
are described by a function of the height 𝑧 and are rotated around the rotation axis to form
the bounding particle surface.

A geometry‐based approach, namely fundamental measure theory (FMT),
was introduced by Rosenfeld for hard spheres [406], modified [554, 555] and
later generalized by Hansen‐Goos and Mecke for arbitrary convex shapes
[210]. Here the functionals are obtained from the fundamental geometrical
properties of the individual particles. Previous studies showed that this tool
predicts the collective behaviour of several hard particle systems like hard
spheres [406, 554, 555], dumbbells [211], spherocylinders [556, 557], polyhe‐
dra [212] or even mixtures of the mentioned shapes [558] successfully. In
those cases, only a single shape or family of shapes have been considered.
An implementation of FMT for general uniaxial shapes, like pear‐shaped
particles, however, was hitherto not available. Therefore, in the following
we first introduce the main ideas of DFT (Sec. 7.1.1) and FMT (Sec. 7.1.2). Af‐
terwards in Sec. 7.2 we develop a new density functional for smooth uniax‐
ial particles in the framework of FMT, where we describe the surface of the
particle by a solid of revolution of a Bézier spline (see Fig. 7.1) and thus ob‐
tain an implementation for a wide range of uniaxial particles. Finally, we
apply this functional to one‐component pear‐shaped particle and ellipsoid
systems and investigate the influence of tapering on the ordering near a hard
wall to compare our approachwith simulations in Sec. 7.3. In this process, we
additionally investigate the differences between PHGO and HPR approach
further and discuss the possibility of stabilising the gyroid phase also for
hard particle systems due to local orientational correlations.
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7.1 Theoretical framework

7.1.1 Density functional theory

This section introduces the density functional theory framework following
Evans [405, 553] andRoth [559]. Herewe have to revisit the description of the
grand canonical potentialΩ in Sec. 3.1.2 which describes a particle system in
the 𝜇𝑉𝑇‐ensemble completely. Using Eq. (3.16) and Eq. (3.18) we can write Ω
in terms of the equilibrium probability distribution 𝑓𝜇𝑉𝑇 by

Ω(𝑇,𝑉, 𝜇) = Trcl 𝑓𝜇𝑉𝑇 (H𝑁 − 𝜇𝑁 + 𝛽−1 ln 𝑓𝜇𝑉𝑇 ) (7.1)

where we again used the classical trace Trcl like already stated in Eq. (3.17).
Based on this definition of Ω we can now define a functional

Ω[ 𝑓 ] = Trcl 𝑓 (H𝑁 − 𝜇𝑁 + 𝛽−1 ln 𝑓 ) (7.2)

of any probability density 𝑓 with Trcl 𝑓 = 1 for which holds

Ω[ 𝑓 ] = Trcl 𝑓 (H𝑁 − 𝜇𝑁 + 𝛽−1 ln 𝑓 ) = Ω[ 𝑓𝜇𝑉𝑇 ] + 𝛽−1 Trcl 𝑓 (ln 𝑓 − ln 𝑓𝜇𝑉𝑇 ).
(7.3)

Therefore, it can be shown by using Gibbs inequality that for 𝑓≠ 𝑓𝜇𝑉𝑇

Ω[ 𝑓 ] > Ω[ 𝑓𝜇𝑉𝑇 ] ≡ Ω(𝑇,𝑉, 𝜇). (7.4)

This means that for 𝑓 = 𝑓𝜇𝑉𝑇 the functional coincides with the grand poten‐
tial of the equilibrated system. For every other arbitrarily chosen 𝑓 the func‐
tional is always greater than the grand potential.

The equilibrium probability density 𝑓𝜇𝑉𝑇 itself is a functional of the parti‐
cle number density 𝜌(r, 𝜔), which indicates the local density of the particles
with orientation 𝜔 at position r. More precisely it can be proven that the
external potential termVext of the HamiltonianH𝑁 determines the equilib‐
rium number density profile 𝜌𝜇𝑉𝑇 (r, 𝜔) uniquely [405, 560] such that

𝑓𝜇𝑉𝑇 = 𝑓𝜇𝑉𝑇 [Vext] = 𝑓𝜇𝑉𝑇 [𝜌𝜇𝑉𝑇 (r, 𝜔)] . (7.5)

Consequently, we can also rewrite Eq. (7.2) as Ω[𝜌(r, 𝜔)] with

Ω[𝜌(r, 𝜔) ≠ 𝜌𝜇𝑉𝑇 (r, 𝜔)] > Ω[𝜌𝜇𝑉𝑇 (r, 𝜔)] ≡ Ω(𝑇,𝑉, 𝜇). (7.6)

174



7.1 Theoretical framework

An alternative definition of Ω[𝜌] is based on density fields 𝜌 which not
necessarily have to be attributed to an external potential [561]. In this Levy
method the grand canonical potential functional is defined by

Ω[𝜌] = min
𝑓 →𝜌

Ω[ 𝑓 ] (7.7)

where all possible normalised density distributions 𝑓 are scanned to find the
one which minimises the functional and simultaneously keeps

𝜌(r, 𝜔) = Trcl 𝑓
𝑁∑
𝑖

𝛿(r − r𝐼 , 𝜔 − 𝜔𝑖) (7.8)

fixed. However, Eq. (7.6) holds also for this definition. In general the results
from both approaches can be summarized by

𝜕Ω[𝜌(r, 𝜔)]
𝜕𝜌(r, 𝜔)

����
𝜌(r,𝜔)=𝜌𝜇𝑉𝑇 (r,𝜔)

= 0 (7.9)

where we used the variational principle.

By inserting the general definition of H𝑁 we can split the functional into
different terms

Ω[𝜌(r, 𝜔)] = Trcl 𝑓 (T + U + 𝛽−1 ln 𝑓 ) + Trcl 𝑓 (Vext − 𝜇𝑁) = Fint + Fext

= Fid + Fexc + Trcl 𝑓

∫ (
𝑁∑
𝑘=1

𝛿(r − r𝑘 , 𝜔 − 𝜔𝑘)(Vext(r𝑘 , 𝜔𝑘) − 𝜇)
)
dr d𝜔

= Fid + Fexc +
∫

𝜌(r, 𝜔)(Vext(r, 𝜔) − 𝜇)dr d𝜔

(7.10)
with respect to the density profile. The third term in the grand canonical
potential is the external term Fext, where 𝑉ext

𝑠 (r, 𝜔) is the external potential
acting on a particle with orientation 𝜔 at position r. The term Fid can be
identified as the free energy of a non‐interacting ideal gas [405],

Fid = 𝑘𝐵𝑇
∫

d𝜔
∫

dr 𝜌(r, 𝜔) (ln[𝜌(r, 𝜔)𝜆3] − 1) (7.11)

with the Boltzmann constant 𝑘𝐵 and the thermal de Broglie wavelength
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7 Density functional theory of pear‐shaped particles

𝜆 =

√
ℎ2𝛽

2𝜋𝑚
(7.12)

of particles with mass 𝑚. The excess free energy term Fexc contains all in‐
formation about the interparticle interactions and will be covered in great
detail in the next sections (see Sec. 7.1.2 and Sec. 7.2). Both theses terms are
part of the internal term

Fint = Fid + Fexc (7.13)

of the functional.

To eventually obtain the thermodynamical properties of the system in
terms of the grand potential we have to determine 𝜌𝜇𝑉𝑇 (r, 𝜔) by inserting
Eq. (7.10) into Eq. (7.9)

𝜕Ω[𝜌𝜇𝑉𝑇 (r, 𝜔)]
𝜕𝜌(r, 𝜔) = 0 = 𝛽−1 ln 𝜆3𝜌𝜇𝑉𝑇 (r, 𝜔)+

𝜕Fexc

𝜕𝜌(r, 𝜔) +Vext(r, 𝜔)−𝜇. (7.14)

Therefore, we gain a self‐consistent equation for the density profile

𝜌𝜇𝑉𝑇 (r, 𝜔) = 𝜌bulk exp(−𝛽Vext(r, 𝜔) + 𝑐 (1) (r, 𝜔) + 𝛽𝜇) (7.15)

with 𝜌bulk corresponding to a constant bulk density and the one‐body direct
correlation function

𝑐 (1) (r, 𝜔) = −𝛽 𝜕Fexc

𝜕𝜌(r, 𝜔) . (7.16)

7.1.2 Fundamental measure theory

The difficult task for every density functional theory is to accurately approxi‐
mate the one direct correlation function 𝑐 (1) (r, 𝜔). As Fexc can not be derived
straightforwardly from the Hamiltonian, different approaches for different
particle systems have been developed [553]. For hard particle systems Rosen‐
feld developed a geometry‐based approach, the fundamental measure the‐
ory (FMT), which forgoes any empirical assumptions, different from other
strategies in DFT, and, thus, is the most suitable for colloidal (hard particle)
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7.1 Theoretical framework

systems. In FMT the excess free energy is given by a free energy density Φ,
which is a function so‐called weighted densities 𝑛𝛼 [𝜌] and reads

Fexc = 𝑘𝐵𝑇
∫

dr Φ ({𝑛𝛼 [𝜌] (r)}) . (7.17)

For the exact calculation and the derivation of this free energy density by
decomposing the Mayer function, we refer to Ref. [406, 554, 555]. The func‐
tions Φ of 𝑛𝛼 [𝜌] are the same for different versions of FMT,

Φ({𝑛𝛼}) = −𝑛0 log(1 − 𝑛3) +
𝑛12
1 − 𝑛3

+ 𝑛222
(1 − 𝑛3)2

, (7.18)

however, they differ in the definition of 𝑛12 and 𝑛222. As we will later inves‐
tigate elongated pear‐shaped particles, we use the Tarazona‐Rosenfeld‐FMT
functional, which correctly characterizes the smectic phase of spherocylin‐
ders [556, 557], where other definitions [562] usually used for hard spheres
were unsuccessful to describe a stable smectic phase with realistic densities
and aspect ratios. One of the weighted densities 𝑛3 is defined as the integral
of the local density over the volume of the interior B(𝜔) of the particle and
over its orientation 𝜔,

𝑛3 [𝜌] (r) =
∫

d𝜔
∫
B(𝜔)

dp 𝜌(r − p, 𝜔). (7.19)

For the remaining weighted densities an integral over all points p on the
surface of the particle 𝜕B(𝜔) with the surface element d𝑝2 and the particle’s
orientation has to be calculated. We get

𝑛𝛼1...𝛼𝑛 [𝜌] (r) =
∫
𝜕B𝑛

dℜ𝑛 𝑄𝛼1...𝛼𝑛 (ℜ1, . . . ,ℜ𝑛)
𝑛∏
𝑖=1

𝜌(r − p𝑖 , 𝜔𝑖) (7.20)

where we combine the positional and orientational coordinates to ℜ𝑖 =
(𝜔𝑖 , p𝑖) for simplicity and introduce a shorthand integral notation∫

𝜕B
dℜ ≡

∫
d𝜔

∫
𝜕B(𝜔)

d𝑝2 and∫
𝜕B𝑛

dℜ𝑛 ≡
∫
𝜕B

dℜ1 · · ·
∫
𝜕B

dℜ𝑛.
(7.21)
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7 Density functional theory of pear‐shaped particles

𝑧

•
e𝑧

𝜔
R

B

RB

Rk̃

k̃
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𝜔

•
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n1
v21

v11

• p2n2

v22

v12

𝜕B(𝜔)

(a) (b)

Figure 7.2: (a) The normal directions n𝑖 and the corresponding vectors v1𝑖 and v2𝑖 of the prin‐
cipal curvatures at different points p𝑖 on the pear surface 𝜕B(𝜔). (b) The weighted functions
of the solids of revolution have to be calculated for all orientations 𝜔. The corresponding
rotation matrix regarding the unit vector in z‐direction e𝑧 is symbolised by R. Instead of
rotating the particles directly the wavenumber vectors are rotated accordingly instead, such
that the analytical form 𝑅(𝑧) of the surface of revolution in the body fixed frame can be used
for all R.

For the Tarazona‐Rosenfeld‐FMT [554] the functions 𝑄𝛼 (R1, . . . ,R𝑛) de‐
pend on the principal curvatures 𝜅1𝑖 and 𝜅

2
𝑖 withGaussian curvature𝐾𝑖=𝜅1𝑖 ·𝜅2𝑖 ,

the corresponding directions v1𝑖 and v2𝑖 and the normal n𝑖 at point p𝑖 on
𝜕B(𝜔) (see also Fig. 7.2a):

𝑄0(R) =
𝐾

4𝜋
,

𝑄12(R1,R2) =
𝜅21 (v11·n2)2 + 𝜅11 (v21 · n2)2

4𝜋(1 + n1 · n2)
,

𝑄222(R1,R2,R3) =
3

16𝜋
(n1 · (n2 × n3)) .

(7.22)

The form for 𝑄12 used here is equivalent to the one from Ref. [210]. The
computation of 𝑄12 and 𝑄222 is often involved as we are dealing with high‐
dimensional integrals. Especially for complex shape it is difficult to calculate
the functions directly. However, Hansen‐Goos and Mecke [377] proposed to
use an expansion of 𝑛𝛼1...𝛼𝑛 and 𝑛𝛼1...𝛼𝑛
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7.1 Theoretical framework

𝑛𝛼1...𝛼𝑛 [𝜌] (r) =
∑

𝑘1,...,𝑘𝑛

𝐶 (𝑘1,...,𝑘𝑛)
𝛼1...𝛼𝑛

𝑛∏
𝑖=1

𝑛(𝑘𝑖)𝛼𝑖 [𝜌] (r) (7.23)

with constants𝐶 (𝑘1,...,𝑘𝑛)
𝛼1...𝛼𝑛 and themore easily computable weighted densities

𝑛(𝑘)𝛼 [𝜌] (r) =
∫
B
dℜ𝑤 (𝑘)

𝛼 (ℜ)𝜌(r − p, 𝜔). (7.24)

The functions 𝑤 (𝑘)
𝛼 (p, 𝜔) are called weight functions that can be expressed

as an expansion of𝑄12 in the orthogonal spherical harmonics𝑌𝑚𝑙 (n2). Based
on the fact that 𝑄12(ℜ1,ℜ2) = 𝑄12(ℜ1, n2) only depends on n2 in terms of
ℜ2 we get, following Ref. [563],

𝑤 (𝑙,𝑚)
1 (ℜ) =

∫
𝑆2

dn 𝑄(ℜ, n)𝑌𝑚𝑙 (n)𝑁0𝑙 ,

𝑤 (𝑙,𝑚)
2 (ℜ) =

𝑌𝑚∗
𝑙 (n(ℜ))
𝑁0𝑙

(7.25)

with 𝑘 = (𝑙, 𝑚) and the factors 𝑁𝑚𝑙 =
√
2𝑙+1
4𝜋

(𝑙−𝑚)!
(𝑙+𝑚)! . Furthermore, 𝑤 (𝑘)

𝛼 (p, 𝜔)
can be brought into the following analytical form

𝑤 (𝑙,𝑚)
𝛼 (ℜ) =

𝑙∑
𝑛=−𝑙

D𝑙
𝑚𝑛 (R𝑇 (ℜ))𝑊 (𝛼)

𝑙𝑛 (ℜ) for 𝛼 = 1, 2, (7.26)

where D𝑙
𝑚𝑛 are the Wigner‐D matrices, R𝑇 (ℜ) denotes the orientation of

the axis system {v1, v2, n} and

𝑊 (1)
𝑙𝑛 (ℜ) =


𝐻 (ℜ)
4𝜋 𝛿𝑛,0 𝑙 = 0

−𝐻 (ℜ)
4𝜋 𝛿𝑛,0 𝑙 = 1

−(−1)𝑙Δ𝜅(ℜ)𝑁0𝑙 𝑁
2
𝑙 [𝛿𝑛,2 − 𝛿𝑛,−2] 𝑙 ≥ 2

𝑊 (2)
𝑙𝑛 (ℜ) = 𝛿𝑛,0

(7.27)

with themean curvature𝐻 = 1
2 (𝜅1+𝜅2) andΔ𝜅 = 1

2 (𝜅1−𝜅2). For detailed step
by step deviation of Eq. (7.25) into Eq. (7.26), we refer to Ref. [222, 377, 563].
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7 Density functional theory of pear‐shaped particles

For 𝑛12 the constant is defined as

𝐶 (𝑙1,𝑚1,𝑙2,𝑚2)
12 = 𝛿𝑙1,𝑙2𝛿𝑚1,𝑚2 (7.28)

as a consequence of symmetry under a rotation of the whole system includ‐
ing the density profile and the external potential. The constant for 𝑛222 is
defined as

𝐶 (𝑙1,𝑚1,𝑙2,𝑚2,𝑙3,𝑚3)
222 =

∫
(𝑆2)3

dn3𝑄222(n3)
3∏
𝑖=1

𝑌𝑚𝑖

𝑙𝑖
(n𝑖)𝑁0𝑙𝑖 . (7.29)

It can be shown that only a finite number of these terms are nonzero [222],
which is an advantage of Tarazona‐Rosenfeld‐FMT compared to the other
version also derived in Ref. [554]. We truncate the expansion of 𝑛12 at the
order 𝑙max = 8, so 𝐶 (𝑙1,𝑚1,𝑙2,𝑚2)

12 = 0 for 𝑙1, 𝑙2 > 𝑙max as we do not observe
any changes in the results for 𝑙 > 8 and the numerical errors are negligible
compared to differences between simulation and theory.

7.2 Fundamental measure theory for solids of
revolution

Here we apply fundamental measure theory to smooth uniaxial particles
(solids of revolution) by deriving a new functional. We consider a general
cross‐section with a plane containing the rotation axis by prescribing its
boundary for example by a Beziér spline. Usually, the radial component of
a solid of revolution is written as a function 𝑅(𝑧) of the position along the
symmetry axis. Kinks in the boundary can also be implemented in the man‐
ner of Ref [211], but we consider only smooth contours here. Examples of
solids of revolution are presented pictorially in Fig. 7.1 and via a formula for
pear‐shaped particles in the next section (see Eq. (7.38)).

To implement the weighted densities 𝑛0, 𝑛
(𝑘)
1 , 𝑛(𝑘)2 and 𝑛3 efficiently, we

first calculate the Fourier transforms of the weight functions

�̂� (𝑙,𝑚)
𝛼 (k, 𝜔) = 1

(2𝜋)3
∫
𝜕B(𝜔)

d2p 𝑤 (𝑙,𝑚)
𝛼 (p, 𝜔) exp(−ik·p) (7.30)

where we use 𝑤 (𝑙,𝑚)
𝛼 = 𝑤𝛼𝛿0,𝑙𝛿0,𝑚 for 𝛼 = 0, 3 to unify the notation, before

exploiting the convolution theorem in Eq. (7.24)
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7.2 Fundamental measure theory for solids of revolution

𝑛(𝑙,𝑚)
𝛼 (k) =

∫
d𝜔 �̂� (𝑙,𝑚)

𝛼 (k, 𝜔)𝜌(k, 𝜔). (7.31)

To calculate the Fourier transforms in Eq. (7.30) we replace 𝜔 by the Eu‐
ler angles 𝜙, 𝜃 and 𝜒 and the corresponding rotation matrices R. Thus the
weight functions of the differently oriented particles described by the vol‐
ume of their interior RB

(�̂�RB) (𝑙,𝑚)
𝛼 (Rk) =

𝑙∑
𝑛=−𝑙

D𝑙
𝑚𝑛 (R)(�̂�B) (𝑙,𝑛)𝛼 (k) (7.32)

arewritten in terms of theweight functions in the body‐fixed frame (�̂�𝐵) (𝑙,𝑚)
𝛼 (k̃)

where the surfaces of the particles are defined as p(𝑧, 𝜙′) = (𝑅(𝑧) cos 𝜙′,
𝑅(𝑧) sin 𝜙′,𝑧). In otherwords the integral is calculated by rotating thewavenum‐
ber vector k and keeping the particle orientation fixed instead of rotating the
particle itself and calculating the surface points p for any possible 𝜔 (see Fig.
7.2b). In doing so we can derive benefit from the area element of the surface
of revolution [564]

d𝑆𝑧 = 𝑅(𝑧) d𝑠 d𝜙′ = 𝑅(𝑧)
√
1 + 𝑅′(𝑧)2 d𝑧 d𝜙′ (7.33)

and simplify the integral of Eq. (7.30) further. For 𝛼 = 0, 1, 2 the Fourier
transforms of the weight functions in the body‐fixed frame using Eq. (7.26)
and Eq. (7.30) result in

(�̂�B) (𝑙,𝑚)
𝛼 (k̃) =

2𝜋

∫
d𝑧 𝑅(𝑧)

√
1 + 𝑅′(𝑧)2

𝑙∑
𝑛=−𝑙

D𝑙
𝑚𝑛 (0, 𝜃 ′(𝑧), 0)𝑊

(𝛼)
𝛼𝑛 (𝑧)𝐽𝑚(𝑘⊥𝑅(𝑧)) exp(−i𝑘𝑧𝑧)

(7.34)

where 𝐽𝑚(𝑧) is the 𝑚‐th Bessel function, 𝑘⊥ =
√
𝑘2𝑥 + 𝑘2𝑦 , 𝑅′(𝑧) is the deriva‐

tive of 𝑅(𝑧) and 𝜃 ′(𝑧) (see also Fig. 7.3) denotes the polar angle of the normal
vector

𝜃 ′(𝑧) =


arctan( 1
𝑅′ (𝑧) ) 𝑅′(𝑧) > 0

𝜋
2 𝑅′(𝑧) = 0
𝜋 + arctan( 1

𝑅′ (𝑧) ) 𝑅′(𝑧) < 0.
(7.35)
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𝑧

𝑅(𝑧)

𝑧2

n(𝑧2)
𝜃 ′(𝑧2)

𝑧1

n(𝑧1) 𝜃 ′(𝑧1)

Figure 7.3: The polar angles 𝜃 ′(𝑧𝑖) of the normal vector n(𝑧𝑖) at different heights 𝑧𝑖 of a
pear‐shaped particle in the body fixed frame which is described by the radial function 𝑅(𝑧).

Here, we define 𝑊 (0)
𝑙,𝑚 = 𝐾

4𝜋 𝛿0,𝑙𝛿0,𝑚 and used D0
00(R) = 1, such that 𝑤0 also

obeys Eq. (7.26) for 𝛼 = 0. For 𝛼 = 3 we get

(�̂�B)3(k̃) = 2𝜋
∫

d𝑧 𝑅(𝑧)𝐽1(𝑘⊥𝑅(𝑧)) exp(−i𝑘𝑧𝑧). (7.36)

Additionally, for solids of revolution we can write the principal curvatures in
terms of 𝑅(𝑧) as [564]

𝜅1(𝑧) = 𝑅′′(𝑧)
(𝑅′(𝑧)2 + 1) 3

2

𝜅2(𝑧) = − 1

𝑅(𝑧)
√
𝑅′(𝑧)2 + 1

.

(7.37)

We perform the integral over 𝑧 in Eq. (7.34) numerically, once for every 𝑘𝑧
and 𝜔 at the beginning of the calculation.

7.3 Ordering of pear‐shaped particle systems near
hard substrates

7.3.1 Fundamental measure theory of pear‐shaped particles

In our calculations we investigate a variety of one‐component pear‐shaped
particle fluids enclosed within two hard walls. Such confined isotropic fluids
are often used as reference systems to test the quality and accuracy of the
derived functional [210, 211, 212, 377, 565] as the problem reduces effectively
to one dimensions (see in the following Eq. (7.42)). Hence, in this chapter we
favour this low‐density system as a preliminary study over themore complex
higher density phases, like the nematic, smectic or gyroid phase which we
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7.3 Ordering of pear‐shaped particle systems near hard substrates

analyse in the rest of this thesis. To this end, the contour of the pear‐shaped
solids of revolution are defined as described in Sec. 2.1 by two Beziér curves
which form the top and the bottom of the particle. Using the anchor points
in Eq. (2.2) and Eq. (2.3), we can convert the Bezier‐curve representation into
a description based on the radial function

𝑅pear(𝑧) = 0.5𝑑
(
(1 − 𝑡 (𝑧))3 + 𝐶 (𝑧) · 𝑡 (𝑧)(1 − 𝑡 (𝑧)) (1 − 2𝑡 (𝑧)) − 𝑡 (𝑧)3

)
(7.38)

with

𝑡 (𝑧) = 0.5
(
1 −

√
1 − 2|𝑧 |

𝑑 · 𝑘

)
(7.39)

and

𝐶 (𝑧) =
{
𝐶1 =

3𝑘𝜃−2𝑘
𝑘𝜃

for 𝑧 ≥ 0
𝐶2 =

3𝑘𝜃+2𝑘
𝑘𝜃

for 𝑧 < 0.
(7.40)

Furthermore, we introduce an external potential Vext(r, 𝜔) which is infinite
if a pear at position rwith orientation𝜔 overlapswith one of thewalls at 𝑧 = 0
and 𝑧 = 𝐿 with 𝐿 being the distance between the walls and zero otherwise.
This contact distance 𝜎wall(𝜃) between pears and the wall can be calculated
analytically based on the Bezier description of the particles:

𝜎wall(𝜃) = inf
𝑡
𝜎𝑤


((1−𝑡)3 + 𝐶1𝑡 (1−𝑡)(1−2𝑡) − 𝑡3) sin 𝜃 + 4𝑘𝑡 (1−𝑡) cos 𝜃)

for 𝜃 ≥ arctan(2𝑘 𝜃 )

(((1−𝑡)3 + 𝐶2𝑡 (1−𝑡) (1−2𝑡) − 𝑡3) sin 𝜃 − 4𝑘𝑡 (1−𝑡) cos 𝜃)
for 𝜃 < arctan(2𝑘 𝜃 )

(7.41)

The problem is effectively reduced to a one‐dimensional problem. Eq.
(7.31) then becomes

𝑛(𝑙,𝑚)
𝛼 (𝑘𝑧e𝑧) = 2𝜋𝛿𝑚,0

∫ ∫
d𝜙 sin 𝜃 d𝜃 (�̂�R(𝜃,𝜙)B) (𝑙,0)𝛼 (𝑘𝑧e𝑧) 𝜌R(𝜃,𝜙)𝐵 (𝑘𝑧e𝑧)

(7.42)
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7 Density functional theory of pear‐shaped particles

as the Fourier transform of the density profile is nonzero only if k = 𝑘𝑧e𝑧
points towards the 𝑧‐direction perpendicular to the wall.

Finally, the grand potential Eq. (7.1) and its functional derivative with re‐
spect to the density profile Eq. (7.16) are calculated using Eq. (7.32) and (7.42).
The grand potential is minimized for a fixed mean packing fraction 𝜌𝑔 with
respect to the density profile using Picard iteration [559, 566]. We fix the
average packing fraction instead of the chemical potential or bulk density
in the middle between the walls 𝜌bulk to avoid the statistical error of mea‐
suring 𝜌bulk in the simulations where the number of particles and thus 𝜌𝑔 is
fixed. This might complicate the comparison between simulations and FMT.
However, in the following we measure 𝜌bulk in the FMT calculations to al‐
low comparison of our work with future DFT or simulation studies that fix 𝜇.

The Picard iteration is executed as follows

I. Set initial choice of 𝜌𝑔 and density profiles 𝜌 (0) (𝑧, 𝜔) accordingly:

𝜌 (0) (𝑧, 𝜔) = 𝜌bulk exp(−𝛽Vext(𝑧, 𝜔)).

II. Calculate 𝜌 (𝑖) (𝑧, 𝜔) by using 𝜌 (𝑖) (𝑧, 𝜔):

𝜌 (𝑖) (𝑧, 𝜔) = 𝜌bulk exp(−𝛽Vext(𝑧, 𝜔) + 𝑐 (1) (𝜌 (𝑖) (𝑧, 𝜔)) + 𝛽𝜇ext).

III. Determine 𝜌 (𝑖) (𝑧) =
∫

d𝜔 𝜌 (𝑖) (𝑧, 𝜔) and rescale 𝜌 (𝑖) (𝑧, 𝜔) such that 𝜌𝑔
stays constant for every step.

IV. Mix solutions with parameter 𝛼 = 0.01:

𝜌 (𝑖+1) (𝑧, 𝜔) = (1 − 𝛼)𝜌 (𝑖) (𝑧, 𝜔) + 𝛼𝜌 (𝑖) (𝑧, 𝜔).

V. Go back to step II. until 𝜌 (𝑖) (𝑧, 𝜔) converges.

7.3.2 Comparison between fundamental measure theory and
Monte Carlo results

To evaluate the results of the FMT algorithm we perform Monte Carlo simu‐
lations on the same system using both the modified hard‐Gaussian‐overlap
contact function 𝜎PHGO for pear‐shaped particles and the HPR approach to
determine overlapping particles. The distance 𝐿 = 20𝜎𝑤 between the walls
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7.3 Ordering of pear‐shaped particle systems near hard substrates

(b)

𝑧

𝐿

(a)

𝐴

𝜔

e𝑧

𝜃k
2

Θ

Figure 7.4: (a) Snapshot of a Monte Carlo simulation of hard pear‐shaped particles in be‐
tween two hard walls at an average volume density 𝜌𝑔 = 0.3. The walls have the area 𝐴 and
are placed parallel to one another on the left and right‐hand side of the simulation box at a
distance 𝐿 = 20·𝜎𝑤 . The boundary conditions in the transversal directions are periodic. The
simulation box contains 500 particles with 𝑘 = 3.0 and 𝑘 𝜃 = 3.8. (b) A pear‐shaped particle
close to the wall. In this domain the particles only can adopt certain angles Θ as the overlap
between wall and particle is prohibited. Here Θ can be related to the tapering angle 𝜃𝑘 .

in units of the width of the pear‐shaped particle 𝜎𝑤 is chosen large enough
such that the fluid behaves like a bulk‐fluid in the middle of the system.

The average packing fraction

𝜌𝑔 = 𝑉pear
𝑁

𝐿·𝐴 = 0.3 (7.43)

is set to a value that corresponds to the isotropic disordered phase, if the
fluid was in the bulk, for both simulation sets and FMT (for the PHGO and
the HPR model of pear‐shaped particles the transition to orientationally‐
ordered phases like gyroid or nematic occurs for 𝜌𝑔 ≈ 0.53 and 𝜌𝑔 ≈ 0.56,
respectively; see Fig. 5.1 and Fig. 5.10). The parameter 𝑉pear is the volume
of a pear‐shaped particle, 𝐴 the area of the walls and 𝑁 = 500 the num‐
ber of particles in the system (see Fig. 7.4a). To analyse the effect of both
particle parameters 𝑘 and 𝑘 𝜃 independently, we investigate the behaviour
of five different pear‐shaped particle systems (𝑘 ,𝑘 𝜃 ,𝜌bulk)={(2.5,3.8,0.3077),
(3.0,2.5,0.3076), (3.0,3.8,0.3078), (3.0,∞,0.3079), (3.5,3.8,0.3079)} (𝑘 𝜃 = ∞
corresponds to spheroids).

185



7 Density functional theory of pear‐shaped particles

Fig. 7.5 shows the local packing fraction

𝜌(𝑧) =
𝑉pear

𝐴

𝑁∑
𝑖=1

〈𝛿(𝑧 − 𝑧𝑖)〉, (7.44)

where 𝑧𝑖 is the distance between the centre of the particle 𝑖 and the wall.
For all five pear‐shaped particle systems, the results obtained from FMT and
the simulations are in very good agreement. Both methods clearly reveal
distinct layering of the particles for each parameter set, indicated by the dif‐
ferent peak‐profiles. This also implies that both pear‐shaped particlemodels
generate equal results. Hence, the density profiles for diluted systems at low
global densities seem to be insensitive to the non‐additivity effects of the
PHGO model, which we discussed in Sec. 2.2.1, and are indistinguishable in
terms of local densities. Note that the similarities, however, might be hidden
behind the interaction between particles and wall. In both cases, the contact
is determined in the same way, where overlaps, such as those observed in the
PHGO model, do not occur (see Eq. (7.41)). However, this does not change
the fact that the profiles also coincide further away from the substrate.

The shapes of the peaks in Fig. 7.5 result from two competing phenom‐
ena. Firstly, particles from the bulk of the system apply pressure on the first
layer of pear‐shaped particles close to the wall and as a result, push those
particles even further towards the restricting boundary. The other effect is
the loss of rotational entropy, which is caused by the exclusion of certain
prohibited orientations which would cause an overlap with the wall. This
second mechanism, which pushes the particles away from the wall, highly
depends on the specific shape of the particles. Keeping the aspect ratio of
the pear‐shaped particles constant we detect a broad first and second peak
for strongly tapered particles (see Fig. 7.5b). The density profile for less ta‐
pered pear‐shaped particles exhibits sharper features (Fig. 7.5c) and even‐
tually forms two distinct peaks with the first peak increasing in height for
spheroids with 𝑘 𝜃 = ∞ in Fig. 7.5e. The peaks indicate that the range of
preferred arrangements at the wall is narrower than for tapered pear‐shaped
particles. The same broadening of peaks can also be achieved by decreasing
the aspect ratio at constant tapering parameter (see Fig. 7.5a,c,d). However,
this is caused by amore prominent change in the density profile. On the one
hand, the second peak becomes more dominant for more elongated parti‐
cles, on the other hand, it is shifted further apart from the wall and the first
peak, with its position being equal to half of the length of the pear. Thus,
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Figure 7.5: Density profile of hard pear‐shaped particles close to a hard wall. The results
obtained by both Monte Carlo simulation (HPR and PHGO model) and FMT are shown. The
mean density is set to 𝜌𝑔 = 0.3. The shapes underneath the plots indicate the cross‐sections
of the corresponding rotationally symmetric pear‐shaped particles. All hard particle systems
show a complex ordering at the first layers near the hard surface. a) 𝑘 = 2.5, 𝑘 𝜃 = 3.8,
𝜌bulk = 0.3077 b) 𝑘 = 3.0, 𝑘 𝜃 = 2.5, 𝜌bulk = 0.3076 c) 𝑘 = 3.0, 𝑘 𝜃 = 3.8, 𝜌bulk = 0.3078 d)
𝑘 = 3.5, 𝑘 𝜃 = 3.8, 𝜌bulk = 0.3079 e) 𝑘 = 3.0, 𝑘 𝜃 = ∞, 𝜌bulk = 0.3079 (spheroid)

in Fig. 7.5a both peaks are close together such that they merge and form one
broad peak. Interestingly, this density profile shows a distinct dip where a
second peak is observed in all other density profiles.
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7 Density functional theory of pear‐shaped particles

To investigate the orientational order in more detail we determine a polar
profile

𝑃𝑧 (𝑧) =
〈∑𝑁

𝑖=1 cos(Θ𝑖)𝛿(𝑧 − 𝑧𝑖)〉
〈∑𝑁

𝑖=1 𝛿(𝑧 − 𝑧𝑖)〉
, (7.45)

whereΘ𝑖 is the angle between the orientation𝜔𝑖 of the 𝑖‐th pear and the nor‐
mal of the boundaries pointing in the 𝑧‐direction e𝑧 for the wall 𝑧 = 0 and in
the (−𝑧)‐direction −e𝑧 for the wall 𝑧 = 𝐿 (see Fig. 7.4b). The polar parameter
𝑃𝑧 contains the information about the alignment of the pear‐shaped parti‐
cles towards the wall, where for positives values the particles tend to point
away from the walls with their thin ends, whereas for negative values the
majority of particles are tilted towards the wall. The profiles are shown in
Fig. 7.6.

For all systems, the positions and heights of the first dips are in good agree‐
ment for both pear‐shaped particle models used in simulations and the de‐
rived theory. Nevertheless, it becomes apparent that the orientational order
profile reacts more sensitively on subtle changes of the particle shape than
the density profile. Only the simulation results created with the HPR ap‐
proach show exactly the same orientational behaviour as FMT, whereas the
theory underestimates the magnitude of the peak observed for the PHGO
model, where the particles are facing away from the walls. Overall, the ori‐
entational alignment is enhanced by using the non‐additive PHGO contact
function. This is in accordance with our earlier discussed observations,
where non‐additivity tends to alter the local arrangements, especially the
relative orientations between neighbouring particles (see Sec. 6.3.2). How‐
ever, also for the hard particle system the orientational order, which seems
to be prerequisite to create highly complex structures like the gyroid and
other bilayers structures, is clearly present. Thus, it appears conceivable to
potentially magnify the local orientational correlations of colloids, change
the mesoscopic length scale and eventually stabilise the gyroid phase by us‐
ing particles which are based on the hard‐core pear potential. How exactly
this can be realised in experiments, however, has to be covered in future
studies.

By comparing the different shapes, we can see that the aspect ratio only
slightly changes the profile and governs the position of the peak (see Fig.
7.6a,c,d). A more drastic alternation in the orientational order of the lay‐
ers close to the wall becomes apparent by changing the tapering parameter.
Starting from a non‐tapered spheroid (see Fig. 7.6e) 𝑃𝑧 (𝑧) stays constant at 0
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Figure 7.6: Polar profile 𝑃𝑧 ( 𝑧) of hard pear‐shaped particles close to a hard w all. Negative 
values correspond to the sharp end angled towards the substrate. The results obtained by 
both Monte Carlo simulation (HPR and PHGO model) and FMT are shown. The mean den‐
sity is set to 𝜌𝑔 = 0.3. All hard particle systems show a complex ordering at the first layers 
near the hard surface. a) 𝑘 = 2.5, 𝑘 𝜃 = 3.8, 𝜌bulk = 0.3077 b) 𝑘 = 3.0, 𝑘 𝜃 = 2.5, 𝜌bulk = 0.3076 
c) 𝑘 = 3.0, 𝑘 𝜃 = 3.8, 𝜌bulk = 0.3078 d) 𝑘 = 3.5, 𝑘 𝜃 = 3.8, 𝜌bulk = 0.3079 e) 𝑘 = 3.0, 𝑘 𝜃 = ∞,
𝜌bulk = 0.3079 (spheroid). The pear profiles indicate the mean orientation of the layers to‐
wards the hard wall (parallel to dotted lines) according to the orientational order profile of
the MC simulations of pears interacting via the PHGO contact function.

due to the inversion‐symmetry of the particles. Note that this does not mean
that all orientations are equally probable. Close to the walls, the spheroids
align along the wall and, therefore, perpendicular to its normal. By increas‐
ing the head‐tail asymmetry of the pear‐shaped particles, they arrange such
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7 Density functional theory of pear‐shaped particles

that the particles in the first layer point slightly towards the wall. The an‐
gle between their rotational axis and the substrate results from the config‐
uration of the particles which fits closest along the wall and hence can be
identified exactly as their tapering angle 𝜃𝑘 as indicated in Fig. 7.6 (see also
Fig. 7.4). Thus the taper of the pear‐shaped particle can be seen as a mech‐
anism to align the elongated particles at a certain angle to a hard surface.
Further away from the wall, approximately in the second layer of particles,
all tapered pear‐shaped particles tend to face away from the wall as 𝑃𝑧 (𝑧)
changes from negative to positive values. This can be seen as a precursor
for a potential smectic arrangement which was found in our previous com‐
putational studies of the PHGO model (see Sec. 5.1.1) at higher densities. In
those smectic bilayer phases, the pear‐shaped particles form interdigitating
sheets with particles alternatingly facing in opposite directions. The obser‐
vation that the first layer of pear‐shaped particles faces slightly towards and
the second layer slightly away from the wall supports the conclusion that the
same alternation of directions occurs at low densities close to a hard surface.

7.4 Conclusion and outlook

We have introduced a fundamental measure density functional for arbitrary
solids of revolution. We have applied this approach to a pear‐shaped par‐
ticle fluid, where the shape of the particle is parametrised by two Beziér
curves. We showed that pear‐shaped particle fluids interacting with a hard
planar substrate demonstrate a different degree of orientational order com‐
pared to spheroids despite only slight differences between both shapes. The
pear‐shaped particles are aligned towards the wall, where the orientation
is determined by the tapering angle of the particle. The orientational or‐
der profiles of tapered particles also indicate an alternating orientational ar‐
rangement between the first and second layer even at low densities (this may
be the precursor to the development of interdigitating bilayers). It has been
shown that this interdigitating behaviour – and consequently the tapering
of the particle – is crucial to stabilise smectic or even gyroid phases. Yet, we
can observe that this precursor is much stronger for PHGO particles than
the one predicted for a more accurate description of the pear‐shape both
in theory (FMT) and simulation (HPR). As the nematic phase probably also
occurs at a system of hard‐core pear‐shaped particles near a hard wall sim‐
ilar to previous computational observations [567, 568, 569] and even exper‐
imental indications [230] in systems of hard spherocylinders, we can think
of the alignment of particles at the wall due to their taper as a mechanism
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to control the direction of the smectic phase. In experiments, it should be
possible to alter the direction of tapered colloids by introducing a hard in‐
terface to the liquid.

Finally, the small but important differences between the HPR and PHGO
models covered in earlier chapters are also reflected in the results of this
chapter. While the hard‐mesh and the theory show similar orientational
ordering at the substrate, the PHGO model exhibits a more prominent and
distinct orientational order profile. Even though the slightly different align‐
ment does not change the positional order on the microscopic level, like the
density profile at a hard wall, by a great margin, they again indicate the ear‐
lier observed distinct mesoscopic behaviours of both models.

In the context of the whole thesis, the obvious question emerges why we
have not used FMT to analyse the gyroid structures? The answer is that
for once the density functional describes the HPR rather than the PHGO
model more accurately. As we have not observed the gyroid phase in the
HPRmodel (see Fig. 5.10) the introduced density functional, applied to pear‐
shaped particles at high densities, probably does not reproduce the PHGO
gyroid phase directly but has to be modified first.

The second and more significant issue is the dimensionality of the PHGO
gyroid problem. In isotropic systems at a hard wall, the density functional
reduces effectively to a one‐dimensional problem. To analyse the gyroid
phase, we have to consider all three translational degrees of freedom as the
underlyingminimal surface structure is triply periodic. Also the two orienta‐
tional degrees of freedom come into addition, such that the overall problem
is five‐dimensional. This makes the computation of the free energy highly
complex, numerically very challenging and, therefore, very slow. However,
it might be possible to find a parametrisation for the particle coordinates
based on our observations in Sec. 4.3.4. Here, we identified the gyroid phase
as a warped smectic bilayer phase, which could help us to lower the dimen‐
sionality by relating the particles to the minimal surface. Yet, how exactly
the minimal surface and pears can be related for the FMT calculations is
highly non‐trivial.

Overall, MC simulations seem currently to be more efficient and hence,
more preferential over DFT techniques to analyse gyroid‐like phases. How‐
ever, despite all these issues, FMT might be a valid tool to determine if HPR
pear‐shaped particles can assemble into a (meta‐)stable gyroid phase in the
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7 Density functional theory of pear‐shaped particles

future, nevertheless. As an initial step, we can try to identify suitably shaped
particles that form a globally aligned smectic bilayer phase (which is much
easier to calculate numerically than the gyroid phase using FMT), as ob‐
served in Sec. 5.1, instead of a nematic or isotropic phase. In case some
of the shapes induce the right intra‐layer order (like the right amount of
interdigitation as observed in Sec. 4.3.1), we can follow up these calcula‐
tions with particle‐resolved computer simulations to see if the layers are
flat or curved. The accuracy of the FMT demonstrated in this chapter and
[222, 377, 556, 557] shows that this is a promising route.
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8 Mixtures of PHGO‐pears and hard‐core
spheres

“A Double Diamond works wonders!”
– Ind Coope Star Brewery

This chapter mainly addresses the formation of the Pn3m double diamond
in PHGO pear‐shaped particle systems upon addition of a hard sphere sol‐
vent. In the first part, the geometrical differences and transition pathways
between the double gyroid and the double diamond are introduced on a math‐
ematical basis. We discuss the strategies how systems in chemistry overcome
geometrical constraints and normally favour the double gyroid over the dou‐
ble diamond. In line with these geometric arguments, our simulations show
that a Pn3m double diamond structure in the “dry mixture limit” where only
a small amount of sphere solvent is introduced to the PHGO particle system.
Curiously, the mechanism to generate regions of high negative Gaussian cur‐
vature is based on placing the spherical solvent close to the minimal surface
within the pear‐bilayer formation. Lastly, we describe our preliminary explo‐
ration of diluted mixtures. In the course of this, we show that the mixture
phases separate for high packing fractions. Furthermore, we obtain micellar
structures in systems dominated by the sphere solvent, which themselves form
ordered structures and thus, indicate hierarchical self‐assembly in PHGO par‐
ticle systems.11

1This chapter is based, in parts, on the article P.W.A. Schönhöfer, D.J. Cleaver, and G.E.
Schröder‐Turk, “Double diamond phase in pear‐shaped nanoparticle systems with hard
sphere solvent”, J. Phys. D: Appl. Phys. 51:464003, 2018. All simulation methods, numeri‐
cal procedures and data analyses of this paper were implemented and executed by me (with
the MD code based on earlier code by Laurence Ellison). Alongside the senior authors, I was
a major contributor to the conceptual questions and research methods addressed in the arti‐
cle and to the interpretations presented as results. I created 5 illustrations and graphs in the
article, and have written the manuscript, with help and comments from Gerd Schröder‐Turk
and Douglas Cleaver. Verbatim quotes from that paper may have been used without explicit
citations.
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8 Mixtures of PHGO‐pears and hard‐core spheres

Up to this point in the thesis, we have focused on the ability of PHGO
particles to self‐assemble into gyroid bilayer phases. Next to confirming the
existence of such a phase in Chap. 4, we answered the question of both how
and why these specific particles create double gyroid structures in contrast
to HPR pears (see Chap. 5 and Chap. 6). Although the gyroid is a very fas‐
cinating structure, it is not the only cubic bicontinuous architecture which
takes a prominent role in self‐assembly, with other known structures being
the diamond [165, 166, 170], primitive [168, 191] and hexagonal [163, 188] sur‐
faces. We now address the formation of the Pn3m double diamond phase in
PHGO particle systems.

Hence, this chapter is structured as followed. In Sec. 8.1 we first introduce
the mathematics behind the transformations between cubic bicontinuous
phases. In Sec. 8.2 we show that small quantities of the sphere solvent in the
PHGO pear system tend to stabilise the Pn3m double diamond phase (in
addition to the double gyroid phase). However, we can demonstrate that,
in contrast to the lipid‐water and copolymer systems, the solvent does not
assemble within the channel domain, but the heterogeneities are differently
resolved by placing the supplementary material in the dividing matrix in‐
stead. In Sec. 8.3 we broaden our studies and determine the phase behaviour
for a range of pear‐sphere mixtures with different solvent concentrations.
We observe that for high enough sphere concentrations the system phase
separates for high packing fractions into regions dominated by pears and
spheres, respectively. Here, the concentration correlates with the transition
packing fraction. Lastly, we show in Sec. 8.3.2 that pear‐shaped particles
cluster together in systems primarily dominated by spheres by forming ”in‐
verse” micellar configurations. Although this assembly can again be associ‐
ated with the non‐additive features of the PHGOparticle system, themicelle
entities showcase interesting collective behaviours with other micelles and
open up the possibility of hierarchical self‐assembly in colloidal systems.

Note here that this chapter should not be misunderstood as an attempt to
complete study of the pear‐sphere mixture. The overall focus of this thesis
is the study of the self‐assembly of bicontinuous structures in pear‐shaped
particle systems. Therefore, we address only a limited specific range of the
vast parameter space of the pear‐sphere mixture.
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8.1 Geometric properties of and structural
transformation between diamond and gyroid

8.1.1 Curvature and domain size heterogeneity

To find promising strategies to generate double diamond phase we have to
familiarise ourselves with the geometric differences between gyroid and di‐
amond structures. Topologically, the gyroid, diamond and primitive surface
are equivalent with a common genus 3 [570]. However, in terms of geome‐
try, the three surfaces exhibit clear distinction. Some of those differences,
like the connectivity of the network domains, have been already addressed
in Sec. 1.2. One aspect, which is believed to take a crucial role in the stability
of such structures in multi particle systems, is homogeneity.

The homogeneity of a surface is measured in terms of the variations of
the Gaussian curvature Δ𝐾. Triply‐periodic minimal surfaces (TPMS) are,
like all other hyperbolic surfaces embedded in Euclidean space, inevitably
heterogeneous and cannot have constant Gaussian curvature 𝐾 (𝑝) at ev‐
ery point 𝑝 on the surface [369, 370] (most evident in the presence of 𝐾 =
0 flat points on TPMS). The curvature heterogeneity is also inherited by
space tilings which are based on TPMS surfaces, which can be seen in Sec.
4.3.4. There, we introduced Steiner’s theorem [395] which describes the
space d𝑉 (𝑝) between an infinitesimal surface patch d𝐴(𝑝) at point 𝑝 on
the surface and its counterpart d𝐴′(𝑝) on the parallel surface at a distance
𝑙. As we have shown in that chapter the volume and – for incompressible
molecules like lipids and di‐block copolymers more importantly – the vol‐
ume shape, indicated by d𝐴′, depend on 𝐾 (𝑝):

d𝐴′ = d𝐴 · (1 + 𝐾 · 𝑙2) (8.1)

which is a special case of Eq. (4.8) where we have used that the mean curva‐
ture is zero, 𝐻 (𝑝) = 0. This suggests that the inhomogeneities in 𝐾 propa‐
gate to the Steiner cells (see definition in Sec. 4.3.4) and, hence, leads to vari‐
ations in d𝐴′ as well. Moreover, the bicontinuous surface structures are het‐
erogeneous in regard to channel sizes [70, 91, 167]. Speaking in more mathe‐
matical terms, the distance 𝑙 = 𝑑MS(𝑝) between the triply‐periodic minimal
surface and itsmedial axis is not uniform either (see definition off themedial
surface in Sec. 1.2.2). In general, the parameter 𝑑MS(𝑝) can be interpreted as
the local channel radius of the labyrinthine domains. Consequently, the
variation Δ𝑙 of a surface is referred to as its packing homogeneity.
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Both the packing homogeneity and the homogeneity in regard to the
Gaussian curvature are believed to be an indicator of the likeliness of the
self‐assembly of the associated surface structures [571, 572]. Hyde used the
curvature homogeneity to predict the energy difference between bicontin‐
uous lipid‐water mesophases [50, 573]. Similarly, the curvature variations
have been accounted for in the Helfrich curvature energy formalism of such
phases [246, 574]. In principle, the higher the degree of heterogeneity is fea‐
tured by the minimal surface the greater is the variation of volume shape
which has to be adopted by the constituent particles within the systems,
according to the Steiner cells. Therefore, the distribution of distances and
Gaussian curvature also yield a description of packing frustration. To com‐
pensate these packing frustrations, themolecules either have to adopt differ‐
ent shapes in different parts of the cubic phase (shape parameter [244, 423])
or, like the PHGO pear‐shaped particles, have to arrange in an interdigi‐
tated bilayer formation which can modulate the bilayer thickness according
to 𝑑MS.

It has been shown that the gyroid is themost homogeneous surface among
large classes of the TPMS structures [91, 167]. Both the Gaussian curvature
and the domain sizes exhibit the least variance. This might be an explana‐
tion of why the gyroid is the most prominent TPMS structure in chemistry
and biology. Specifically, as these observations are in line with normal (QI)
cubic phases in dry soap, which only forms the spatially most homogeneous
case the gyroid (Q250

I ) [77]. The second most homogeneous surface is the
diamond structure. Hence, it is not surprising that the most common and
most studied transition between TPMS, both experimentally [309, 575, 576]
and theoretically [88, 91] is between the double gyroid and the Pn3m double
diamond phase.

8.1.2 Structural transition models

We briefly introduce the different pathways, which have been suggested be‐
tween bicontinuous surface structures. One possible mathematical way to
continuously transform the gyroid into the diamond surface and vice versa
was already indicated in Sec. 1.2. Herewe have introduced in Eq. (1.2) that the
G‐, D‐, and also the P‐surface can be parametrised by the Weierstrass rep‐
resentation. Moreover, it was discussed that these three minimal surfaces
even share the same Weierstrass function (see Eq. (1.3)), up to the prefactor
exp(i𝜃𝐵). Taking the Weierstrass representation into account one of these
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Diamond network

{100}

Gyroid network

{110}tetrahedral
transition

Figure 8.1: The pictorial pathway of the tetrahedral transition between the diamond and
gyroid minimal surface structures described by Squires et al. [309] and Oka [576] based on
the studies by Fodgen and Hyde [88, 91]. The diamond network transforms into the gyroid
network by splitting the four‐branched nodes into two three‐branched nodes and separating
them in the {100}‐direction.

double symmetric structures can be transferred continuously into another
by only shifting one single parameter: the Bonnet angle 𝜃𝐵. This transition
is known as the Bonnet transformation [67].

While a Bonnet transformation from the diamond (𝜃𝐵 = 0) to the gyroid
(𝜃𝐵 ≈ 38◦) is mathematically a viable route, the Bonnet pathway causes the
minimal surface to self‐intersect in the course of the transformation. Self‐
intersections, however, would imply that biological and chemical systems
transitioning from one bicontinuous geometry to another have to introduce
cuts and subsequent folds to the minimal surface. Those rearrangements
would lead to a temporary loss of the bicontinuous nature of the structure
and consequently, a change in topology during the process. Finally, the
surface would have to be recombined to generate the new minimal surface
morphology which then again separates space into two domains. Hence,
the Bonnet transformation and the requisite dissolution and reformation
of bilayers seem to be unrealistically complicated, hardly practical via self‐
assembly and thus is considered as unphysical [575]. Moreover, the transi‐
tion is presumed to be too fast to involve cuts and fusion of bilayer surfaces
[577]

Fodgen and Hyde introduced two alternative continuous transition path‐
ways, neither of which require self‐intersections but conserve topology and
zero‐mean curvature during all stages of the transition [88, 91]. Moreover,
these methods additionally fulfil the same length ratio between the unit
cell sizes of the cubic phases like the Bonnet transformation, also known
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as the Bonnet ratio [578, 579]. Based on the descriptions by Fodgen and
Hyde, Squires et al. [309] and later Oka [576] developed a pictorial rep‐
resentation of the mechanisms (see Fig. 8.1). The first proposed pathway
involves stretches of the unit cell of the diamond into a tetrahedral shape
which corresponds to a distortion into the {100}‐direction of the diamond.
Using this technique the four‐armed junctions of the diamond are effectively
split into two three‐armed junctions of the gyroid, which are connected by
a link, then corresponding to the {110}‐direction (see also Ref. [167] for the
transition mechanism of the associated geometrically centred skeletons). A
similar idea was already suggested earlier by Sadoc and Charvolin [580]. The
second transition route from the diamond to the gyroid, which is induced by
rhombohedral distortions of the unit cell and contains the P‐surface struc‐
ture as an intermediate state, was considered energetically less favourable in
regards to curvature and packing homogeneity [91]. Here, we also remark
mathematical studies by Chen and Weber on further transition models [94].

8.1.3 Phase stability and phase transitions between diamond
and gyroid in soft matter physics

Despite all the different routes mentioned above, the exact structural trans‐
formation at the phase transition between different cubic bicontinuous struc‐
tures is still not a completely solved phenomenon in soft‐matter systems.
Those transformations are, for example, observed in various lipid [309, 581]
and copolymer systems [310, 582, 583, 584, 585]. Nevertheless, it is still valu‐
able to take a closer look at how the double diamond is induced in am‐
phiphilic systems to implement a suitable plan to form cubic phases other
than the gyroid by pear‐shaped particle in PHGO systems. In Sec. 1.3.2 we
already commented briefly on mechanisms both observed in the lipid‐water
and copolymer systems. In both cases, the greater spatial heterogeneity of
the diamond is accommodated by introducing additional material. For in‐
stance, in lipid‐water systems the aqueous channels are swollen by increas‐
ing the water concentration [163, 165] and, therefore, shift for the gyroid
into a morphology with Pn3m symmetry (see Fig. 8.2). On the other hand,
in copolymermelts the extra material is added in the form of homopolymers
which stabilise the double diamond [71, 190]. The additional particles accu‐
mulate at the backbone of the labyrinth‐like domains which otherwise can‐
not be homogeneously occupied by the di‐block copolymerswithout causing
unphysical gaps or greatly penalised chain stretches to reach the distant re‐
gions of the channel domain.
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Figure 8.2: The phase diagram of lipid‐water systems in terms of water concentration and
temperature is shown. By increasing the water content form the Ia3d double gyroid structure
the bilayer arrangement eventually transitions into the Pn3mdouble diamond configuration.
Adapted, with permission, from from [165].

Inspired by those findings, we attempt to tweak the self‐assembly of the
PHGO particle model such that the system equilibrates into a diamond for‐
mation instead of the gyroid. Thus, we extend the monodisperse PHGO
particle systems in the following and inject solvent particles into our simu‐
lations. We use the simplest solvent model, spherical particles, that inter‐
act via hard interactions with the pear‐shaped particles and with each other
(hard sphere fluid). Spheres are a convenient way to include additional mat‐
ter without unnecessarily complicating the mixture by a second aspherical
colloid and to potentially resolve the geometrical frustrations which prevent
the formation of the double diamond in the one‐component system.

8.2 The dry limit of PHGO pear‐sphere‐mixtures:
The Pn3m diamond

In the first part of this section, we acquaint ourselves with the additional
particle species by staying close to the one‐component pear‐shaped particle
system and studying the “dry limit” of the mixture with the sphere solvent
at very low sphere concentrations. The motive behind restricting us to very
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low solvent volume concentrations Φsph is driven by the intention to create
a double diamond bilayer structure similar to the observed gyroid structure.
Here, we make two intuitive guesses which probably have to be fulfilled in
the case that the double diamond is indeed achievable by adding a second
particle species. If the number of spherical particles is too small, the sol‐
vent can not take effect and only leads to defects in the gyroid. The second
aspect to consider is that an exceeding sphere concentration likely leads to
the spheres interfering with the pear arrangement by a greater margin and,
hence, destroying the integrity of the pear bilayers. But also two‐phase co‐
existence or phase separation might be possible (see Sec. 8.3). We show that
Φsph = 1−2 % spheres stabilize the double diamond phase.

8.2.1 Double diamond structures in PHGO pear‐sphere‐
mixtures

Simulation set‐up

To gather the simulation data, we perform MD and MC simulations of pear‐
shaped particles with a small concentration of hard spheres. For the inter‐
actions between the particles we use both hard‐core (MC) and the WCA po‐
tential (MD) with the PHGO approximation (see Eq. (2.17)). Here we want to
highlight again that even though this overlap function results in a sufficiently
accurate hard body interaction between pears and spheres, the pear‐pear in‐
teraction reveals some inaccuracies in terms of the Beziér curve representa‐
tion. Those can cause the blunt ends of pears to slightly overlap and reach
areas which cannot be obtained by hard spheres (see especially Sec. 2.2 for a
detailed study). Moreover, the overlap volume of two pears is overestimated
when the particles are neither parallel nor antiparallel. The simulations are
carried out using the same methodology as in Sec. 4.1, adjusted to include
the hard‐sphere solvent. The system is set up within a cubic box with three‐
dimensional periodic boundary conditions and volume 𝑉box and analysed at
an overall global packing fraction

𝜌𝑔 =
𝑁pear·𝑉pear + 𝑁sph·𝑉sph

𝑉box
= 0.56. (8.2)

The particle volume ratio between a single solvent sphere and a pear‐
shaped colloid is chosen to be 𝑣 =

𝑉p
𝑉sp

= 9 such that the spheres are small
enough to accommodate geometrical defects. Furthermore, the aspect ratio
of the pear‐shaped particles 𝑘 is set to 2.75 and the tapering parameter 𝑘 𝜃
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tapering angle is set to 3 (this corresponds to a tapering angle of 19◦). Here,
we decided to deviate from the otherwise used reference pear‐shape with
𝑘 = 3 and 𝑘 𝜃 = 3.8, as the system with slightly shorter particles, seems to
equilibrate into a diamond‐like structure faster, such that we were able to
obtain more data. However, the following observations also hold for parti‐
cles with the reference pear‐shape used for the gyroid simulations in Sec. 4.1.
The smaller particle shape is shown, to scale, in Fig. 8.3.

Themixture is in the dry limit with a low number of spheres 𝑁sph = 90 and
a majority of pears 𝑁pear = 890 (𝑛 = 𝑁pear

𝑁sph
= 89

9 ).22 The number of particles are
not randomly chosen. Instead they are selected such that the simulation box
theoretically holds a 2×2×2 double diamond unit cell arrangement, in case
that the pear‐shaped particle systems satisfy the Bonnet ratio 𝑎𝐺

𝑎𝐷
= 1.576

[67, 90, 578]. Here, 𝑎𝐺 denotes the unit cell size of the gyroid phase in
the monodisperse PHGO particle system which has been obtained in Sec.
4.2.2 whereas 𝑎𝐷 symbolises the equivalent unit cell size of the anticipated
double diamond phase. Additionally, the MD simulations are performed
in the NVT‐ensemble with adjustable walls, time steps Δ𝑡 = 0.0015 and di‐
mensionless temperature 𝑇 = 1 (the Boltzman constant is set to 𝑘𝐵 = 1).
All simulations are run for 20, 000, 000 time steps. The systems seem to
reach sufficient equilibration to identify the diamond phase after around
5, 000, 000 steps.

The simulations are initiated from a low density 𝜌𝑔 = 0.3 and slowly com‐
pressed to the final packing fraction (see Eq. (8.2)) where the double gyroid
forms in a monodisperse pear‐particle system (𝜌 > 0.54). Similarly to the
previous simulations, we can ensure by advancing the assemblies from an
unordered isotropic phase that the developed diamond macrostructure is
not enforced by the initial conditions. Additionally, we also produced an
artificial smectic phase as an initial starting structure which proves to be
unstable and eventually turns also into the double diamond structure.

Stability of the double diamond

In all our simulations, generated from different isotropic initial configura‐
tions a similar spatial arrangement of pear‐shaped particles as described
previously for the double gyroid is obtained after equilibration (see Fig. 8.3).

2For pears with 𝑘 = 3 and 𝑘 𝜃 = 3.8 the combination of 𝑁sph = 82 and 𝑁pear = 820 has to be
used to get similar results
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Figure 8.3: An assembly of 890 pear‐shaped particles and 90 hard‐core spheres forming the
2×2×2 unit cell of the double diamond structure (𝑘 = 2.75, 𝛼 = 19◦, 𝜌 = 0.56, 𝑣 = 9,𝑛 = 89

9 ).
Positions of the blunt ends determine to which of the two distinct domains (red/blue) the
particle belongs. The green surface represents the double diamond minimal surface (DMS)
which separates these domains. The spherical segment is a two‐dimensional sketch, recre‐
ated from the indicated part in the pear‐shaped particle system to highlight the special ar‐
rangement of particles. On the left, only the position of the blunt ends is depicted as spheres
to showcase the labyrinth‐like channels (first column). The system is shown in the {100}‐,
{110}‐ and {111}‐direction and compared with the channel domain (second column) and the
skeletal‐graph (third column) of the double diamond structure.

The particles interdigitate with their thin ends at the minimal surface in‐
terface and form two network domains with their blunt ends as sketched
in Fig. 8.3. The interdigitation, where pears effectively protrude through the
minimal surface, collectively leads to an effectively wider space per molecule
near the minimal surface. Like in the gyroid phase this finding is fundamen‐
tally different to the intuitive interpretation of the molecular shape concept
[50, 244], which holds for lipid or diblock copolymer systems, where for neg‐
atively curved surfaces the space occupied by an individual particle is largest
near the membrane and decreases in the normal direction (see Sec. 4.3.4).

The resemblance to the double diamond structure becomes visible by ap‐
plying the clustering algorithm, described in Sec. 3.4.4, to the particle mix‐
ture and extracting both labyrinth domains. In particular, this procedure
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reveals that the morphology indeed corresponds to a 2×2×2 unit cell of the
bicontinuous Pn3m double diamond network structure. The two networks
are shown on the left‐hand side of Fig. 8.3, where only the positions of the
blunt ends are depicted by spheres. The resulting set of points can be divided
nicely into two regions by the double diamond minimal surface. Addition‐
ally, the set exhibits the typical 4‐branched notes and the 2‐ and 6‐fold rota‐
tion symmetry along the {100}‐ and {111}‐direction, respectively (see Fig. 8.3).
The two‐dimensional projections of the point cloud encoding the blunt end
coordinates lead to square ({100}‐direction) and hexagonal ({111}‐direction)
patterns. Those match perfectly with the graph of the cubic diamond struc‐
ture. Likewise, the 2D projections in the {110}‐direction coincide to a high
degree as well.

We have observed the spontaneous formation of the double diamond
structure in simulation boxes of size (1𝑎𝐷)3 and (2𝑎𝐷)3. For a simulation
box with size (4𝑎𝑑)3 (𝑁pear = 7120, 𝑁sph = 720), we have not achieved a
clear identification of the symmetry of the double diamond via compression
form an isotropic phase. Even though we still observe interdigitation, the
system forms single nodes characteristic for both the double diamond (four
branched nodes) and the double gyroid (three branched nodes). This ob‐
servation is also made for large systems where the number of particles is
not roughly commensurate with the Bonnet ratio. Those findings lead to
the assumption that the particle number/size ratio to form a pure double
diamond phase might not be chosen perfectly. Smaller systems (like the
2×2×2 system) can distribute the extra material more easily within the sim‐
ulation box and consequently, conform to a potential lack of additional ma‐
terial better. In contrast, an insufficient distribution of the solvent spheres
within larger systems can locally cause areas with a deficit concentration of
spheres expressed in the formation of a gyroid‐like architecture, and some
areas with a larger concentration of spheres sufficient to enable stabilisation
of a diamond‐like channel system (the mechanism will be discussed in the
next section).

Another explanation, why the diamond phase is not observed for large
systems, might be that the diamond phase is dynamically harder to reach
and needs many computational steps to equilibrate. To resolve this possible
issue, we create another simulation run where we already start from a 4×4×4
double diamond unit cell arrangement. Here, a snapshot of the equilibrated
2×2×2 diamond system is copied eight times, where each copy serves as a
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basis for one octant of the initialised 4×4×4 configuration. By propagating
this system in time, the double diamond stays stable even after 20,000,000
simulation steps (see Fig. 8.4), but also exhibits the fluid characteristics of a
liquid crystal phase. Even though this should not be interpreted as a final
proof that the double diamond is indeed the final state of initially disor‐
dered systems, these simulations indicate that the diamond phase is at least
metastable.

Pn3m symmetry

Furthermore, evidence of the double diamond structure and the Pn3m sym‐
metry is provided by the three‐dimensional structure factor S(k) of the 4×4×4
unit cell arrangement. For this we apply the same Fast Fourier Transforma‐
tion algorithm as described in Sec. 4.2.1 to the density profile of the blunt end
point cloud which represents the two channel domains. In Fig. 8.4 represen‐
tative 2D projections of the resulting scattering pattern are depicted. They
reveal a 6‐ and 3‐fold rotational symmetry (plane orbifold group: ∗632) in
the {111}‐direction, 4‐fold rotational symmetry in the {100}‐direction (plane

{100}: *442 {110}: *2222 {111}: *632

Figure 8.4: A representative snapshot (only the positions of the blunt ends are considered)
of a system of 𝑁pear = 7120 PHGO particles and 𝑁sphere = 720 spheres in a 4×4×4 unit cell
arrangement of the double diamond (𝜌𝑔 = 0.56). The pears (𝑘 = 2.75 and 𝑘 𝜃 = 3.0) are 𝑣 = 9
times larger in volume than the spheres. Already starting from a double diamond, the system
seems thermodynamically stable. The high‐symmetry projections of the three‐dimensional
scattering patterns are depicted in the red boxes. They reveal a 4‐fold symmetry in the {100}‐
direction, a 2‐fold symmetry in the {110}‐direction and a 6‐fold symmetry in the {111}‐direction
characteristic for the Pn3m double diamond. In the violet, boxes are the corresponding cell
structures of the symmetry groups. Hexagons represent 6‐fold rotations, squares 4‐fold rota‐
tions, triangles 3‐fold rotations and rhombi 2‐fold rotations. The black lines describe mirror
lines [586, 587, 588, 589].
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orbifold group: ∗442) and a 2‐fold symmetry in the {110}‐direction (plane
orbifold group: ∗2222).

Moreover, the reciprocal lattice vectors are determined via the three‐dimen‐
sional scattering data. As the lattice vectors form a primitive cubic lattice in
Fourier‐space, also the channel structure in real space follows a primitive
cubic symmetry. Thus, we identify the space group as Pn3m, matching the
symmetry group of the double diamond.

8.2.2 Stabilisation mechanism of the double diamond

To investigate why the double diamond is favoured over the gyroid, we have
to take a closer look at the position of the spherical solvent particles. Like
the arrangement of the pear‐shaped particles also the dominant location
of the solvent particles in the simulations turns out to interestingly differ
from intuition and earlier findings in other double diamond forming systems
where the packing frustration is released by the solvent/additional material
by swelling the network domain. In our simulation, this would correspond
to the hard spheres accumulating at the blunt ends of the pear‐particles and
fill space within the channel domains.

The two‐dimensional pear‐sphere pair correlation function, however, re‐
veals a mostly opposite behaviour (see Fig. 8.5). In the isotropic phase, the
spheres distribute uniformly around the pear particles without any signifi‐
cant preference for specific locations (Fig. 8.5a). By increasing the density,
however, the spheres are ‘pushed’ towards the thin ends of the pears where,
as seen in Fig. 8.5b, a higher concentration of spheres can be observed. This
observation coincides with the aggregation of spheres around the minimal
surface (Fig. 8.6a shows a symmetric bell‐shaped distribution), such that
the solvent fills additional space where the pears interdigitate. Note here
that this mechanism benefits from the earlier addressed small disparities
between the perfect hard body interactions and the used PHGO potential.
Consequently, we have to take the role of minor non‐additivity effects be‐
tween pear‐shaped particles into account, which probably enhance the over‐
all tendency of spheres to gather around the thin rather than the blunt ends
of pears.

To determine the location of the spheres in more detail, we identify the
Gaussian curvature of each point on the diamond minimal surface which
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Figure 8.5: The two‐dimensional pear‐sphere‐correlation function 𝑔(𝑧, 𝑟) of a system in the
isotropic phase at 𝜌𝑔 = 0.45 (a) and the cubic diamond phase at 𝜌𝑔 = 0.56 (b) is shown.
𝑧 is the distance between the pear’s and spheres central position along the orientation vec‐
tor of the pear‐shaped particle. 𝑟 is the radial component of the distance between the pear
and sphere centre. The dashed white lines determine the parallel surface of the pear parti‐
cles. The small numbers indicate the distribution of spherical particles within a given radial
(black) or polar (white) sector in percentage. Only particles lying within the outmost drawn
parallel surface are considered.

is closest to the centre of a hard sphere. Fig. 8.6b indicates that the ma‐
jority of spheres are located around areas with high negative Gaussian cur‐
vature. This observation is consistent with the local effect of spheres on
their surrounding pear particles. By aggregating close to the thin ends of
the pears the spheres act as ‘disruptive’ elements between the interdigitat‐
ing pear sheets and hinder pears from protruding into the opposite domain
(see the sketch in Fig. 8.3). However, they can also be seen as a filler mate‐
rial which allows neighbouring pears to arrange in a much wider angle and,
therefore, induces a greater amount of negative curvature in the system.

This mechanism bears some similarity to lipid bilayers which encapsu‐
late biomolecules like peptides or proteins [590, 591]. In these systems, it
is widely assumed that the proteins are inserted within the membrane‐like
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Figure 8.6: (a) The distribution of spheres around the diamondminimal surface is displayed.
Therefore, the distance 𝑑 (𝑥) := inf{dist(𝑥, 𝑞) |𝑞 ∈ DMS} of each solvent particle to its closest
point 𝑝 ∈ DMS where dist(𝑥, 𝑝) = 𝑑 (𝑥) on the diamond minimal surface (DMS – indicated
in green) is calculated. Positive/Negative distances imply that the sphere lies in the red/blue
channel domain. The black line indicates a Gaussian fit to highlight the bell‐shaped distribu‐
tion. (b) The position distribution of the spheres in regards to Gaussian curvature is plotted.
Here, the absolute value of the Gaussian curvature |𝐾 (𝑝) | at its closest point 𝑝 on the DMS
is assigned to each solvent particle |𝐾 (𝑥) | := |𝐾 (𝑝) |. The dashed line indicates the maximal
curvature which also responds to the maximal curvature in the gyroid phase in Sec. 4.3.4.

‘wedges’ and act as either curvature relief or a curvature generation agents
[592, 593, 594]. The resemblance becomes even more apparent by consid‐
ering studies of monoolein bilayer phases which transition from the gyroid
to the diamond morphology by integrating specific membrane proteins into
the bilayers [595, 596]. It has been suggested theoretically and computa‐
tionally that in those systems the additives separate into specific locations
on the minimal surface, like the areas of lowest or highest negative Gaussian
curvature [597, 598, 599]. However, experimental studies on encapsulated
biomolecules within the diamond phase indicate in contrast that proteins
do not showcase any preferential segregation in terms of Gaussian curva‐
ture [600, 601].

The integration of spheres into the “pear‐bilayer” to create curvaturemight
also be an explanation for the stabilisation and preference of the double di‐
amond phase over the double gyroid. In one of our earlier chapters, in par‐
ticular Sec. 4.3.4, we determined a correlation between the interdigitation
depth and the local Gaussian curvature of the system. The further pears
reach into the realm of the opposite channel system; the more curvature is
contributed to the interface between both pear particle clusters. In case of
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8 Mixtures of PHGO‐pears and hard‐core spheres

the gyroid and diamond minimal surface formed by the pear‐shaped parti‐
cle systems, the maximum negative Gaussian curvature is roughly the same.
As we set up the simulation box such that the unit cell length between
the diamond 𝑎D (half of the simulation box size) and the gyroid phase of
the monodisperse pear‐shaped particle system 𝑎G corresponds to the ra‐
tio obtained by the Bonnet transformation the underlying minimal surfaces
are isometric. Isometric minimal surfaces are locally indistinguishable and,
therefore, preserve area and Gaussian curvature [90].

However, the isometry between both structures causes two issues in form‐
ing the diamond structure, which can not be resolved solely by pear particles
simultaneously. In the diamond phase, pears are not able to interdigitate as
deeply as in the gyroid phase without creating gaps in the channel domain.
Similarly, by filling the gaps with their blunt ends, the pear bilayers are less
interdigitated such that they lose their capability to generate enough cur‐
vature via interdigitation. Consequently, there are technically two possible
mechanisms of how additional material can stabilise the double diamond:

1. The spheres fill the gaps in the channel domains, such that the pears
can penetrate the minimal surface efficiently.

2. The pears occupy the space around the labyrinthine backbone of the
double diamond with their blunt ends. The system then compensates
its loss in creating high negative Gaussian curvature by interdigitation
by placing the solvent at the minimal surface and by increasing the
amount of curvature locally accordingly (probably more favourable).

8.3 The dilute limit of PHGO pear‐sphere mixtures

Our strategy to induce new phases upon the addition of a spherical solvent
turned out to be fruitful, evident in the formation of the double diamond
phase. However, so far only a tiny fragment of the parameter space of the
pear‐sphere system has been investigated. Therefore, the behaviour of more
diluted mixtures with a solvent size of 𝑣 = 9 outside the dry mixture limit
is analysed in the following by changing the number ration 𝑛 and the sol‐
vent content is increased over 2% in our simulations.33 Here, we want to

3Another route to change the sphere volume concentration is by shifting the size ratio be‐
tween pear‐shaped particles and hard spheres 𝑣. Although this strategy is very intriguing
and should be investigated in the future, we decide to take the alternative and more obvious
path by changing the number ration 𝑛 instead. This approach is probably the more physical
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stress that the self‐imposed limitation to only study the 𝑛‐dependence, im‐
plies that we cannot explain pear‐spheremixtures fully in the next sections.44

Thus, the following should be seen as a larger preliminary investigation for
future studies to come.

8.3.1 Phase separation

In this part of our studies, several MD simulations with different sphere con‐
centrations are performedwhere the total number of particles 𝑁=𝑁pear+𝑁sph
= 2500 is kept constant. However, we first cover a range where the pear‐
shaped particles with 𝑘 = 3 and 𝑘 𝜃 = 3.8 are still the dominant component
(Φsph < 0.15) to increase the solvent contribution to the free energy slowly.
We start from a wholly mixed isotropic phase and compress the systems
to densities where the spontaneous formation of the PHGO particles into
TPMS structures has been observed. Otherwise, the same protocol as in the
dry limit has been used.

All systems within this composition range reveal warped, interdigitated
bilayer phases, which are of the same essence as those observed in the gy‐
roid and diamond phase. This can be seen in the first column of Fig. 8.7,
where some representative structures are depicted for a global density of
𝜌𝑔 = 0.56. However, already at first glance, it is evident that the bilayer
formations do not exhibit the same degree of symmetry and are traversed
by the sphere solvent. This behaviour is also shown by the density distribu‐
tion of the blunt ends. Even though the coordinates of the blunt ends still
suggest a complex channel network with 3‐ and 4‐branched nodes, the clus‐
tering algorithm fails to separate the pear‐shaped particles into two distinct
clusters and instead detects a single large, self‐intertwined and disordered
“sponge”‐like network structure (see the second column in Fig. 8.7).

Those observations lead to the conclusion that for mixtures with Φsph >
0.02 the systems apparently cannot accommodate the additional spheres
within the ordered gyroid or diamond configurations. However, the spheres
are not randomly distributed within the simulation box either. From the

method as it can be interpreted as simply increasing or decreasing the content of the same
solvent species.
4To achieve such a complete description, additional comprehensive studies of different com‐
binations of 𝑣, 𝑘 and 𝑘 𝜃 have to be executed, which are not subject to this chapter.
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PHGO
mixtures

system blunt end solvent

(a)
Φsph=5%

(b)
Φsph=8%

(c)
Φsph=10%

Figure 8.7: Representative mixtures of PHGO pear‐shaped particles (𝑘 = 3,𝑘 𝜃 = 5.4)
with a hard sphere solvent (𝑣 = 9) at a global density 𝜌𝑔 = 0.56 for solvent concentra‐
tions Φsph = 0.05 (first row: 𝑁pear = 2164,𝑁pear = 1025), Φsph = 0.08 (second row:
𝑁pear = 2096,𝑁pear = 1640) and Φsph = 0.10 (third row: 𝑁pear = 2050,𝑁pear = 2050). The
structures are illustrated in the cluster representation (first column) and the blunt end rep‐
resentation (second column) where the colors indicate the cluster affiliation. In the third
column only the sphere solvent is shown.

illustrations in the third column in Fig. 8.7 one gains the impression that the
solvent particles form local clusters which become larger for higher solvent
concentrations.

To investigate this further, we determine the number of sphere clusters
𝑀 and the number of spheres within the largest cluster 𝑚 for the different
concentrations during the compression process. Here we implement a sim‐
ilar clustering algorithm as described in Sec. 3.4.4, with the only difference
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Figure 8.8: The phase separation in mixtures of PHGO particles (𝑘 = 3 and 𝑘 𝜃 = 3.8) and a
hard sphere solvent (pear‐sphere volume ratio 𝑣 = 9) is traced for different solvent concentra‐
tionsΦsph during the compression. Here the process of (a) the number of spheres within the
larges sphere cluster 𝑚 in % of the total particle number 𝑁sph and (b) the number of sphere
clusters 𝑀 is determined. The number of overall particles within the simulation box is set to
𝑁 = 𝑁pear = 𝑁sph = 2500, for all systems. All systems exhibit demixing upon compression.

that instead of the position of the pear blunt ends the coordinates of the
solvent spheres generate the point pattern to be clustered. Here, the sphere
particles are assigned to the same group if they are within a cut‐off radius
which we set to 𝑟cut = 3𝑟sph.

The results are plotted in Fig. 8.8. For low densities, all mixtures exhibit
many small clusters where most of them consist only of one single sphere.
Hence, no particular clustering mechanism is indicated. The predominant
amount of single particle clusters implies that the pears and spheres do not
phase separate in the low density state. However, when compressing the sys‐
tem and especially when the pears begin to arrange into bilayers (indicated
by the kink in 𝑀 Fig. 8.8b), also the spheres start to accumulate leading to
larger and fewer clusters. Herewe also note that systemswith smaller solvent
concentration tend to aggregate into multiple clusters of equal size, whereas
for a more significant amount of spheres (Φsph > 0.08) the entropy is max‐
imised by generating one single large sphere domain. Hence, the system
divides the two particle species by forming regions dominated by pears and
regions enriched by spheres. Note that finite size effects have to be consid‐
ered here. It might be possible that the demixing is hindered by fixed finite
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8 Mixtures of PHGO‐pears and hard‐core spheres

number of particles 𝑁pear and 𝑁sph within the simulation such that the plots
in Fig. 8.8 might vary.

This mechanism gives the pears an environment to locally assemble into
curved bilayers which are hardly disrupted by the solvent. However, those
bilayers have to accommodate the large sphere clusters which act as no‐
table defects in the network structure and destroy the integrity of the highly
symmetric TPMS configurations. A similar kind of phase separation is also
observed in mixtures of hard spheres and aspherical particles where hard
rod‐like particles shed the hard sphere solvent into separate regions to form
nematic phases [482, 489, 494]. Also in simulations of mixtures of spheres
and HGO ellipsoids, which are the inversion symmetric equivalent of the
PHGO pear‐shaped particles, phase separation has been detected [602].

8.3.2 “Inverse” micelle structures

The phase separation in the previous systems and the spontaneous cleans‐
ing of solvent particles from the pear‐enriched regions are distinct indica‐
tions that the assembly into interdigitated bilayers is an entropically very
favourable PHGO pear‐shaped particle arrangement. The formation of
network‐like domains, on the other hand, is only feasible in mixtures con‐
sisting predominantly out of pear‐shaped particles. It is quite intuitive to
assume that there have to be enough pear‐shaped particles present to enable
the collective generation of elaborate labyrinthine network structures. Thus,
we are interested inmixtures on the other end of the concentration spectrum
where the spherical solvent embodies the dominant particle species and the
number of pears is insufficient for channel creations.

In Sec. 6.3.2 we already discussed one variant of highly diluted mixtures,
namely two PHGO pear‐shaped particles within a pool of spheres. Here, we
observed that the pears either arrange in an anti‐parallel or a V‐configuration
(see Fig. 6.8c+d) due to depletion attractions which are consistent with the
interactions between two neighbouring pears within bilayers. Proceeding
from this extreme limit we performMD simulations withΦsph = 0.9 (𝑁pear =
50, 𝑁sph = 4050) to investigate how those two‐particle‐interactions change
by adding more of the minority component. The pear shape is defined by
𝑘 = 3 and 𝑘 𝜃 = 3.8. The other parameters are the same as previously.

The simulations start from the isotropic phase (𝜌𝑔 = 0.2) and are first
slowly compressed to a global density of 𝜌𝑔 = 0.42, where the pear‐shaped
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PHGO
mixtures pear particles blunt end

(a)

Φsph=90%
𝜌𝑔=0.42

(b)

Φsph=90%
𝜌𝑔=0.44

(c)

Φsph=50%
𝜌𝑔=0.49

Figure 8.9:The formation of inversemicelles in pear‐sphere‐mixtures dominated by the hard
sphere solvent (Φsph = 0.9, 𝑁pear = 50, 𝑁sph = 4050) at (a) a global density 𝜌𝑔= 0.42 where
two separate micelles are observed, and (b) at 𝜌𝑔= 0.42 where the two clusters merge into
a single strand‐like micelle. (c) The inverse micelles form larger geometries in systems with
a higher pear content (Φsph = 0.5, 𝑁pear = 304, 𝑁sph = 2736) and indicate hierarchical
self‐assembly. The shape of the pears is defined by 𝑘 = 3 and 𝑘 𝜃 = 3.8. The volume ratio
between pears and spheres is set to 𝑣 = 9. Only the pear‐shaped particles are depicted. In
the simulations the void space is filled with the solvent.

particles start to accumulate noticeably. After equilibration, the pear‐shaped
particles form two clusters which we will refer to as “inverse micelles” and
are shown in Fig. 8.9a. Here the particles come together with their thicker
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8 Mixtures of PHGO‐pears and hard‐core spheres

moiety which effectively constitutes the centres of the spherical, micellar
mesostructures. On the other hand, the pear‐shaped particles face the sol‐
vent with their thin parts and, thus, establish a spiky interface between the
inside of the inverse micelle and the diluted outside. Each of these micelles
consists of roughly 19 ± 4 pears.55

The observed assembly into inverse micelles is again contrary to the for‐
mation of micelles, for example in lipid‐water systems above a critical mi‐
celle concentration [603, 604, 605]. Additionally, it can also be described
as counterintuitive. By simple geometric arguments based on excluded vol‐
ume ideas (see also Chap. 6), amphiphilic liquid crystal particles adopt lo‐
cal morphologies with a shape parameter which is tapered towards and not
away from the centre of the micelle [50]. With this shape parameter, the
molecules can successfully fill the inside of the micelle and additionally cre‐
ate a compact packing (see Fig. 1.1). The pears expose a larger surface area
to the solvent by placing the pointy tips at the outside rather than the blunt
ends. This specific orientation suggests a higher surface tension.

However, the inverse micelle formation is in accordance with the deple‐
tion behaviour of PHGO particles and hence, has to be attributed to the
non‐additive features of the PHGO contact function once more. The highly
anisotropic effective attraction of the PHGO pears causes the spheres to ac‐
cumulate near their tips. Thus the whole micelle cluster can be interpreted
as an array of pairs of particles each arranged in the V‐configuration which
is stabilised due to the non‐additive overlaps of the pears’ blunt ends.

The simulations are reminiscent of micellar formations which have been
observed in colloidal systems of asymmetric dumbbells [240]. Here, the
surface of the smaller spherical part is roughened, such that the depletion
interactions between the two smooth components (the larger spheres) are
greater than between other parts of the dumbbell. This effect can be nicely
compared to the non‐additive features in our simulations and even seen as a
valid realisation of non‐additivity in experiments in general. The difference
in surface roughness leads to similar clusters of dumbells where the larger
spheres are placed in the centre.

After the two micelles are formed both mesostructures act as collective
entities, approach each other, and eventually interdigitate with their spikes.

5We have analysed a total of 1000micelles formed in 20 different simulation runs
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This attraction is attributed to their depletion forces. By increasing the
density over 𝜌𝑔 > 0.44 the micelles merge into a larger, elongated spiky
assembly (see Fig. 8.9b). In those configurations, the blunt ends meet on
a line rather than one central point. It might be possible to relate this ar‐
rangement of the bunt ends to packings of hard or soft spheres within a tight
cylindrical confinement [606, 607, 608, 609, 610]. Here, the achiral spheres
break symmetry spontaneously by building chiral arrangements for some
ratios between sphere radius and the radius of the confining cylinder. Also,
some of the elongated pear micelles exhibit a slight twist along the prolate
axis which might be referred to one of the aforementioned sphere packings
as an underlying configuration. However, it is challenging to determine this
twist exactly as the elongated inverse micelles are very short and their back‐
bones are not necessarily straight but can be bent.

The clustering and merging of the micellar entities suggest that the self‐
assembly processes of highly diluted PHGO particle systems follow a hier‐
archical protocol. First, the pears produce some micellar structures which
then themselves act as components for larger geometries. The hierarchical
self‐assembly becomes even more apparent by shifting the mixture concen‐
tration in favour of the pear‐shaped particles to Φsph = 0.5. In this regime,
the system forms a block of pears which consist of multiple small inversemi‐
celle clusters. It is conceivable that for larger system sizes this configuration
equilibrates into a gyroid or diamond structure surrounded by the sphere
solvent, comparable to cubosomes [76, 164, 611, 612, 613, 614, 615]. This hy‐
pothesis, however, can not be resolved in this thesis due to computational
constraints.

8.4 Conclusion and outlook

To summarise, we have shown that the introduction of small quantities of
hard spheres appears to stabilise the bicontinuous Pn3m cubic diamond
phase in pear‐shaped particle systems (note the caveat of equilibration is‐
sues for large systems > 2×2×2 in Table 8.1). In this stabilisation process,
the system showcases a new way to overcome the additional spatial het‐
erogeneities in relation to the double gyroid phase, namely by placing the
spheres around the minimal surface and aiding the system to create surfaces
of higher negative Gaussian curvature.
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Pear shape Particle number Pn3m
𝑘 𝑘 𝜃 𝑁pear 𝑁sph

Protocol
phase

Unit cell Ref.

2.75 3.0

894 89
compression 3

2×2×2 Fig. 8.3
init. smectic 3

7152 712

compression 7 –
init. smectic 7 –
init. diamond 3 4×4×4 Fig. 8.4

3.0 3.8

820 82
compression 3

2×2×2
init. smectic 3

6560 656

compression 7 –
init. smectic 7 –
init. diamond 3 4×4×4

Table 8.1: Simulation protocols where the formation of the Pn3m double diamond phase
in PHGO pear‐sphere mixtures are successfully achieved (3) and where the spontaneous
organisation failed (7). The list is dedicated to mixture with a hard sphere solvent 𝑣 = 9. The
diamond phase is obtained at a density of around 𝜌𝑔 = 0.56.

This observation gives rise to an alternative perspective on self‐assembly pro‐
cesses. In terms of new synthesis strategies, our results can give an outlook
to new possible methods to form the double diamond out of the gyroidmor‐
phology. For example, some molecules forming cubosomes can swell spe‐
cific domains of the bicontinuous structure by addition of a low concentra‐
tion of a solvent [613, 615]. Designing molecules with solvophilic ends which
are placed within the separatingmatrix domain rather than within the chan‐
nel domain may bear the capability to form double diamond nanostructures
in a similar fashion as the pear‐shaped particle system.

Furthermore, we have shown that pear‐dominated mixtures phase sepa‐
rate into pear and multiple sphere enriched domains for sphere concentra‐
tions Φsph > 0.08. Even though neither the diamond nor the gyroid struc‐
ture could be recognised, the demixing was identified as a mechanism to
facilitate the spontaneous and advantageous formation of warped bilayer
structures. In this way the sphere solvent does not interrupt the interdig‐
itation of pears, however, acts as several defect agents, which have to be
incorporated by the bilayers and consequently alter or randomise the un‐
derlying network morphology.
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Lastly, we also studied highly diluted mixtures, where the PHGO pear‐
shaped particles are the minority component and unable to form network
structures. We observed the formation of inversemicelles, where the thicker
moiety forms the centre. This mesostructure could be attributed to the
presence of non‐additive features in the PHGO contact function. The slight
overlaps of the pear shapes enable the particles to assemble in a geometri‐
cally counterintuitive fashion in contrast tomicelles in nature and chemistry,
which adopt a shape parameter with the thick ends at the micelle‐solvent
interface. The micelles themselves act as colloidal particles and assemble
into even larger structures indicating hierarchical self‐assembly.

The observed self‐assembly in a hierarchical order raises the question if
also the gyroid in the monodisperse PHGO particle system and the dia‐
mond in the dry mixture limit can be recognised as hierarchically structured
phases? We also observed a significant clue in the isotropic phase in Sec. 5.1,
which reinforces this assumption. At densities slightly below the transition
density between isotropic and gyroid phase, we reported the existence of
small thread‐like pear clusters which were identified as precursors of inter‐
digitated bilayer formation. Those small clusters, however, can be equally
constructed as a first stage of the self‐assembly which then combine into the
final bicontinuous channel structure. More efforts are needed to examine if
the gyroid is indeed built form specific sub‐cluster components.66

Inverse micelle stability in two‐dimensional NAHPR pear‐shaped
particle systems

As a closing remark, we want to take up the threads of the discussions made
in Sec. 6.4 and address once more the potential route how to realise phases,
observed in PHGO particle systems, using pear interactions based on the
HPR model. In this chapter, we established the approach to introduce non‐
additive features to the HPR contact function to which we then referred to as
theNAHPR‐model. We have shown that some of the depletion behaviours of
the PHGO particles have been successfully mimicked, whereas other issues

6One possible method is the analysis of topological properties of the gyroid using persis‐
tent homology [616, 617, 618]. This mathematical tool, where information about topologi‐
cal features like rings and cavities embedded within a structure can be extracted, has been
successfully applied to characterise microscopic order and shapes in granular, colloidal and
amorphous materials [619, 620, 621, 622, 623, 624, 625] and have been used to identify hier‐
archical structures [626]. Thus, persistent homology seems to be an auspicious next step to
investigate the gyroid phase further.
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could not be resolved yet. However, especially the replicated formation of
the V‐configuration, where particles are in a splayed position, raises some
promising arguments that the NAHPR model might also be suitable to form
inverse micelle structures.

Therefore, we present some preliminary studies on the inverse micelle
formation in the NAHPR‐model. The procedure to obtain the NAHPR con‐
tact function is explained in Sec. 6.4. However, due to the numerically very
demanding calculations of the contact function during the simulations, we
reduce the complexity in the following significantly by only analysing two‐
dimensional NAHPR pear‐disk mixtures. With those simulations, we ob‐
viously are not able to reproduce the exact three‐dimensional behaviour of
diluted pear mixtures. Nevertheless, these results shed light on the possi‐
bilities provided by non‐additivity and have to be seen as preparatory work
for studies to come. Hence, Monte Carlo simulations are performed with
𝑁pear = 12, 𝑁disk = 15000 and 𝑎 =

𝐴pear
𝐴disk

= 15 which corresponds to Φdisk =

0.98.77

The pear shape is defined by 𝑘 = 2.75 and 𝑘 𝜃 = 1.9. This particle outline
is chosen such that the 12 pears are pieces of a perfect two‐dimensional mi‐
celle as depicted in Fig. 8.10a1 and are theoretically capable of forming this
structure without any geometrical defects. Similarly the angle 𝛼overlap = 30,
where the non‐additivity is added at blunt ends, is chosen to allow for the
formation of circular inverse structures without defects. Using the NAHPR
approach, it becomes apparent that constructing two‐dimensional inverse
micelles by pears without large overlaps is impossible. Therefore, we try to
generate the closest structural relative which pear constituents manage to
form without large overlaps, namely inverse vesicles (see Fig. 8.10b1).

The first simulation sets are initiated from an isotropic phase and slowly
compressed to a global density of 𝜌𝑔 = 0.5. We observe that the pears come
together due to depletion forces and eventually form clusters. However, the
clusters are not identified as inverse micelle structure but rather as arrays
of pears where neighbouring particles are either in the V‐configuration or
the S‐configuration (see Fig. 8.10a3). This S‐arrangement, where the pears
overlap with their blunt ends in an antiparallel fashion, prevents the self‐
assembly of inverse micelles as an antiparallel pear‐pair cannot be extended

7Φdisk is now defined as an area fraction.
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Initial configuration

(a1)(a1)(a1)(a1)(a1)(a1)(a1)(a1)(a1)(a1)(a1)(a1)(a1)(a1)(a1)(a1)(a1)

(b1)(b1)(b1)(b1)(b1)(b1)(b1)(b1)(b1)(b1)(b1)(b1)(b1)(b1)(b1)(b1)(b1)

Micelles
(a2)(a2)(a2)(a2)(a2)(a2)(a2)(a2)(a2)(a2)(a2)(a2)(a2)(a2)(a2)(a2)(a2)

(a3)(a3)(a3)(a3)(a3)(a3)(a3)(a3)(a3)(a3)(a3)(a3)(a3)(a3)(a3)(a3)(a3)

Inverse micelles
(b2)(b2)(b2)(b2)(b2)(b2)(b2)(b2)(b2)(b2)(b2)(b2)(b2)(b2)(b2)(b2)(b2)

(b3)(b3)(b3)(b3)(b3)(b3)(b3)(b3)(b3)(b3)(b3)(b3)(b3)(b3)(b3)(b3)(b3)
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Figure 8.10: The metastable configurations of highly diluted 2D pear‐disk mixtures in the
HPR‐ (red) and the NAHPR‐ (blue) model. (a) The first set of MC simulations proceeds
from an artificial micelle configuration (a1) at 𝜌𝑔 = 0.5, which stays stable in the HPR‐model
(a2) but diffuses in the NAHPR model (a3). (b) The second set of MC simulations proceeds
from an artificial inverse vesicular configuration (b1) at the same global density, which shows
in contrast stability in the NAHPR‐model (b3) but destabilises for HPR particles (b2). The
parameters of the mixtures are set up to 𝑁pear = 12, 𝑁disk = 15000, 𝑘 = 2.75, 𝑘 𝜃 = 1.9,

𝑎 =
𝐴pear
𝐴disk

= 15 and Φdisk = 0.98 in both simulation sets.

by further pear‐shaped particles to an inverse vesicle. Thus, neither the
“normal” micelle nor the inverse vesicle cluster can be obtained via com‐
pression.

To show, however, that the inverse vesicle can be generated by non‐additive
interactions we perform another two sets of simulations. Here, we gener‐
ate both an non‐overlapping micellar (see Fig. 8.10a1) and non‐overlapping
vesicular (see Fig. 8.10b1) starting configuration at 𝜌𝑔 = 0.5 and simply run
theMC simulations. Additionally, the same simulations are performed using
HPR‐particles as a comparison. It becomes apparent that the simulations,
proceeding from the artificial micelle, is stable in the HPR‐mixture and only
slightly deforms (see Fig. 8.10a2), whereas, for NAHPR particles the system
diffuses into arrays of particles which have also been observed via compres‐
sion (Fig. 8.10a3). The exact opposite behaviour is obtained starting from
the vesicle. Here, the HPR particles quickly separate and form small clusters
(see Fig. 8.10b2). In contrast, the NAHPR particles indeed keep the collective
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shape and create a metastable vesicle (see Fig. 8.10b3). These distinctions
between HPR and NAHPR particles open up the possibility for an exciting
mechanism. It seems to be feasible to switch the orientation of the particles
within a micelle by turning the non‐additive features of the pear colloid on
and off. However, here we first have to find a way for the particles to assem‐
ble spontaneously.

Thus, we have shown that the addition of non‐additivity to theHPRmodel
does not only replicate some of the depletion interactions of PHGO pears
but also shows promising potential to adopt more complex multi‐particle
interactions like the formation of micellar structures. However, there are
still issues which have to be resolved. Firstly, the simulations have to be ex‐
tended to three dimensions to investigate if circular inverse structures can
also be obtained with additional degrees of freedom. Secondly, the self‐
assembly has to be enhanced by preventing the particles from forming S‐
configurations. Some possible solutions to this problem were already pro‐
posed in Sec. 6.4. However, maybe the issues with the S‐configurations are
not as severe in 3D. By opening up the possibility to expand into the third
dimension, the particles have more ways to adapt to geometrical defects.
Thus, the S‐arrangement might not necessarily be an exclusion criterion for
three‐dimensional inverse micelles.
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9 Conclusion and outlook

“May you find inspiration in the big picture, but may you find
love in the details.”

– Adrienne Maloof

The overall goal of this PhD project was to achieve a deeper understanding
of the self‐assembly processes of aspherical particles with hard (but possibly
non‐additive) interactions, with a particular emphasis on the formation of
bicontinuous cubic phases. Our results on pear‐shaped particle systems can
be summarised as follows:

9.1 There are many ways to skin a cat
Is entropic pear‐particle self‐assembly fundamentally different
to other mechanisms that form the gyroid?

The focus of this thesis was placed on the inter‐particle arrangements within
bicontinuous cubic phases. In that process, we recreated the Ia3d double
gyroid phase in a systemof pear‐shaped particles, whichwas observed earlier
by Ellison et al. [241], using the PHGO pear‐shape approximation (which
features small non‐additive properties facilitating the gyroid formation) and
significantly extended its geometric study in Chap. 4. Moreover, wemanaged
to stabilise a Pn3m double diamond structure with similar architecture and
micelle‐like arrangements by introducing a hard sphere solvent to the pear
system in Chap. 8. The most significant findings are listed below:

• Confirmation of the Ia3d gyroid liquid‐crystal phases in the
PHGOapproximation (bothwithandwithoutWCAmethod): The
gyroid structure is stabilised by the PHGOpear‐shaped particles form‐
ing space‐filling bilayers where the two opposite leaflets interdigitate
with the thin ends of the pears and where the blunt ends create the bi‐
continuous network domain. The gyroid phase has been identified as
a warped smectic phase where the particles align with the local normal
direction of the dividing minimal surface. Comparing local properties
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between the gyroid minimal surface and the particle assembly, we de‐
tected a novel technique based on the special collective interdigitation
arrangement to create negatively curved surfaces via the modulation
of the penetration depth of the leaflets. We showed that this stabili‐
sation mechanism is fundamentally different from amphiphilic gyroid
assemblies, where the stabilisation stems from the arrangement of sin‐
gle particles.

• Pn3m diamond symmetry upon addition of a small concentra‐
tion of a hard sphere solvent to the PHGO pear‐shaped parti‐
cle system: The diamond particle arrangement is similar to the one
observed in the gyroid phase as the particles again form interdigi‐
tated bilayers. We recognised the hard spheres as curvature induc‐
ing agents which accumulate at the interface between the channel do‐
mains and aid the system to resolve geometric heterogeneities. This
strategy resonates with the interdigitationmechanism of the pears and
hence showcases a new way to create diamond surface structures.

• Inverse micelle formation in the dilute limit of PHGO pear‐
shaped particles in a bath of hard spheres: The pear‐shaped parti‐
cles equilibrate into an inverse micelle formation favoured by the non‐
additive properties of the PHGO model. The larger micelles them‐
selves function as constituents of even larger self‐assembled structures
indicating hierarchical self‐assembly. This observation leads to the hy‐
pothesis that also theminimal surface phases are hierarchically assem‐
bled geometries.

These results help us to assess the possibilities of entropically driven self‐
assembly. Even though non‐additive features seem to be necessary, all the
complex phases mentioned above are created with a potential governed ex‐
clusively by the excluded volumes of the pear‐shaped particles. Here, we
have to mention that the non‐additivity enforces a polarity between neigh‐
bouring particles. The blunt ends tend to “overlap’, which favours the for‐
mation of bilayers and eventually cubic phases. Therefore, it is possible to
describe the non‐additivity also as an “effective” or “entropic amphiphilic‐
ity”. However, in contrast to lipids and copolymers, where the polar order
between neighbouring molecules is energetically favoured, the PHGO pear‐
shaped particle are ”amphiphilic” only by maximising entropy!

Our results also shed light on a more fundamental question in soft mat‐
ter. The theoretical descriptions of self‐assembled triply‐periodic minimal
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surfaces often rest on the assumption that structures with similarmorpholo‐
gies are created by a similar mechanism. The resemblance of the archi‐
tecture of the gyroid phase in lipid‐water and di‐block copolymer systems
strengthened this conjecture even further. In both the lipidic and copoly‐
meric cases, the final negatively curved surface is constructed as a result of
the amphiphilic molecules adopting tapered shapes fitting the Steiner’s cell
of the surface (see Sec. 4.3.4) and arranging accordingly.

The question as to whether there is more than one mechanism towards
the gyroid, is crucial in particular when considering the lipid‐based mem‐
brane phases in biology [62, 171, 172]. Because of their lipid/water nature, it is
often assumed or implied that they result from similar self‐assembly mecha‐
nism as the bicontinuous phases in synthetic lipid‐water systems. Yet, there
are huge differences, e.g. in length scale, which can not (yet) be reconciled.
In this context, our demonstration here that the gyroid can also result from
an entropic maximisation of degrees of freedom (with at best minimal en‐
tropic amphiphilicity), leading to interdigitating bilayers and a collective
(and maybe hierarchical) process, is an important caution in this respect:
Just because the resulting structure is the same does not necessarily imply
the same formation mechanism. For the gyroid (and its sister structures),
that assumption presumably stems from its unconventional and unfamil‐
iar structure. Our work here and the many examples where the gyroid now
forms, is starting to challenge this notion. Surely, in themore familiar spher‐
ical geometry, we would have never made that assumption: You would be
labelled a fool if you assumed that, just because of their common spherical
shape, soap bubbles and planets result from the same formationmechanism.

Thus, we have to change the posing of the question: Is there only one
natural mechanism to form gyroid‐like structures, which is shown in lipid
bilayer systems? Or is there an underlying, more generic optimisation prin‐
ciple behind the geometry of the gyroid, by being the (potentially) best albeit
not perfect solution to construct a surface with constant negative Gaussian
curvature1 and also by revealing the most homogeneous domain sizes, that
there is more than one way to achieve it, for example, by the mechanism
present in the PHGO pear‐shaped particle systems.

1This would make the gyroid to the negatively curved equivalent of a sphere which has con‐
stant radius and, therefore, constant positive Gaussian curvature.
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9.2 The devil is in the details
The sensitivity of structure formation to details of the particle
shape

The second overarching topic of this thesis concerned the stability of the
gyroid phase with respect to particle shape. It hence fits closely with the
broader topic of how self‐assembly (in particular in hard core systems) is
sensitive to the details of the particle shape [221, 234, 238, 254, 627, 628, 629,
630, 631, 632, 633, 634]. In particular, we compared two hard pear‐shaped
particle models and their abilities to form the double gyroid spontaneously
in Chap. 5. One is the pear hard Gaussian overlap (PHGO) particle, which
closely approximates the pear‐shape but also features non‐additive proper‐
ties. The other model represents the exact pear shape perfectly and is called
hard pear of revolution (HPR) model. Furthermore, we compare the two
models by probing their depletion behaviour in Chap. 6 and by contrasting
them with a density functional for hard pear‐shaped particles in Chap. 7.
The main results of the comparison are listed in the following:

• Comparison between the PHGO and HPR model based on the
phase diagram: Wegenerated both phase diagrams in terms of global
density and particle shape (degree of tapering) for hard pear‐shaped
particles with aspect ratio 3 using various protocols for the sponta‐
neous formation. The PHGO phase diagram reveals isotropic, nematic
and monolayer smectic (small taper), bilayer smectic (high taper) and
gyroid phases (intermediate taper). The HPR phase diagram only pro‐
vides isotropic and nematic phases. However, it also showcases that
the particles destabilise the nematic order such that the transition oc‐
curs at larger densities. Pears of revolution with approximately the
same degree of taper additionally reveal a local arrangement which
can be identified as precursors of bilayer formation. The pair corre‐
lation functions indicate that the spontaneous formation of bilayers
(and thus of the gyroid) benefits from the small non‐additive proper‐
ties of the PHGO model.

• Comparison between the PHGO and HPR model based on the
depletion behaviour: The indication of non‐additivity playing a sig‐
nificant role in the local arrangement of PHGO particles was con‐
firmed by testing the depletion interactions of both pear‐shaped par‐
ticle models. We showed that the HPR particles behave according to
the excluded volume principle considering the pear shape. In contrast,
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the PHGO particles arranged in a splayed position where the particles
take advantage of the non‐additivity of the underlying contact func‐
tion. This formation is in accordance with the constellation between
neighbouring particles within the bilayers of the gyroid. We also sug‐
gested a third model (NAHPR) based on the HPR model, which addi‐
tionally provides non‐additive properties. The depletion interactions
of these particles show that the NAHPR model adopts important fea‐
tures to enable bilayer formation like the splay between neighbouring
particles.

• The PHGO and HPR model in comparison with density func‐
tional theory: Wedeveloped a density functional for arbitrarily shaped
hard solids of revolution and applied it to different pear‐shaped parti‐
cle systems with the same features as the HPR particles at a hard wall.
We predicted an orientational alignment and layering of the particles
close to the wall with very weak indications for bilayer‐like staggering.
This behaviour has been recreated by simulations of the HPR model
perfectly and of the PHGO particles sufficiently, whereas the latter re‐
veals an enhanced bilayer‐like staggering.

This PhD project contributes to a very general question [221, 234, 238, 254,
627, 628, 629, 630, 631, 632, 633, 634]: How sensitive is self‐assembly to slight
shape changes? This conundrum is a rather practical one which becomes
more apparent by rephrasing it to: How much can the experimentally syn‐
thesised colloid deviate from the computed particle shape to still show the
same assembled structure?

Hard core systems are by design reduced to the shape of the inherent par‐
ticles. Therefore, presumably the sensitivity to shape detail is most clearly
observed in these systems. The difference of the hard core PHGO and HPR
phase diagram, despite the close resemblance of the models, indicate very
prominently that shape details are of greatest relevance and have to be taken
with caution when attempting the transition from the numerically com‐
puted particle to a synthesised colloid with the same behaviour.

Those observations are in accordance with other hard particle systems,
which have been studied by investigating the intermediate stages of interpo‐
lations between two shapes. It has been shown, for example, that in systems
of hard cubes, rounded edges have a significant influence on the cubical
ordering of the crystalline phase [234, 254, 627, 628]. In addition to these

225



9 Conclusion and outlook

superballs also various families of truncated [221, 238, 629, 630, 631] poly‐
hedra, elongated and twisted triangular prisms [632], discs with adjustable
thickness [633] and very recently also dimpled spheres with various dim‐
ple sizes [634] have been studied. Here it has been indicated that especially
more complex particle arrangements (among which we would also count cu‐
bic phases) are stable within a narrow window of shapes which makes them
even more prone to small shape changes.

We have to come to the conclusion that the shape of a particle cuts both
ways. The shape is considered as maybe the most fundamental property to
induce order effects in multi‐particle systems. This is highlighted by the
plethora of different phases which we have addressed in the course of this
thesis and which can be created by adjusting the form of particles accord‐
ingly, including the gyroid phase in the PHGO particles. For the assembly
of specific ordered structures some shape features can be even attributed as
necessary traits [221, 247]. To obtain, for example, smectic order, hard‐core
particles like spherocylinders [213, 237], rigid sphere‐beads [216, 217], helices
[218], triangular prisms [219, 221, 222] or cuboids [223] have to be of certain
length.

On the other hand, structure formation seems to be also highly sensitive to
variations such that we can not claim that a given approximate shape is also
a sufficient trait to create specific structures. Like the close resemblance be‐
tween the shapes in the PHGO and HPR particle model is a red herring and
does not guarantee the same phase behaviour, also the difference between
spherocylinders (which do have a smectic phase [237]) and ellipsoids (which
do not have a smectic phase [214]), emphasises the care of details which have
to be taken. Thus, to create specific structures, we can surely make educated
guesses about the shape of the building blocks and narrow down the particle
shapes in question. However, to guarantee its spontaneous formation, we
have to take more than a coarse‐grained look. Consequently, we can include
another statement to the ones above: The shape of a particle is the most
likely reason why and why not a specific ordered structure is observed!

9.3 Future projects

We finish this thesis with some speculations and ideas for various future
projects that extend the presented results. Note that a couple of intriguing
research topics have already been mentioned in the outlook sections of the
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previous chapters as food for thought. Here, we will revisit and significantly
extend these ideas.

9.3.1 Phase diagram extension

An obvious next step is to attempt completing the phase diagrams of the
HPR and PHGO particle models. Although we have already presented two
phase diagrams in terms of global density and tapering parameter in Chap. 5,
we only considered a small fraction of the available parameter space of the
system by restricting the aspect ratio to 𝑘 = 3, for which – in combination
with 𝑘 𝜃 = 3.8 – it was already known that the gyroid structure forms in the
PHGO pear‐shaped particle system [241]. The dimensionality of this space
can be further extended by considering mixtures of pear‐shaped particles
and the hard spherical solvent into account. Therefore, it would be inter‐
esting to investigate if pear‐shaped particle systems reveal an even greater
zoo of liquid crystal phases next to bi‐ andmonolayer smectic, nematic, Ia3d
double gyroid, Pn3m double diamond, “inverse” micellar or pear‐sphere co‐
existence. Next to the global density 𝜌𝑔 to regulate between isotropic and
ordered phases and the tapering parameter 𝑘 𝜃 , three other parameters (as‐
pect ratio 𝑘 , sphere number concentration 𝑛 and sphere size 𝑣) complete the
parameter space of hard pear‐sphere mixtures. However, before this major
task of covering the whole phase diagram should be tackled, it is advisable to
reduce the numerical complexity of calculating the contact functions first,
as a significant number of simulations have to be performed. Especially the
overlap determination by creating surface meshes for the HPR particles (see
Sec. 2.2.1) is rather slow. However, even if the five‐dimensional phase dia‐
gram will not be completed in the near future, already slight adjustments,
some of which we suggest in the following, to the already obtained phase
diagram might give valuable additional insight.

A good example is the variation of the pear‐shape in its aspect ratio rather
than in its tapering angle, on which we mainly focused on in this thesis. Es‐
pecially by starting from a PHGO pear ensemble which forms the gyroid, we
would be able to determine the upper and lower bound of the Ia3d phase
in terms of elongation besides the already ascertained smallest and highest
tapering angle. It is very reasonable to assume that highly elongated PHGO
particles do not assemble into the gyroid and even destabilise bilayer struc‐
tures. This conjecture is substantiated by the observation that for very long
pears (𝑘→∞) the maximum tapering angle becomes very small such that its
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particle‐shape hardly deviates from an ellipsoid of equal length. This sug‐
gests that the pears have to transition for a specific 𝑘 into a nematic phase
which was determined for infinitely long hard rods [203]. Some preliminary
studies of PHGO particle systems with 𝑘 = 3.5 and 𝑘 𝜃 = 3 indicate that the
gyroid phase is still stable such that the transition has to occur at higher
values.

Also for short particles, the gyroid presumably destabilises. It is known
that elongated particles like ellipsoids or rods have to feature a minimum
length of 𝑘crit = 2.75 to obtain global orientational order like nematic order
[213, 214]. This implies that also PHGO particles have to provide a suffi‐
cient degree of asphericity to avoid an otherwise disordered isotropic phase.
Furthermore, the influence of taper on the nematic phase could be investi‐
gated in similar studies of the HPR model. Here two different effects seem
likely. One possible outcome is that the influence of polar alignment, which
is weakly indicated by strongly tapered HPR particles in the nematic phase
(see correlation functions in Fig. 5.13), becomes stronger such that global
orientational order is also stabilised for 𝑘crit < 2.75 (maybe even gyroid‐ or
sponge‐like structures; see next section). Alternatively, the critical length
is shifted to higher values as the taper introduces a curvature to the sys‐
tem. The latter is probably more realistic, based on our observations so far
as in Fig. 5.12 the transition between isotropic and nematic phases occurs at
higher densities for smaller 𝑘 𝜃 .

Another question, which might be resolved in the course of extending the
phase diagram, is if also the Im3m primitive surface structure [48, 51] can
be formed by PHGO particles. Note that in copolymer systems, the Pn3m
(diamond) and the Im3m (primitive) have been stabilised by Finnefrock et.
al [191] upon addition of nanoparticles. To create primitive surface struc‐
tures the system has to overcome even higher spatial heterogeneities than
in the diamond phase [70, 91, 167] which hints towards larger hard sphere
agents 𝑣 > 9 that relieve this issue. However, considering the position of the
spheres in the diamond phase close to the surface matrix (see Fig. 8.6) such
large solvent particles could alternatively disrupt the bilayer architecture in‐
stead.
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9.3.2 Disordered warped smectics and sponge phases

An intriguing phenomenon among cubic phases in soft matter physics is the
swelling of bicontinuous phases into L3 sponge phases [165, 371, 427]. The
sponge phase can be interpreted as a disordered cubic phase where a lipid
bilayer separates a bicontinuous aqueous channel network but lacks long‐
range order. The sponge usually forms by adding organic [165, 427, 428, 429,
430] or polymeric solvents [431, 432, 433, 434] to ordered cubic phases which
cause the lipidic membranes to swell.

In pear‐shaped particle systems, we have not observed a bicontinuous dis‐
ordered structure yet. The closest approach, which we have observed in
pear‐shaped particle systems so far, is the pear‐sphere mixture of Sec. 8.3
with an intermediate concentration of the hard spherical solvent. However,
in these systems, only one single network structure could be extracted (see
Fig. 8.8). Another and a more auspicious path to obtain disordered mini‐
mal surfaces in the pear‐shaped particle system might be the highly tapered
HPR particles in Fig. 5.10. The grey area indicates an isotropic region of par‐
ticles with short‐range transitional‐order and orientational order, which we
have identified as a precursor for bilayer‐like arrangements. Considering
that PHGO particles indeed form gyroid‐like phases, it might be feasible
to assign pears only a small amount of non‐additivity to their blunt ends
(for example by using the NAHPR model) such that the next neighbour cor‐
relation is strong enough to enable bilayer formation but fails to enforce
global order. This behaviour would be reminiscent of observations of sponge
phases in X‐ray scattering experiments where the scattering pattern shows

Pear sponge

(b)

water

Lipid sponge

(a)

Figure 9.1: Sketch of (a) lipidic L3 spong phases and of (b) how the pear‐shaped particles
might arrange within a potential sponge‐like phase. The sketch of the sponge is adapted
with permission from Ref. [433].
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two characteristic diffuse peaks [372, 635, 636]. One corresponds to the next
neighbour correlation of particles within the same leaflet. The other one is
related to bilayer distances.

Alternatively, we could try to take the reverse route and somehowdecrease
the non‐additivity of the PHGO model and destabilise their long‐range or‐
der. Here, the potentially hierarchical architecture of the minimal surfaces
might be beneficial as it gives rise for the formation of intermediate bilayer‐
like structures which then randomly attach to a sponge‐like mesostructure.
This would suggest that the sponge phases are not fully disordered butmight
bear some hidden order. Here we want to refer to the interludes in Sec. 3.4.6,
where hidden order in the form of hyperuniformity [360] and its relation to
sponge phases is addressed. Lastly, we have to mention that it is reasonable
to assume that in these disordered minimal surface phases the PHGO par‐
ticles also align with the normal of the minimal surface. Hence, the sponge
phase could be again identified as warped smectic, giving this phase the
nicely counterintuitively sounding name “disordered (warped) smectic”.

9.3.3 Chiral gyroid phases

A recurrent question in the context of gyroid‐like phases is chirality, dis‐
cussed in particular in terms of optical properties [46, 185, 637] and in terms
of an observed, but unexplained enantiomeric imbalance in the single gy‐
roid in butterfly nanostructures [183, 638].

While the PHGOhard‐pear systemdescribed in this thesis adopts only the
achiral gyroid phase with symmetry Ia3d,2 it may also inform on the issue of
chiral generalisations. While synthetic self‐assembly protocols exist to gen‐
erate chiral single gyroids with symmetry I4132 [639] or solid replicas thereof
[185], these do not break the chiral symmetry, that is, left‐handed and right‐
handed enantiomers occur with equal probability. In these systems, the two
network‐like domains are chemically distinct, say A and C, yet the probabil‐
ity for each of A and C to be the right‐hand gyroid network is equal3. The
open question is what is required to make the A moiety adopt the, say, right‐
handed network with a higher probability than the left‐handed one?

2The symmetry group has elements that exchange the two domains of opposed handedness,
resulting in an achiral composition of two chiral domains
3Note that more complicated chiral gyroid‐like arrangements have been observed in simula‐
tions [640] or analysed in terms of geometric free energy concepts [89]
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It has been demonstrated that molecular twist in copolymeric compo‐
nents can affect the mesoscopic structural chirality (and enantiomeric type)
of the self‐assembled nanostructure [641]. The 𝐼𝑎3𝑑 gyroid phase described
in this thesis is interesting in the sense that the pear‐shaped particles natu‐
rally subdivide into two groups, each occupying one of the two labyrinthine
domains. It is, though, conceivable that a small adaption of the particles to
embed chiral character may lead to an adapted mesoscale geometry (where
the labyrinthine domain that “matches” one particle enantiomeric type is
different from the other, e.g. higher density); only one of the two enan‐
tiomers of the I4132 gyroid would then form. Further, if a mixture of both
enantiomeric particle types were considered, it is conceivable that a chiral
microphase separation may result, with right‐hand particles occupying the
right‐hand domain and left‐hand particles the left‐hand domain, again pro‐
ducing only one of the two enantiomers of the I4132 single gyroid. In that re‐
gard, we want to mention the investigations of systems of achiral molecules
with chiral conformers by Dressel and Tschierske [642, 643, 644]. Those
molecules form conglomerates of dominantly left‐handed and right‐handed
liquids which are immiscible before they combine into a gyroid phase by
cooling the system (see Fig. 9.2a). This “pre‐separation” of chirality and sub‐
sequent “soaking‐up” of the chiral domains also suggests the separation of
chiral conformers into the bicontinuous domains of the gyroid.

Particle activity might guide us to a practical solution path on how to im‐
plement chirality into our system. So far we have restricted ourselves to the
analysis of the collective behaviour and self‐assembly of nanoparticle sys‐
tems in equilibrium. However, especially in biology but also in chemistry
and soft matter, interesting physical phenomena occur as a result of non‐
equilibrium effects. One possible way a particle system can be brought into
a state of constant non‐equilibrium, next to being exposed to fluctuating
external forces [646, 647, 648, 649], is an inherent activity of the particles
[252, 650, 651, 652, 653, 654, 655, 656, 657, 658]. In these systems, the par‐
ticles are not only subject to conservative forces based on the inter‐particle
interactions but also create internal forces. On the microscopic level, these
forces can be experienced as both self‐propelled translational and rotational
motions. On the more interesting mesoscopic lengthscale particle activity
can cause complex physics like pattern formations [650, 651], active turbu‐
lence [652, 653], swarming behaviour [654, 655] or clustering [656, 657].
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Ia3d

Ia3d
(a) (b)

LH RH

??

(c)

Figure 9.2: (a) Achiral molecules forming left‐handed and right‐handed domains of their
chiral conformers before transitioning into the gyroid phase upon cooling. The chirality
of the domains (dark or bright) is visualised via uncrossed polarizers. Their orientations
are indicated by (P) and (A). The image is obtained with permission from Ref. [642]. (b)
An experiment of two‐dimensional active rotating particles shows spontaneous phase sep‐
aration into domains of clockwise (black) and counter‐clockwise (white) rotating particles.
Image adapted with permission from Ref. [645]. (c) Thought experiment to introduce chi‐
rality to pear‐shaped particle systems via activity. The particles are divided into groups of
self‐propelled left‐handed (LH) and right‐handed (RH) rotating pears. Their interactions
are coupled with the rotation due to the grooved particle surface. By adding this feature, we
might be able to obtain a phase separation within the gyroid phase where RH pears form the
RH channel domain and where the LH domain contains only LH particles.

To apply activity to the pear‐shaped particle system, we can assign a hand‐
edness to individual colloids by including a self‐propelled rotational motion,
which couples with the inter‐particle interactions, to the pear‐shaped par‐
ticles. Those non‐linear interactions are typically realised by introducing
a friction term between neighbouring colloids [659, 660] or via geometric
modulations and appendages [645, 651]. The latter strategy can presumably
be applied to the pear‐shaped particles in the form of grooves (see Fig. 9.2c),
but as we have discussed in length in the earlier chapters, those morpho‐
logical changes might have unforeseeable consequences to the gyroid sta‐
bility. In terms of our thought experiment, the active form of introducing
chirality would imply that pears rotating clockwise around the symmetry
axis and pears rotating anti‐clockwise segregate into two separate subgroups
each occupying space within the appropriate channel domains as indicated
in Fig. 9.2c. This implementation of activity seems very promising as ro‐
tating hard particle systems are known to phase separate due to spinodal
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decomposition when activity is increased and the system is brought into
constant non‐equilibrium [645, 651, 661] (see Fig. 9.2b). However, here we
also have to bear the possibility of subsequent remixing in mind when the
particles reach a turbulent state for high activity [658].

Consequently, we might be able to observe a spontaneous clustering of
left‐ and right‐handed particles into separate srs‐domains in between the
unsorted equilibriumgyroid phase at the low activity limit and a dynamically
mixed state in non‐equilibrium at the high activity limit. In this medium ac‐
tivity range, it is very likely that we have to add another layer of complexity to
prevent complete spinodal decomposition. Therefore, somemechanism like
an intrinsic motor within particles, which switches the rotational activity on
and off periodically, might be necessary. Whether such specific demixing
can occur due to entropy alone is an interesting question for future research.

9.3.4 Active robot particles with non‐additive interactions to
probe two‐dimensional micelle formation

Active particles can also be useful to answer other questions which have
been arisen during this PhD project. In the course of this thesis, we have
provided some suggestions on how to realise pear‐shaped particles in an
experimental setup. For example, we have discussed possible future experi‐
mental implementations by introducing the NAHPR model (see in Sec. 6.4
and Sec. 8.4) and also argued in Sec. 5.3 about suitable synthesis strategies
of pear‐shaped colloids on the microscopic level, like introducing a short‐
ranged attractive potential, modulating the surface roughness or utilising
the curvature of the colloid. Here we indicated which specific issues have to
be considered in manufacturing pears to achieve liquid crystal phases like
the double gyroid. So far, however, we have omitted another interesting
model on the macroscopic scale, which shows great potential to materialise
two‐dimensional pear‐shaped particle systems with the right non‐additive
features and to recreate at least some of our results in the laboratory: an
adaption of the “vibrot” particles [662].

In recent years the collective behaviour of animals or bacterial colonies has
been studied by a collaboration of robots, whichmimic physical phenomena
out of equilibrium like swarming and flocking [645, 662, 663, 664]. Rather
simplistic examples to conceptualise those robots are known as bristle‐bots
or vibrots [662, 665] (see Fig. 9.3a+b). These walking automatons consist
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(a) (b)

(c) vibrot

baseplate
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(d) (e)

spikes

pear robot

Figure 9.3: Two versions of 3D‐printed vibrots: (a) reference vibrot and (b) vibrot with ad‐
ditional hard body layer. Scale bar: 1 cm. (c) Sketch of the vibrot mechanism powered by
a vibrating baseplate. (d) Exemplary particle trajectory. Particle image marks the starting
point of the trajectory. Scale bar: 4 cm. (e) Possible design of a pear‐shaped robot which
copies the properties of the NAHPR model. The non‐additivity is modelled by a region of
spikes (blue) which is pervious for spikes of other pear‐shaped vibrots but not for their hard
body (black). The images (a‐d) are adapted with permission from Ref. [671].

of hard bodies and elastic legs, which act like springs and allow to convert
vibrations into motion. The self‐propulsion is excited either by a motor on
the top of each robot causing it to vibrate and therefore to jump [663] or
by a vibrating plate having the same effect on the particle [662, 666] (see
Fig. 9.3c). The specific type of motion depends on the arrangement and tilt
of the legs. For so‐called walkers, tilted legs are placed parallel to another
which then induce translational forces. To create rotating vibrots, the tilted
legs are arranged in a circular fashion such that a torque is applied to the
particle. The two‐dimensional trajectories of these active particles are sim‐
ilar to those of mechanically shaken polar discs [667, 668]. A 3D printed
version of a vibrot is illustrated in Fig. 9.3.

The intensity of the self‐propelled forces of the vibrots depends on differ‐
ent properties, like the leg inclination, frequency and amplitude of the vi‐
bration and the elasticity and friction coefficients of the legs [662, 663, 669,
670]. However, the system also inherits a non‐deterministic component on
the long time‐scale which is caused by both surface inhomogeneities and
elastic instabilities of the legs [669, 671] (see Fig. 9.3d). These cause the vi‐
brots to bounce more irregularly and reorientate randomly with every jump.
Therefore, the vibrots are often considered as active Brownian particles on
the macroscopic level [671, 672, 673, 674].
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In principle, the shape of the robots can be chosen arbitrarily. Due to the
advances in 3D printing also pear‐shaped robot seem feasible and an excit‐
ing opportunity for a future project. In these systems, the hard body of the
robot would have to be printed according to the Bézier curve representation.
Note here that we are not particularly interested in the activity as a self‐
propelled rotation. Instead, we suggest to utilise the “activity” of the vibrots
as an ability to insert energy into the microscopic degrees of freedom. This
implies that the legs of the pear‐shaped robots probably have to be hardly
inclined or tilted in different directions to reduce the “active’ part of the self‐
propulsion, which is then dominated by the Brownian like motion. As this
system is two‐dimensional, cubic phases like the gyroid cannot be recreated
with this approach. Nevertheless, other experiments to observe some indi‐
cations of particle interdigitation or the formation of micellar and vesicular
structures in equilibrium when adding a second species of circular vibrots
(see Sec. 8.4), seem to be viable for those robot systems.

Design 1: Prickly pear‐shaped vibrots

Another benefit of this approach is that the non‐additive features, like those
present in the PHGO and the NAHPR particle model, can probably be im‐
plemented. One idea is to introduce a “prickly” pear‐shaped robot. Here
non‐additivity is modelled by a region of spikes, which is pervious by thorns
of other robots, leading to an effective “overlap” of the pear shapes, but can‐
not be penetrated by their hard bodies (see Fig. 9.3e). Here, we have to con‐
sider that the spikes should not be too dense, which would prevent the full
penetration of spikes or causes the particles to wedge. On the downside,
if the spikes are distributed only sparsely, also the hard body can enter the
non‐additive region. Nevertheless, it seems feasible that we can effectively
replicate the NAHPR model by vibrots with spikes in appropriate distances
and even suppress unwanted effects like the S‐configuration (where the non‐
additive regions overlap and the particles are antiparallel to each other; see
also Fig. 6.11d) by changing the angle of the thorns.

The prickly pear approach might also be suitable for the realisation of
non‐additivity in colloidal particle systems. In that regard, some synthe‐
sis techniques to generate star‐like nanoparticles with a spiky exterior have
been reported [675, 676, 677, 678]. To apply this idea to the pear‐shape, we
would have to design pear‐shaped colloids with a thinner upper half with
a smooth surface and a blunt bottom half featuring small spikes. Similar
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9 Conclusion and outlook

to the proposed mechanism for vibrots, the spikes might allow the pears
to penetrate the blunt end with their prickly side but prevents the smooth
end to enter this very same region. We have to keep in mind, however, that
a rough surface reduces the effective depletion attraction between colloids
[240, 549]. This might counteract the benefit of partially penetrable thick
ends.

Design 2: Layered pear‐shaped vibrots

We also suggest an alternative design for pear‐shaped robots by using the
third dimension for the overlap of two robots. By partitioning the hard body
of the pear‐shaped robots into a lower and an upper part (the two body parts
are indicated in Fig. 9.3b), we can effectively assign two different shapes to
the vibrots. Hence, we might be able to copy the NAHPR contact profile by
choosing one of the layers as the outer contour and the other layer as the
inner contour of the NAHPR pear as described in Fig. 6.9. Then, two pear
robots would interact mainly via the outer contour layers except when they
approach with the blunt ends leading to a suitable “overlap”.

Herewe have to keep inmind that thismethod is probably only practicable
if the inner and outer contour is engraved in opposite layers for neighbouring
particles. Otherwise, if, for example, the inner contour layer forms the top
for all particles, the robots would not be able to take advantage of the “non‐
additivity” as the contact of their lower layer, formed like the regular pear,
prevents this more compact arrangement. Consequently, the robots have
to be divided into two groups with some inner contours printed at the top
(lock‐particle) and some at the bottom (key‐particle) of the hard body. Even
though this probably leads to incompatibility issues (lock‐lock or key‐key)
for multi‐particle systems, like those forming vesicles, it will be sufficient to
study the depletion behaviour in principle. In order for us to study the de‐
pletion interactions, only two pear‐shaped robots within a “solvent” of hard
circular vibrots are needed, where the incompatibility vanishes by choos‐
ing one lock‐ and one key‐robot and where we can hopefully recreate the
V‐configurations determined in Fig. 6.11c.
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9.3 Future projects

The Gyroid ‐ from curious oddity to household name

To sum things up, we have managed to uncover some open questions in soft
matter physics by studying the pear‐shaped particle system whereas others
are still to be revealed. Even though we do not dare a prognosis when (and
if) the gyroid out of pear‐shaped particles becomes a reality, it is hard to
avoid philosophising about the prospects. WhenAlan Schoenwas the first to
described the gyroid 50 years ago, probably not even he could have foreseen
the impact of this geometry in soft matter physics or the possibility of its
formation in entropically dominated pear‐shaped particle systems. Starting
as a curiosity known to only a handful of scientists, the gyroid has become
almost a household name across a greater range of disciplines (including
engineering, materials science, physics, chemistry and biology). So what
can come next? We hope that the results of this thesis will help to further
promote this geometry in science, including the colloid community. It will
hopefully be a useful piece of the bigger puzzle why and how bicontinuous
geometries form and what purposes they can serve, in both man‐made and
natural nanostructured materials.
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Entropically driven self-assembly of 
pear-shaped nanoparticles

The ambition to recreate highly complex and functional nanostructures found in living 
organisms marks one of the pillars of today‘s research in bio- and soft matter physics. 
Here, self-assembly has evolved into a prominent strategy in nanostructure formation 
and has proven to be a useful tool for many complex structures. However, it is still a 
challenge to design and realise particle properties such that they self-organise into a 
desired target configuration. One of the key design parameters is the shape of the 
constituent particles.

This thesis focuses in particular on the shape sensitivity of liquid crystal phases  
by addressing the entropically driven colloidal self-assembly of tapered ellipsoids,  
reminiscent of „pear-shaped“ particles. Therefore, we analyse the formation of the  
gyroid and of the accompanying bilayer architecture, reported earlier in the so-called 
pear hard Gaussian overlap (PHGO) approximation, by applying various geometrical 
tools like Set-Voronoi tessellation and clustering algorithms. Using computational  
simulations, we also indicate a method to stabilise other bicontinuous structures like 
the diamond phase. Moreover, we investigate both computationally and theoretically 
(density functional theory) the influence of minor variations in shape on different pear-
shaped particle systems, including the stability of the PHGO gyroid phase. We show 
that the formation of the gyroid is due to small non-additive properties of the PHGO 
potential. This phase does not form in pears with a „true“ hard pear-shaped potential.

Overall our results allow for a better general understanding of necessity and sufficiency 
of particle shape in regards to colloidal self-assembly processes. Furthermore, 
the pear-shaped particle system sheds light on a unique collective mechanism to  
generate bicontinuous phases. It suggests a new alternative pathway which might  
help us to solve still unknown characteristics and properties of naturally occurring  
gyroid-like nano- and microstructures.
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