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Abstract 
Representing a grain structure within a combined finite element computer aided engineering 

environment is essential for micromechanics simulations. Methods are required to effectively 

generate high-fidelity virtual grain structures for accurate studies. A high-fidelity virtual grain 

structure means a statistically equivalent structure in conjunction with desired grain size 

distribution features, and must be represented with realistic grain morphology. A family of 

controlled Poisson Voronoi tessellation (CPVT) models have been developed in this work for 

systematically generating virtual grain structures with the aforementioned properties.  

Three tasks have been accomplished in the development of the CPVT models: (i) defining the 

grain structure’s regularity that specifies the uniformity of a tessellation as well as deriving a 

control parameter based on the regularity; (ii) modelling the mapping from a grain structure’s 

regularity to its grain size distribution; and (iii) establishing the relation between a set of physical 

parameters and a distribution function. A one-gamma distribution function is used to describe a 

grain size distribution characteristic and a group of four physical parameters are employed to 

represent the metallographic measurements of a grain size distribution property. Mathematical 

proofs of the uniqueness of the determination of the distribution parameter from the proposed 

set of physical parameters have been studied, and an efficient numerical procedure is provided 

for computing the distribution parameter.  

Based on the general scheme, two- and three-dimensional CPVT models have been 

formulated, which respectively define the quantities of regularity and control parameters, and 

model the mapping between regularity and grain size distribution. For the 2D-CPVT model, 

statistical tests have been carried out to validate the accuracy and robustness of regularity and 

grain size distribution control. In addition, micrographs with different grain size distribution 

features are employed to examine the capability of the 2D-CPVT model to generate virtual grain 

structures that meet physical measurements. A crystal plasticity finite element (CPFE) simulation 

of plane strain uniaxial tension has been performed to show the effect of grain size distribution 

on local strain distribution. For the 3D-CPVT model, a set of CPFE analyses of micro-pillar 



iii 

 

compression have been run and the effects of both regularity and grain size on deformation 

responses investigated. 

Further to this, a multi-zone scheme is proposed for the CPVT models to generate virtual 

gradient grain structures. In conjunction with the CPVT model that controls the seed generating 

process within individual zones, the multi-zone CPVT model has been developed by incorporating 

a novel mechanism of controlling the seed generation for grains spanning different zones.  This 

model has the flexibility of generating various gradient grain structures and the natural 

morphology for interfacial grains between adjacent zones. Both of the 2D- and 3D-CPVT models 

are capable of generating a virtual grain structure with a mean grain size gradient for the grain 

structure domain and grain size distribution control for individual zones. A true gradient grain 

structure, two simulated gradient grain structure, and a true gradient grain structure with an 

elongated zone have been used to examine the capability of the multi-zone CPVT model.  

 To facilitate the CPFE analyses of inter-granular crack initiation and evolution using the 

cohesive zone models, a Voronoi tessellation model with non-zero thickness cohesive zone 

representation was developed. A grain boundary offsetting algorithm is proposed to efficiently 

produce the cohesive boundaries for a Voronoi tessellation. The most challenging issue of 

automatically meshing multiple junctions with quadrilateral elements has been resolved and a 

rule-based method is presented to perform the automatically partitioning of cohesive zone 

junctions, including data representation, edge event processing and cut-trim operations. In order 

to demonstrate the novelty of the proposed cohesive zone modelling and junction partitioning 

schemes, the CPFE simulations of plane strain uniaxial tension and three point bending have 

been studied. 

A software system, VGRAIN, was developed to implement the proposed virtual grain 

structure modelling methods. Via user-friendly interfaces and the well-organised functional 

modules a virtual grain structure can be automatically generated to a very large-scale with the 

desired grain morphology and grain size properties. As a pre-processing grain structure 

representation system, VGRAIN is also capable of defining crystallographic orientations and 

mechanical constants for a generated grain structure. A set of additional functions has also been 

developed for users to study a generated grain structure and verify the feasibility of the 
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generated case for their simulation requirements. A well-built grain structure model in VGRAIN 

can be easily exported into the commercial FE/CAE platform, e.g. ABAQUS and DEFORM, via 

script input, whereby the VGRAIN system is seamlessly integrated into CPFE modelling and 

simulation processing.  
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Chapter 1 Introduction 

Introduction 

1.1 Grain structure representation 

The development towards miniaturisation of products and devices in industries such 

as electronics, optics, medical devices, and communications, has increased the demand 

for metallic parts manufactured at extremely small scale, in which some characteristic 

dimensions of the micro-parts are of the order of       or less. Examples of micro-

parts include screws, fasteners, connector pins, springs, micro-gears and micro-shafts. A 

variety of manufacturing processes have been employed such as machining, folding, 

bending, stamping, drawing and forward/backward extrusion [1, 2]. At this level, grain 

size of materials is comparable to that of the part being formed and the homogeneity 

assumption of materials in conventional metal forming processes is inappropriate. In 

such a context, the material anisotropy dominates the inhomogeneous deformation and 

mechanical properties, e.g. strength, strain-hardening, ductility and damage. 

In a polycrystalline microstructure, the mechanical anisotropy mainly originates from 

crystallographic orientation, grain size and morphology, and their evolutions during 

deformation. In order to fully understand the mechanical anisotropy of a polycrystalline 

material and accurately predict its deformation behaviour, an explicit grain structure 

including crystallographic orientation and grain size, shape and organisation must be 

incorporated. Crystal plasticity theory is a classical physically-based method to predict 

the elastic and plastic deformation of polycrystalline materials at the grain level. Plastic 

deformation is assumed to be solely due to crystallographic dislocation slip [3-5]. The 

flow of dislocations along slip systems is based upon continuum plastic shear strains 

without immediate representation of the dynamics of the lattice and its defects. 

However, this theory was developed neither explicitly considering the mechanical 

interactions of grains in a polycrystal aggregate nor responding to complex internal or 
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external boundary conditions. This weakness allows the finite element methods to be 

involved as a vital companion to study the interactions within individual grains and 

between adjacent grains. These computational methods, known as the crystal plasticity 

finite element (CPFE) models, involve an explicit representation of a grain structure and 

the direct utilisation of the crystal plasticity theory to describe a constitutive behaviour 

of individual grains [6]. In the last decade CPFE methods have evolved as an extremely 

versatile tool to simulate the mechanical response of crystalline materials on all length 

scales from single crystals to engineering parts. The involved constitutive laws range 

from the empirical viscoplastic formulations [7, 5, 8] to physically-based multiscale 

internal-variable models [9, 10] (cf. [11] for a detailed review). In addition, the CPFE 

methods are capable of studying the mechanical deformation of the polycrystalline 

structure under complicated internal and/or external boundary conditions. This is not 

only essential to computing the inter-grain and sub-grain responses, but also to tackling 

the abrupt mechanical transitions during crack initiation and propagation.  

 

Figure 1.1. Illustration of an integrated process for CPFE simulations. 

In recent years, CPFE methods have increasingly gained momentum in both small-

scale and large-scale applications. For small-scale applications, they have been applied to 

understand the inter- and intra-grain mechanics, prediction of local damage processes 

and simulation of micromechanical experiments (e.g. micro-pillar compression and nano-

indentation). Since stress-strain distributions are related to grain size, shape, orientation 

and their distributions [12-15], CPFE simulations must be based upon a grain structure 
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modelled within a finite element computer aided engineering (FE/CAE) environment, as 

shown in Figure 1.1. Explicit modelling of the grain structure is also essential to capture a 

range of size-dependent features of micromechanical deformation [16-18]. Besides this, 

in heterogeneous polycrystalline materials, crack initiation and propagation are not 

dominated by the mean values of stress and strain but by local maximal values around 

grain boundaries or interfaces [19]. By presenting a realistic grain structure the 

prediction of deformation and local damage evolution will correspondingly benefit.   

For large-scale applications, CPFE methods have been widely used to simulate micro-

forming processes and predict characteristics of a micro-part’s shape, failure of materials, 

spring-back effects and mechanical properties of the final parts. To give a quality 

prediction or simulation, the large-scale simulations require a high-fidelity representation 

of virtual grain structure, which includes both crystallographic structure and geometrical 

structure, into a finite element (FE) model. Different from the small-scale simulations, in 

a large-scale CPFE simulation, a virtual grain structure contains a large number of grains 

to be represented in a FE model. Due to the number of grains, a grain structure shows a 

particular uniformity and grains exhibit a grain size distribution characteristic. As rigorous 

studies have revealed, not only the mean grain size but also the grain size distribution 

have significant influence on not just the macroscopic plastic flow stress and local strain-

stress development [15], but also the mechanical properties such as creep rate [20], 

crack propagation rate [21], and creep damage evolution [13] which are all strongly 

affected by the grain size distribution characteristics.  Therefore, there is an increasing 

demand for realistic virtual grain structures based upon simulation requirements for 

accurate prediction and studies. Note that, methods for large-scale grain structure 

representation must be capable of generating realistic or statistically equivalent 

structures effectively and efficiently at a large scale. 

Voronoi tessellation models are one class of the most efficient grain structure 

generation methods that have been widely used for metallurgical applications [22, 23], 

as they provide a natural solution to represent grain structures with non-uniform grain 

shapes. Formation of a Voronoi tessellation can be interpreted as the result of a grain 

aggregate growth process, where grain seeds are simultaneously nucleated, grain growth 
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is isotropic and growth velocity is identical for all grains. However, as a Voronoi 

tessellation is disordered in terms of grain morphology, grain size and distribution, there 

is still a lack of effective methodology for the Voronoi tessellation models to generate 

virtual grain structures with the desired structural properties, e.g. a desired grain size 

distribution to meet the simulation requirements.   

1.2 Objective of the work 

The primary goal of this work is the development of a computational model that 

automatically generates Voronoi tessellations as virtual grain structure representation 

with the properties of mean grain size control and the grain size distribution control. 

Physical parameters are used to determine a grain size distribution of a grain structure 

and the structure’s uniformity, by which a control parameter can be derived for the 

generation of a virtual grain structure. The major advantage is that a virtual grain 

structure generated using this model is statistically equivalent to the set of user-specified 

physical properties in terms of grain size distribution.  

Based on this computational framework, a range of specialised models are further 

developed to generate a wide range of virtual grain structures including:  

1. Two- and three-dimensional virtual grain structures with grain size distribution 

control. 

2. Two- and three-dimensional gradient grain structures with mean grain size gradient 

control across the whole domain and grain size distribution control for individual 

sub-regions. 

3. Two-dimensional virtual grain structures with non-zero thickness cohesive zone 

representation and automatic junction partitioning. 

A novel pre-processing software system, VGRAIN, is further developed to implement the 

proposed virtual grain structure generation models. As an outstanding companion for 

large-scale CPFE simulations, especially micro-forming processing analyses, VGRAIN is 

capable of generating a complete grain structure model including grain structure, 



5 

 

crystallographic and mechanical properties of grains. Characteristics of a generated grain 

structure model can be examined and analysed by VGRAIN itself and the generated 

model can then be exported from VGRAIN to commercial FE/CAE platforms via script 

input. 

1.3 Thesis organisation  

In the following chapter, a comprehensive review on current grain structure 

modelling techniques and related models is presented. In Chapter 3, the controlled 

Poisson Voronoi tessellation (CPVT) model is introduced. A rigorous study is conducted to 

establish the mechanism of using the physical parameters from a given grain structure to 

define its grain size distribution. A mathematical proof of the uniqueness of the 

determination of the distribution parameter from the physical parameters is provided, 

and an efficient numerical procedure is proposed for computing the distribution 

parameter.  Chapter 4 specialises the general CPVT model to a two-dimensional 

implementation. A series of studies are carried out to validate the accuracy of grain size 

distribution control and a grain structure’s regularity control. Implementation of this 

model is demonstrated via a set of CPFE simulations. In Chapter 5, a novel scheme for 

the generation of non-zero cohesive zone representation for grain boundaries and 

automatic cohesive zone junction partitioning are developed. A set of CPFE simulations 

shows the novelty and feasibility of the proposed scheme in simulating grain boundary 

sliding and separation. Chapter 6 specialises the general CPVT model to a three-

dimensional implementation. A group of comprehensive statistical experiments is 

performed to derive the relation between the distribution parameter and the grain 

structure’s regularity. A set of CPFE simulations of micro-pillar compression are 

conducted to demonstrate the implementation of the 3D-CPVT model for 

micromechanics studies, relating to the effects of mean grain size and grain size 

distribution. In Chapter 7, an application of the proposed CPVT model to generation of 

advanced microstructural features is given. Emphasis is devoted to generating gradient 

virtual grain structure, where mean grain size characteristics vary across a grain structure 

domain. A multi-zone scheme is introduced and the multi-zone CPVT model is developed. 
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In Chapter 8, a novel virtual grain structure modelling software system is detailed, which 

implements all the proposed models. Finally, the conclusions of this study and 

suggestions for further work are presented in Chapter 9. An Appendix is included with 

example scripts for three virtual grain structure models generated by VGRAIN for 

ABAQUS/CAE modelling.  
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Chapter 2 Grain Structure Modelling 

Grain Structure Modelling 

There are generally two major types of grain structure generation methods: 

experimental techniques and numerical models. The experimentally-determined grain 

structures can be achieved by processing the digital images acquired using a wide variety 

of metallographic microscopic techniques, such as optical or electron microscopes and 

electron backscatter diffraction (EBSD) techniques. The overriding advantage of using 

digital image based finite element analysis is the accuracy and high-fidelity in modelling 

the microstructure of a presented material. However, regardless of the technical 

difficulties, these methods are extremely time-consuming and expensive, especially for 

the three-dimensional grain structure reconstruction, and the achieved grain structures 

are also difficult to extrapolate to large specimens. Thus, it is difficult to apply the 

experimental approach to a large-scale CPFE simulation. Although experimental methods 

are beneficial in that they produce an exact representation of the microstructure of a 

material sample, 3D reconstruction using experimental methods may require destruction 

of the material sample, depending on the method used. Moreover, since experimental 

grain structure modelling must be based upon a present material, this is not always 

available during the design process for an optimised material.  

Numerical models, on the other hand, are generally versatile and very flexible in 

generating virtual grain structures for a wide range of engineering applications. There 

have been many models developed in the field of grain structure modelling such as 

phase-field models, the Kinetic Monte Carlo Potts models, the cellular automata models 

and the Voronoi tessellation models. These models were initially developed to 

quantitatively investigate and predict microstructure evolution at the mesoscale (grain-

level) based on physical or phenomenological mechanisms, which are idealised in a 

continuum formulation without explicit incorporation of atomic-scale dynamics. They are 

capable of simulation of a detailed grain boundary evolution at a realistic time cost and 
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for large-scale applications. Final grain structures simulated using these models can also 

be represented in FE models since they are obtained in a computational environment.  

This chapter does not aim at a complete review of the large number of techniques 

and numerical models relating to grain structure modelling, but to concentrate on the 

most typical methods that have been applied to, or can be potentially incorporated into, 

a grain structure representation model for CPFE simulations. The following section 

focuses on a few major experimental techniques and systems that have been used to 

generate true grain structures. Furthermore, four types of numerical models from the 

field of computational mesoscale materials simulations are reviewed, namely the phase-

field models, the Kinetic Monte Carlo Potts models, the cellular automata models and 

the Voronoi tessellation models. In addition, the feasibility of these models in 

representing grain structures for micromechanics simulations is addressed. Furthermore, 

a class of special numerical models, namely the geometrical tessellation models, are 

summarised. Their merits and the potential for being developed into a class of 

application-oriented virtual grain structure generation methods are addressed.   

2.1 Digitised grain structures 

Traditional quantitative metallographic techniques are utilised to characterise the 

size, shape, and distribution of polycrystalline grains, and some of the techniques are 

also capable of deriving crystallographic information from grains. By revealing these key 

structural features, which are linked with the constituents and the material processing 

history, the material mechanical properties such as hardness, strength, crack resistance, 

and ductility can be explained empirically. With the advent of micromechanics models, 

empirical studies of grain structural properties have been advanced to sophisticated 

numerical simulations. Inherently, traditional metallographic techniques are still essential 

to acquire digital images of real grain structures, which can be further incorporated into 

material models for micromechanical simulations. In the following, the major 

metallographic techniques and their applications in acquisition of digital images and 

applications to CPFE simulations are reviewed. 
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2.1.1 2D microscopy 

In conventional metallographic analyses, there is a range of microscope tools 

available, using the transmission or reflection of either light or electrons to examine the 

microstructure properties over a wide span of length scales or magnification levels. One 

of the most commonly used tools to observe the grain morphological characteristics is 

the optical microscope with the ability to resolve the length of         or more. In 

combination with an etching process, planar grain structures of a polished material 

surface with recognisable grain boundaries can be observed. Henceforth, the 

morphological structure of an observed area including individual grain shape and 

boundaries can be examined, and images can be digitised by means of charge-coupled 

device (CCD) cameras or scanned-in approaches. Since a digitised image simply contains 

microstructure morphological information, methods such as manually sketching or digital 

image processing can be applied to achieve the grain boundaries and hence build an 

explicit grain structure for subsequent micromechanics studies.  

 

Figure 2.1. Illustration of a grain structure generation process based on a 

digitised image acquired from a CCD camera (cf. [24]). (a) A digitised image; (b) 

the corresponding binary image; (c) the grain structure with skeletonised 

boundaries. 

For example, in [24] a QUANTIMET 570 image processing system was introduced to 

determine the grain morphological structure of austenitic steel, in which the surface of a 

polished and etched specimen was magnified by an optical system, and digital images of 
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an observed area were recorded by a CCD camera. After the acquisition of images, a 

digital image processing method proceeding with grey and binary image transformations 

can be applied to detect the grain boundaries. Figure 2.1 presents the results obtained 

from the successive operations. In addition to the binary operation, there have been 

other advanced mathematical morphology algorithms [25] employed to identify grain 

boundaries and other morphological features. For example, in [26] the watershed 

transformation was used to detect the grain morphological structure of a LiF thin film. 

Note that, after image processing, a clearly presented grain morphological structure 

shown in Figure 2.1 (c), is ready to be combined into a FE model. This is an early 

technique used to represent grain structures for micromechanics models [27, 28]. For 

example, a micromechanical FE study was carried out to compute the elastic behaviour 

of a polycrystalline thin film of aluminium oxide (Al2O3) in [27]. The digitised image of a 

micrograph was processed using the LEICA QWin image processing package to obtain the 

boundaries. Furthermore, boundary curves were represented by a set of selected points 

shown in Figure 2.2 (b), which were subsequently employed as FE mesh seeds to 

generate the meshes as shown in Figure 2.2 (c).  

 

Figure 2.2. illustration of the generation of a grain structure representation for 

the FE model. (a) microscopic image of the microstructure of Al2O3; (b) grain 

boundaries after image processing and selected mesh seeds; (c) FE mesh by 

triangular elements. 
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The other commonly used metallographic tool is the scanning electron microscope 

(SEM). Compared to the optical microscope, the SEM expands the resolution length by 

more than a two-digit magnitude to approximately 4 nm in routine instruments, with 

ultimate values below 1 nm [29]. This magnification spans the entire range of the light 

microscope and covers much of the range of the transmission electron microscope (TEM). 

The SEM also provides a greater depth of field than the light microscope, allowing better 

discernment of morphological features during a microscopic investigation. Similar to the 

optical microscopy, the SEM can be directly used to magnify material cross-sections and 

detect the grain structures. Another important advantage from the SEM is its commonly 

built-in EBSD devices, which measure crystallographic orientations on a predefined 

regular grid. By automated acquisition and analysis of a backscatter diffraction pattern, 

the SEM/EBSD technique is capable of collecting morphological and crystallographic data 

simultaneously. An EBSD-based orientation microscopy allows quantitative 

characterisation of crystalline materials accurately, since a domain belonging to the same 

grain in the planar image can be easily identified by its crystallographic structure [30]. 

Hereby, a wealth of grain structural characteristics including crystallographic orientation, 

grain morphology and approximate grain boundary can be reconstructed in a 

sophisticated manner. This technique can also be applied to study microstructural 

evolution during a complex thermal-mechanical processing such as friction stir welding 

[31, 32]. As a by-product of microstructure characterisation using the SEM/EBSD 

technique, a resolved grain structure containing the grain boundaries and 

crystallographic orientations can be incorporated into the representation of a FE model. 

Generally, there are two feasible ways to formulate the grain geometry of a FE model 

from an EBSD image: 1) Direct mapping, which maps the geometry and orientation of the 

digital image’s pixels to the mesh of the FE model, and 2) indirect sketching, which 

smoothes the grain boundary pixels by geometrically interpolated lines or curves. Note 

that, smoothing the pixel-based boundaries into the lines or curves based grain structure 

is more flexible and practical for FE/CAE meshing. Therefore, the indirect mapping is 

generally more preferable in 2D grain structure representation. In [33, 34], grain 

structures from a coarse grained aluminium sample were experimentally determined for 

CPFE simulations. The digital images were taken from the SEM and their crystal 
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orientation maps were obtained from EBSD patterns. Grain boundaries were sketched 

with lines and meshed using bilinear elements. This scheme allows one-to-one 

comparison between experiments and CPFE simulations with respect to the mechanical 

deformation properties of a thin film (a material with approximate columnar morphology 

along its thickness). Similarly, in [35] micrographs from SEM/EBSD observations on 

commercial purity aluminium were taken to represent the grain structure in an FE model 

simulating grain interactions and compared to experimental results obtained in [36]. 

Moreover, such comparisons can be used to validate numerical models and calibrate 

parameters of a model; for example the comparison study of strain localisation for a thin 

slice copper ingot sample under uniaxial tension in [37], the study on the influence of a 

subgrain misorientation distribution on the strain hardening behaviour in [38], and the 

evolution of surface roughening in [39]. 

2.1.2 Destructive 3D microscopy 

The aforementioned metallographic techniques are commonly used to characterise 

two dimensional microstructures of a material cross-section, and are able to capture the 

digital images containing explicit morphological structures of grains, on which a finite 

element material model can be represented. In a recent development, these techniques 

have been further employed to record images of successive serial sections for the 

generation of three-dimensional grain structures. 

2.1.2.1 Serial sectioning 

Serial sectioning is a class of techniques applied to removal of slices of materials in 

sequence. The thickness of individual slice is primarily determined by the size-scale of the 

microstructural features of interest, for example the size of grains or other particles to be 

examined. The section thickness is often a compromise between the expectation of high-

resolution data and the costs in collecting the data sets [40]. Approaches, such as 

mechanical polishing (MP) approaches or micro-milling devices [41-43], allow serial 

sectioning large material sample surfaces. However, when using this type of polishing it is 

difficult to consistently obtain removal of material with a thickness less than     . 

Recently, a novel ion-based micro-milling technique using focused ion beam-scanning 
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electron microscopes (FIB-SEM) has been used for serial sectioning [44-46]. The FIB-SEM 

can produce high precision milling and a much finer serial sectioning thickness than the 

MP approaches, but due to the limited milling speed, this technique can only be applied 

to a smaller volume. In conjunction with imaging devices, EBSD mapping can be coupled 

to the process of characterisation and reconstruction of grain structures, by which the 

actual crystallographic texture can be identified. Note that the acquisition of EBSD 

mapping data is also very slow, which significantly brings more workload to this time-

consuming and laborious process. 

In practice, the EBSD data is collected less frequently than the recording of images of 

an exposed material surface [47]. Moreover, after sectioning, especially in the MP 

approach, a material surface often suffers scratches. In order to accurately index EBSD 

patterns, additional processes are often required to minimise the surface damage. The 

collection of  serially sectioned micrographs and EBSD mappings enable a 3D grain 

structure to be reconstructed via stacking the images, subsequent post-processing and 

analysing the data through feature segmentation and data clean-up [40]. Figure 2.3 

schematically presents a 3D grain structure reconstruction process. The set of 2D images 

containing the EBSD maps were sequentially collected for every section, as illustrated in 

Figure 2.3. After post-processing and analysis, individual grains are identified, which can 

be further grouped together for reconstruction of the entire grain structure. 

 

Figure 2.3. Schematic of a 3D grain structure reconstruction process using a serial 

sectioning experiment (Ref. [48]). (a) Images taken from the sectioned surfaces; 

(b) construction of an individual object; (c) ensemble of grains. 
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2.1.2.2 Related systems  

The main challenges in performing serial sectioning are: controlling the sectioning 

depth, obtaining parallel flat surfaces, aligning the observation area and controlling 

contrast of many microscopic techniques. To avoid manually dealing with these issues, a 

range of automated 3D serial sectioning systems have been developed for 

characterisation and construction of 3D microstructures. The system in [42] consists of a 

micromiller (Reichert-Jung Polycut E micromiller), and etching-cleaning devices. In 

conjunction with the method of linear variable differential transformer (LVDT), a 

specimen can be automatically repositioned for photographing. In [43, 49], high-

precision automated polishing equipment (Robo-Met.3D) has also been made to achieve 

high-precision automatic serial section and imaging. In a recent development, the fully 

automated 3D orientation microscopy systems by operating FIB and SEM/EBSD have 

been developed by Mulders and Day [50] and Zaefferer et al. [46]. These systems have 

significantly higher spatial resolution and more accurate image alignment functions than 

competing methods.  

However, until recently, the milling and measurement processes for FIB-EBSD 

method are still very slow, from about 30 minutes to more than 1 hour per cycle [46], 

and the total procedure may take between 3 and 40 hours [50]. Since this method can 

only be used to investigate a relatively small volume, statistical results such as grain size 

distributions or textures cannot be sufficiently achieved. In contrast, the MP-EBSD 

method allows a larger observation domain, but it is extremely laborious, time-

consuming and difficult to fully automate. 

2.1.2.3 Digital image based FE simulations 

Micromechanics studies, especially CPFE simulations, can take significant advantage 

of the experimentally reconstructed grain structures with true crystallographic 

information and morphological data. A high-fidelity 3D grain structure can be 

represented in a FE model allowing for rigorous analysis and scientific visualisation of the 

interactions between mechanical response and microstructural features, such as grain 

size, shape, grain boundary morphology and misorientation [51-55]. Like the 2D image-



15 

 

based finite element model representation, there are mainly two methods to set up a FE 

model based on a reconstructed 3D grain structure; that is, by directly using the gridded 

experimental material data to represent the finite element mesh or by indirectly 

smoothing the voxel-like grain boundaries using an interpolation method such as NURBS 

surfaces.  

In [56], a case of 3D reconstruction of an AL6XN steel microstructure was presented, 

which utilised serial sectioning, optical microscopy and automated EBSD techniques. In 

their method, a sectioning depth of 3.3    was used to achieve high-resolution 

reconstructions (i.e. 10-20 sections per grain). At each section, an individual image was 

obtained using optical microscopy for grain boundary recognition. Furthermore, at every 

10th section, SEM/EBSD was used to measure the spatially resolved crystallographic 

orientation distribution. The reconstructed real microstructure was directly incorporated 

into a FE model to simulate mesoscale mechanical responses of the real microstructure 

[57]. The finite element mesh directly used the experimental material data, where the 

EBSD pattern of the planar structure and the successive sections divided a 3D grain 

structure domain into voxel data. In their simulation, the rectangular meshes consisted 

of a reduced-resolution experimental data with one element per voxel. Similarly, in [58], 

a 3D microstructure of the body centred cubic(BCC) single-phase beta-Ti alloy with 92 

grains was also reconstructed and involved in simulating the initiation of plasticity using 

CPFE analysis. 

The direct utilisation of experimentally-determined voxel data enables each grain to 

be represented by a collection of cubic elements with specific orientations. Note that, 

the mesh using a coarse grid significantly causes artificially aliased grain boundaries, 

while a fine grid of voxel elements leads to a large number of mesh elements in the grain 

structure domain, hence is computationally costly in the form of both time and memory. 

In contrast, a geometrically smoothed boundary network is more preferable in a FE/CAE 

environment. In [59, 60], surface fitting methods using parametric polynomial 

interpolation and non-uniform rational B-Spline (NURBS) interpolation were applied to 

smooth the voxels at the interface of adjacent grains. With the functional representation 

of the grain boundary surfaces, it enabled flexible control of the local density for meshing 



16 

 

and was capable of dealing with various complex grain morphology and grain junctions. 

However, extra geometrical algorithms were needed to remedy various complicated 

special cases such as the gap and overlap removal during the construction of parametric 

grain boundary surfaces [59].  

 

Figure 2.4. A 3D reconstruction of an AL6XN steel microstructure, obtained using 

optical microscopy, SEM/EBSD and serial sectioning techniques (Ref. [57]). (a) 3D 

reconstruction of austenite phase in AL-6XN microstructure. The colour key 

corresponds to the crystallographic orientation in the direction of the arrow, 

which is also the normal to the sectioning plane, (b) the image-based 3D finite 

element mesh. 

2.1.3 Non-destructive 3D microscopy 

Recently, a class of novel high energy X-Ray diffraction techniques, i.e. three-

dimensional X-ray diffraction microscopy (3DXRD), has been developed for 3D structural 

characterisation and grain structure reconstruction of polycrystalline materials. This 

technique relies on highly penetrating hard X-rays from a synchrotron source with 

energies in the range of 50-100 keV [61] and applied tomographic reconstruction 

approaches for fast acquisition and analysis of the diffraction data [62]. It is capable of a 

fast and non-destructive characterization of the grain-level microstructure for specimens 

with the length scale from micron to centimetre. Grain morphology, organisation and 

crystallographic orientations can be derived for hundreds of elements simultaneously. 
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Moreover, various mechanical and material properties can be observed or derived using 

the synchrotron-based X-ray imaging and diffraction techniques. For example, the 3DXRD 

microscopy has been used to characterise the average stress state of each embedded 

grain [63], determine the three-dimensional plastic strain field [64] and the strain tensor 

[65]. In the most recent development, the evolution of the full stress tensor in a 

deformed twin was accurately determined from the 3DXRD data [66], and various 

algorithms, e.g. FitAllB [67], were proposed to simultaneously fit multiple grains with 

respect to position, orientation and stress state. Since these 3D imaging techniques are 

non-destructive they are versatile to study a large variety of time-dependent grain 

structure evolutions [68, 69].  

 

Figure 2.5. Example of a reconstructed grain microstructure determined by DCT 

for FE model representation [70]. (a) The grain structure of a  -Titanium alloy 

and a FE mesh; (b) FE simulation results; (c) legend corresponding to the von 

Mises stress distribution of (b) (MPa). 

Among the present synchrotron-based X-ray 3D imaging techniques, the recently 

developed X-ray diffraction contrast tomography (DCT) offers high spatial resolution and 

accuracy [71] and provides the functionality of simultaneous access to 3D grain shape 

and crystallographic orientation distribution [72]. Since a 3D grain structure produced by 

the DCT contains a complete description of grain shape and crystallographic orientation, 

it can be used as input of material representation for CPFE simulations. Figure 2.5 (a) 



18 

 

presents a FE model based on a true grain structure of   -Ti alloy obtained by the DCT 

map; Figure 2.5 (b) shows the local stress distribution under a load of 500 MPa, where 

colour corresponds to stress values in the legend of Figure 2.5 (c). As mentioned above, 

the synchrotron-based X-ray 3D microscopy can be used to estimate the strain and stress 

state for individual grains. Therefore, using these non-destructive experimental 

techniques a direct comparison of in-situ deformation observation with the CPFE 

simulation is realistic and promising [70]. 

It should also be noted that whilst these synchrotron-based X-ray imaging and 

diffraction techniques provide a collection of promising approaches to generate true 3D 

grain structure and directly observe the evolutions of microstructure and mechanical 

deformation, the high-intensity synchrotron sources are not generally accessible. This 

limitation essentially constrains the applications of this class of techniques for general-

purpose uses. 

2.2 Numerical models   

The experimental approaches are capable of constructing true grain structures; 

however, they are in general time-consuming, laborious and expensive for practical use. 

The achieved grain structures are also difficult to extrapolate to large specimens. An 

alternative way to generate a virtual grain structure can be achieved through mesoscale 

computational simulations of metallography. Microstructural development depends 

upon the evolution of internal interfaces in polycrystalline materials, which include the 

grain boundaries dividing grains with different crystallographic orientations and the 

phase boundaries separating regions of dissimilar thermodynamic phase. Internal 

interface evolution may occur due to a volumetric change via, for example, 

recrystallisation or phase transformation and proceeds by aiming to minimise the 

internal surface energy via grain growth. A successful mesoscale simulation of a 

microstructural evolution can provide a detailed description of grain structure geometry 

and crystallographic orientation, and hence can be represented in FE/CAE as a FE model.  
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In this section, three major types of models of grain-level material structure 

simulation are discussed including the phase-field models, the cellular automata, and the 

Monte Carlo (Potts) models. These mesoscale models assume a material as an ideal 

continuum without the explicit incorporation of atomic-scale dynamics. State variables in 

a set of governing equations are often based on a spatial grid and the governing 

differential equations are applied to them with respect to local or global interactions. The 

review of this section focuses on the models’ capabilities of deriving grain boundary 

and/or orientation during grain structure formation and evolution, which can serve as 

grain structure representations for CPFE simulations.  

2.2.1 Phase-field method 

Recently, the phase-field method has emerged as one of the most powerful 

numerical approaches to modelling and predicting grain-level microstructure evolution. 

This method, describing the liquid-solid and solid-solid phase transformation phenomena 

within the framework of irreversible thermodynamics, allows many physical phenomena 

to be treated simultaneously. In the phase-field method, the state of a microstructure 

domain is represented using a set of field variables that are continuous across the 

interfacial regions as diffuse interfaces. In the continuum phase-field kinetic models, the 

field variables are governed by the Cahn-Hilliard nonlinear diffusion equation [73, 74] 

and the Allen-Cahn relaxation equation (time-dependent Ginzburg-Landau approach) 

[75]. The temporal and spatial evolution of detailed grain structural properties can be 

simulated without explicitly tracking the positions of the interfaces.      

 The phase-field method was firstly applied to model the solidification of materials, 

concerning dendrite formation and growth (e.g. [76, 77]), and the solid state phase 

transformations. Both solidification and solid-solid phase transformations focus on the 

reduction of bulk free energy. In the phase-field method, the free energy of a system is 

defined by the physical order parameters and the evolution of these parameters follows 

the Allen-Cahn and Cahn-Hilliard equations. A further development enabled the phase-

field models to predict the microstructure evolution of grain growth and coarsening, by 

which the total interfacial free energy of a microstructure is reduced. The pioneering 
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work in [78] employed the continuum time-dependent Ginzburg-Landau model to 

simulate the domain-growth kinetics. In this model, the grain boundary energy was 

determined by the Allen-Cahn diffusion equation, and the grains with different 

crystallographic orientations were represented by a set of non-conserved order 

parameter fields. This model and its variations have become a popular tool to simulating 

grain growth kinetics for the two- and three-dimensional grain structure evolution [79-

81].  Figure 2.6 shows two consecutive 3D grain structures during a simulated grain 

growth process [80]. The simulation was performed on a cubic lattice with 180 × 180 × 

180 grid points, using a multi-order parameter free energy model [82] with 20 order 

parameters.  To minimise the effect of grain coalescence, grain orientations were 

dynamically reassigned after each time step. At the initial stage, a grain structure was a 

dense packing of a few thousand grains, and after a growth process, grains were 

eliminated via boundary migration and the mean grain size increased steadily as shown 

in Figure 2.6 (b). Note that, the resultant grain structure with detailed grain morphology 

and crystallographic orientations is ready to be represented in a FE/CAE environment for 

CPFE simulations. It is important to note that, in a phase-field model, the definition of the 

free energy density variation in the boundaries is arbitrary and the assumption of the 

existence of systematic gradients within the interface is not physically justified.  

 

Figure 2.6. Example of microstructural evolution of grain growth using the phase-

field model performed on a 180×180×180 simple-cubic grid (Ref. [80]). (a) A grain 

structure with 5954 grains; (b) the grain structure after growth containing 514 

grains. 
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2.2.2 Cellular Automata 

Cellular automata (CA), implemented as a versatile computational framework, have 

been used to formulate the discrete spatial-temporal evolution of a complex system 

defined on a pre-defined cell lattice, which represents a grain structure. The system 

generally consists of a set of state variables, which relate to the individual lattice cells. In 

conjunction with local or global deterministic or probabilistic transformation rules to the 

lattice cells, the system evolves dynamically. Due to its flexibility of defining both a large 

variety of state variables and transformation laws, the CA method has been proposed to 

simulate a wide variety of phenomena of material microstructural evolution arising from 

recrystallisation [83, 84], dendrite growth [85], grain growth [86, 87] and phase 

transformation [88]. A major problem of this model is the absence of robust approaches 

for the treatment of nucleation including nucleation sites, rates and textures [89]. Using 

the CA method to simulate grain structure evolution requires an initial grain structure. 

This can be obtained from experiments such as those using SEM/EBSD microscopy, or 

from other computational models.  

 

Figure 2.7. Microstructure evolution simulated using the CA model [87]. (a) The 

initial grain structure; (b) a simulated grain structure after grain growth. 

Figure 2.7 shows a grain growth evolution simulated using the CA model reported in 

[87]. In this simulation, the microstructure was evolved in a lattice of               
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cells. The initial grain structure presented in Figure 2.7 (a) was generated by a MC model 

and Figure 2.7 (b) shows a resultant grain structure after a simulated grain growth 

process using the CA model. In [90, 91], coupled models were proposed for cellular 

automaton recrystallisation simulation. In their implementation, the CPFE model was 

used to simulate plane strain compression of aluminium and the state variables such as 

dislocation density and crystal orientation were mapped to the lattice of a 2D CA model 

for subsequent simulation of the recrystallisation evolution phenomena.  

2.2.3 Monte Carlo Potts model 

Similar to the CA method, the Monte Carlo (MC) method is essentially a type of 

computational framework, which simulates the evolution of a physical system defined on 

a discrete grid domain. The simulated evolution is based on stochastic trials generated 

from a probability density function (PDF), in which a physical theory and the rules to 

decide the outcome of the stochastic trials can be incorporated. The Potts model has 

originally been applied to study the evolution of magnetic spin state by minimising the 

boundary of spin aggregates defined on a discretised domain. The Potts model was 

developed to evolve a grain structure domain represented by space-filling cells [92], 

where spin state was generalised to an arbitrary number instead of a binary state [93]. In 

this model, an individual grain was a cluster of lattice cells, which contained the same 

information such as crystallographic orientation and have the same index as shown in 

Figure 2.8. The energy of a system was given by a Hamiltonian, which in this case was 

determined based on the crystallographic misorientation between adjacent grains of 

different indices. Structural evolution was performed via sequential reorientation trials in 

accordance with a transition probability. The indices of candidate cells and the value of 

system energy were correspondingly changed.  

The MC Potts model has been widely used to model the two- and three-dimensional 

microstructural evolution such as grain growth in single- [94, 95] and two-phase 

materials [96], directional grain growth [97], recrystallisation [98], solidification [99]. 

Similar to the CA method, a microstructure achieved from a MC Potts simulation has an 

explicit geometrical description and contains crystallographic information, and so it can 
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be applied to define the FE model for subsequent CPFE simulations. Note that, 

simulations using the MC Potts models are based on a pre-defined lattice. The lattice 

effects, resulting from the cell shape and lattice resolution, are non-physical but are the 

most common cause of invalid results [100]. Also, verification of a MC Potts model is 

difficult, since most of the basic physical features governing grain growth are not 

imposed on this model, for example, there is no formation resulting from the relationship 

between the migration rate of boundaries and the driving force. Thus, although the MC 

Potts model provides a fast and flexible tool for simulating grain structure evolution, this 

model is still a heuristic approach. 

 

Figure 2.8. Illustration of a grain structure represented by a hexagonal lattice 

domain, where each grain is a cluster of hexagons of identical index.  

2.3 Tessellation models 

The tessellation models discussed in this section are referred to as a class of purely 

geometric representation of grain structures. A spatial tessellation containing space-

filling cells is used to represent a grain structure, and the space-filling cells in the 

tessellation are defined as grains. Note that, the term of space-filling means the cells in a 

given domain are non-overlapping and fully occupy the given domain without gaps. In 

the context of grain structure modelling, the spatial tessellation is presented in a two- or 

three-dimensional domain, in which grains are polygons or polyhedra respectively. Note 
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that, the aforementioned metallographic approaches are capable of providing true grain 

structures corresponding to a material specimen, and the numerical models are able to 

produce virtual grain structures that conform to phenomenological or physical laws. 

However, in some circumstances, the above two approaches may not be available or 

suitable, for example in predicting a tailored material or theoretically studying the 

mechanical behaviour of a grain aggregate with special morphological features. In such 

context, the application of geometrical models is essential.  

 It is worth pointing out that the morphological and structural characteristics of 

virtual grain structures are oriented by the requirements of a FE analysis. An applied 

geometrical model is expected to effectively and efficiently generate a virtual grain 

structure with properties fulfilling the simulation requirements. In general studies, most 

of the commonly expected properties are grain size, shape and grain size distribution. 

The other prominent advantage of geometrical models is the high computational 

efficiency in generating virtual grain structures with a large number of grains and the 

capability of seamless integration to a FE/CAE platform.   

2.3.1 Uniform tessellations 

A uniform tessellation, consisting of grains of equal size and identical shape and 

defined on a uniform lattice, is the simplest geometrical model in representing a grain 

aggregate. In a regular grain lattice, the whole cluster of grains is embedded in a 

homogeneous matrix which has the common properties of the cluster. Each type of grain 

lattice corresponds to a particular type of regular space-filling cell (polygons or 

polyhedra). Figure 2.9 illustrates three types of widely used 3D grain lattices: simple 

cubic (SC) lattice, body-centred cubic (BCC) and face-centred cubic (FCC). Each individual 

lattice shown by the nodes specifies the locations of grain centroids, and the grain shape 

in the lattice is presented by the grain corresponding to the inner node (black). Note that, 

the nodes on the surfaces (blue) are the centroids of the adjacent grains, which can be 

obtained via parallel translations.     
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In geometry, there are a limited number of types of regular space-filling polygons 

and polyhedra [101]; the most commonly used shapes are triangles, squares and 

hexagons for a 2D domain, and cubes, hexagonal prisms, rhombic dodecahedrons and 

truncated octahedrons for a 3D domain, as shown in Figure 2.10. Each type of 

geometrical unit can be applied to generate a uniform tessellation via parallel packing. 

Table 2.1 presents the typical geometrical properties of the regular geometrical entities. 

The property of surface area per unit volume for a polyhedron or edge length per unit 

area corresponds to the total grain boundary energy which is a driving force for grain 

boundary evolution in a polycrystalline material. The larger value might lead to more 

mobility for grain boundaries and hence be less morphologically stable. 

 

Figure 2.9. Illustration of three-dimensional lattices and their associated Voronoi 

polyhedra. (a) SC lattice, where grains are represented by cubes; (b) BCC lattice, 

where grains are truncated octahedrons; (c) FCC lattice, where the grain shape is 

a rhombic dodecahedron.  
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Figure 2.10. Space-filling polygons and polyhedra. (a) Equilateral triangle cluster; 

(b) square cluster; (c) regular hexagonal cluster; (d) cube; (e) hexagonal prism; (f) 

rhombic dodecahedron; (g) truncated octahedron. 

Table 2.1. Properties of the geometrical elements of different grain shapes. 

 
Equilateral  

triangle 
Square 

Regular 
hexagon 

Cube 
Rhombic 

dodecahedron 
Truncated 

octahedron 

Spatial lattice    SC FCC BCC 

    or     † 4.56 4 3.72 6.00 5.35 5.31 

Vertices 3 4 6 8 14 24 

Edges 3 4 6 12 24 36 

Faces    6 12 14 

†     signifies surface area per unit volume for a polyhedron, and     denotes 

edge length per unit area.  

Except for the space-filling triangle and tetrahedron unit, that are usually taken as FE 

mesh blocks, other regular geometrical units have been widely used to act as idealised 

grains to represent a polycrystalline material for CPFE simulations. As in the work of 

[102], a comprehensive study of the evolution of crystallographic texture during large 
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deformation of FCC materials was conducted using a finite element implementation of a 

generalised Taylor-type polycrystal constitutive model. In their simulations, an aggregate 

of 400 grains subjected to a simple shear deformation and a plane strain compression 

was represented by square 2D elements, and a set of 343 cubes was used to represent a 

polycrystal to simulate simple compression and tension.  Similar work has been done in 

[103] using a 2D square aggregate but a full 3D FCC slip system as a grain structure 

representation to simulate crystallographic texture evolution. The results showed a good 

agreement with experimental measurements in the simple shear and plane strain forging 

experiment on an oxygen free copper.  In contrast, the work in [104] compared the 

influence of grain shape on the texture development in cold rolled ultra low carbon steel 

under uniaxial tension. Different grain structures were represented by cubes and 

truncated octahedrons respectively. As reported, the simulations using truncated 

octahedral grains produced improved predictions on the texture evolution compared to 

those with cubic grains. In [105], the CPFE method was used to investigate the 

deformation and failure of stent struts under uniaxial tensile loading. A regular hexagonal 

tessellation and a realistic random tessellation were used to examine the shape effect in 

predicting the deformation of 2D uniaxial tensile. The uniform tessellations of hexagonal 

prism and rhombic-dodecahedron were also used to model grain structures to 

investigate the tensile behaviours of stent struts [106]. It was found that the grain 

structure represented by the regular hexagonal prism tessellation yielded a significantly 

higher necking strain than that employing the rhombic-dodecahedron tessellation. 

Note that, in polycrystalline materials, there are two major factors causing 

anisotropic plastic response: crystallographic texture and morphological properties of 

grains. Since macroscopic mechanical responses, e.g., stress and strain, can be strongly 

influenced by the grain size, morphology and orientation, the employment of different 

shape of grains inevitably has an influence on the results of material behaviours. As 

presented above, in early research, uniform tessellations were popular in representing 

grain structures for investigating the evolution of crystallographic texture and 

corresponding influence on mechanical behaviours. Thus, the geometrical effects of grain 

shape, size and arrangement were not properly taken into account. As aforementioned, 
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FE models based on different uniform tessellations yielded different mechanical 

responses, some of which might have better predictions than others. In addition, the 

inter-granular and intra-granular stress variations depend consistently on the grain shape, 

as the rigorous studies in [107, 104, 12, 108] showed. Since in reality most grain 

structures exhibit large variations in grain shape and size, uniform grain structures fail to 

account for the natural variations of a grain’s morphology. Instead, a more realistic 

treatment of grain structure properties of grain shape and grain size distribution will 

improve the accuracy of CPFE simulations. 

2.3.2 Random tessellations 

The random tessellations, being widely used in the field of metallurgy to model grain 

structures, are a family of geometrical models, which mimic solidification processes by 

incorporating the elementary geometry of nucleation, grain growth and impingement. A 

solidification process of a polycrystalline material begins with grain nucleation, followed 

by growth and ends with all crystal surfaces impinging on adjacent crystals. The grain size 

and morphology of a resultant structure from a solidification process depends on the 

distribution of nucleation sites in both space and time, and the growth velocity of the 

grains after nucleation. There are basically two perspectives to categorise nucleation 

settings. The first type is that nuclei can be stationary, i.e. fixed at the initial nucleation 

location, or changeable, e.g. nuclei are floating or absorbed by others. The other type is 

that nucleation can be time-dependent or independent. The time-dependent nucleation 

means that the population of nuclei are not presented simultaneous but progressively 

formed.  

On the other hand, there are fundamentally two categories of growth-rate 

relationships. Grain growth can be isotropic, that is, the growth velocities for all 

directions are the same, or anisotropic. For a 2D grain with anisotropic growth, its 

external boundary expands in an ellipse boundary. The other is grain growth velocity 

which may be constant or variable during growth. For an isotropic constant grain growth, 

grains with circular or spherical boundaries grow to impinge on other grains. As a result, 

the two factors of nucleation and grain growth influence the grain shape, size and grain 
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size distribution. Grain boundary migration also affects the final morphology and size of 

grains. After grain impingement on each other, microstructure evolution may be 

continued via grain boundary migration. Such a grain boundary migration attempts to 

reduce grain boundary energy and causes grain growth.  

To model these physical solidification and grain growth processes, a variety of 

random tessellation models have been proposed. The term of random tessellation is 

named mainly because the nucleation sites are randomly generated according to a 

probability distribution or perturbed by a random noise. In the following discussion, 

random tessellations are categorised in terms of the three dominant factors: nucleation, 

grain growth and boundary migration; geometrical features of corresponding virtual 

grain structures are detailed.  

As mentioned before, the nucleation condition can be time-dependent or time-

independent. The time-independent nucleation means that nucleation sites (grain seeds) 

are simultaneously presented before grain growth occurs. In contrast, in a time-

dependent nucleation process, seeds are produced sequentially with an interval of a 

constant period or a continuous description. Assuming the growth velocity for any grain 

is isotropic and constant and seeds are stationary, it yields the Voronoi tessellation (VT) 

model, which has been traditionally applied in metallurgy to represent polycrystalline 

material microstructures (e.g. [109-111, 22]). Figure 2.11 (a) schematically illustrates the 

grain boundary morphology of a VT where grain growth, presented by three sets of 

concentric circles and based on seeds   ,    and   , simultaneously starts and progresses 

with identical constant velocities. The resultant boundaries are straight lines, where the 

correlated adjacent circles (i.e. at the same level) have impinged. Furthermore, to match 

the metallographic observations of non-uniform grain shape and size in the 

microstructures, seeds in a Voronoi tessellation are usually randomly scattered in the 

given domain. The seeds can be randomly generated from a Poisson spatial point process, 

which is usually called a Poisson Voronoi tessellation model, or by perturbing a regular 

seed lattice with random noise [112]. 
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For a time-dependent nucleation condition, the simplest case is the continuous 

nucleation where the nucleation rate, defining the seed addition rate per unit region 

(area or volume), remains constant during solidification. When applying this condition to 

a 2D event by means of sequentially generating seeds according to a Poisson spatial 

point process, if the growth rate is constant and isotropic for all grains, then the resultant 

model is the Johnson-Mehl (J-M) model [113, 114]. Detailed studies on the properties of 

J-M tessellations were reported in [115, 116]. Figure 2.11 (b) illustrates a schematic 

nucleation-growth process of a J-M tessellation.  In this case, the nucleation of seeds   , 

   and    occurred sequentially at times   ,    and   , and hence the final boundaries 

cannot be straight, but are segments of hyperbolic lines. Also, grains in a generated 

tessellation are not always convex.  

A more general time-dependent nucleation condition is that a nucleation rate is 

variable during the nucleation-growth process. A typical case is that a nucleation rate 

declines with time. For example, provided an initial density of potential nucleation sites, 

a fraction of them are dismissed due to the regions being occupied by other growing 

grains before nucleation happens. As the given case in [117], the probability of 

nucleation at a given site per unit time remains constant while the region being taken by 

the growing grains, the expected remaining seeds  , followed an exponential decline 

with time:                 , where    is an initially specified value, and so is the 

nucleation rate (     ). It is worth mentioning that the limit     is the constant 

nucleation rate condition, and the limit      reduces to the Poisson Voronoi 

tessellation model.  

The other category of solidification conditions is the growth-rate relationship. The 

aforementioned random tessellation models assume that the grain growth is isotropic 

and growth velocities for all the grains are constant and identical. There are also a class 

of random tessellation models that concentrate on the growth effects and corresponding 

grain structure features. One typical setting considers that the growth rate of each grain 

varies according to its radius, and for simplicity, all grains have an identical growth rate 

relation (e.g. a growth rate proportional to a power of the grain radius [118, 119]). In 

addition, provided the seeds are simultaneously given, the above growth-rate relation 
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does not affect the final grain structure properties and the resultant tessellations are VTs 

as shown in Figure 2.11 (c). However, if a nucleation condition is time-dependent, then 

the grain morphology and grain size distribution are determined by the growth-rate of 

adjacent grains. In Figure 2.11 (d), seed    was nucleated one time-step later than seed 

  . Since both share an identical growth-rate relation, the boundary between them is 

curved. It should be noted that under the assumption of constant nucleation rate and 

identical radius-dependent growth rate, the random tessellations are equivalent to a 

family of weighted Voronoi tessellations (e.g. [120-122]).  

The aforementioned growth is homogeneous, that is, growth rate is identical for all 

grains. There is also a scenario of inhomogeneous grain growth such that different grains 

have their own growth velocities for simplicity. As shown in Figure 2.11 (e), the three 

seeds were generated at the same time, but during grain growth, three seeds grew at 

their own constant speed. Since the velocity ratio between    and    was very large, the 

seed    was almost embedded into seed   . This type of random tessellation has been 

used to simulate the microstructure of metallic dual-phase polycrystalline materials in 

[123]. Their method accounted for the difference in grain growth velocities in different 

phases during solidification. The simulated grain structures showed a large variety of 

grain size and morphology, changing with the ratio of grain growth velocities of different 

phases. As the ratio tended to infinity, grains from one phase were embedded into grains 

of the other phase. Finally, as anisotropic grain growth has also been observed in 

polycrystalline materials, random tessellation models have also been developed to 

simulate solidification process with an anisotropic grain growth. For example, the work in 

[124] studied two growth modes, where grains grew based on either an elliptical or 

polygonal shape with a specific aspect ratio, under both simultaneous and continuous 

nucleation conditions.     

It is worth pointing out that, despite the diversity of random tessellations in 

modelling solidification, the geometrical methods are easily implemented: a point on 

some boundary of two adjacent grains can be determined according to the following 

relation with respect to the impingement time  :    
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where    and    are the nucleation time of the two adjacent grains, and   
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time spent from nucleation to impingement. For a constant growth condition, the 

growing time can be calculated from   
        and   

 
      , where    and    are the 

distances between seeds   and   to the boundary point, and    and    are the respective 

grow velocities of the two grains. Furthermore, a triple junction of adjacent grains  ,   

and   can be determined by      
       

 
      

 . 

In addition to simulation of solidification processes, the random tessellations have 

also been used to model the microstructure evolution under boundary migration and 

grain growth [125-127]. To simulate grain boundary migration, an individual grain 

boundary is represented by an array of such points, that is, the boundary curve is an 

interpolation of them. The migration of a boundary means moving an array of points and 

the corresponding junctions, according to the local characteristics of a boundary, e.g. its 

curvature, the stress state or misorientation of two adjacent grains. Different from the 

aforementioned numerical models such as the Monte Carlo Potts method, the random 

tessellation models are capable of handling complex local geometry, especially at the 

junctions of grain boundaries. Moreover, it is highly efficient and committed to represent 

grain structures for further FE model representation.  
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Figure 2.11. Schematics of grain boundary formation under the assumption of 

isotropic growth, where thin circles are progressive boundaries by constant time 

intervals, thick lines represents grain boundaries and centre nodes signify nuclei 

(seeds). (a) Simultaneous nucleation and globally-identical constant growth 

velocity; (b) sequential nucleation and globally-identical constant growth 

velocity; (c) simultaneous nucleation and globally-identical time-dependent 

growth velocity; (d) sequential nucleation and globally-identical time-dependent 

growth velocity; (e) sequential nucleation and constant but inhomogeneous grain 

growth. 

As the random tessellations have been traditionally applied to modelling random 

grain structures of polycrystalline materials, they have been widely employed to 
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represent virtual grain structures for micromechanics simulations. The natural grain 

junction representation enables a CPFE simulation to easily cope with boundary 

geometry and further meshing, which is a significant improvement over other numerical 

models using a discretised representation, e.g. the CA and MC Potts models. More 

important is that the random tessellation model can efficiently handle the operation of 

large-scale grain structures for particular simulation requirements such as a micro-

forming process. In addition, the concise representation of grain geometry benefits the 

pre-processing work being performed makes this very convenient and highly efficient. 

Different from the uniform tessellations, utilisation of a random tessellation to define a 

polycrystalline material gives a FE model more insight into the anisotropic mechanical 

responses resulting from the crystallographic and morphological textures. All the above 

advantages have promoted the random tessellation being widely utilised in CPFE 

applications.  

For small-scale applications, random tessellations have been intensively used to 

understand local deformation mechanisms and study local damage initiation-propagation, 

with incorporation of the structural anisotropies of morphological texture and 

crystallographic texture. As the published results show that grain shape and organisation 

have a strong influence on local stress-strain fields (e.g. [107, 104, 12, 128]), the random 

tessellations, especially the Poisson Voronoi tessellations, have been used to study a 

range of localised properties of a polycrystal, e.g., shear localisation [129], micro shear 

banding  [112] and dislocation density accumulation [128]. Having access to the high-

fidelity local strain-stress fields, the micromechanics FE simulations using random 

tessellations can be a very powerful tool to study grain boundary sliding, crack initiation, 

and crack propagation (e.g. [130-132]).  They also provide important local quantitative 

data, e.g. strain gradients, to other computational models for a variety of multi-physics 

simulations, e.g. recrystallisation and grain growth, or multiscale simulations. From a 

macro-scale prospective, the Poisson Voronoi tessellation model has been particularly 

applied to model virtual grain structures for various studies, mainly due to the extreme 

computational efficiency and natural representation of equiaxed grains.  
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As an indispensable tool, this model has been widely used in various large-scale 

micromechanics FE simulations, for example, estimation of the size of a representative 

volume element (RVE) of random heterogeneous materials (e.g. [133-135]), which gives a 

view to predicting overall properties and optimising microstructures. Moreover, as the 

Poisson Voronoi tessellation model can generate very large virtual grain structures with 

little computing efforts, the Voronoi tessellations have been employed as a standard 

virtual grain structure representation scheme for CPFE simulations of many micro-

forming processes, e.g, hydro forming of a micro-tube [136], extrusion of a micro-pin 

[137], thin-sheet forming [138], and micro-mechanical tests (e.g. indentation, three-point 

bending, and rolling contact fatigue [139]). Note that, generation of Poisson Voronoi 

tessellations is based on the assumption that nucleation sites are purely randomly 

generated in the domain according to a Poisson point process, and hence the 

sophisticated features such as grain size distribution cannot be controlled.   

2.3.3 Summary and discussion 

Finite element (FE) methods are increasingly used for micromechanics modelling of 

polycrystalline materials. Polycrystalline FE has given valuable insights into grain-to-grain 

interaction behaviour and local deformation mechanisms, acts as an effective utility to 

simulate micro-forming processes for small-scale metal products, and is capable of 

simulating local damage processes of components in service. Since stress and strain are 

related to grain size, shape, orientation and their distributions, FE micromechanics 

simulations must be based upon a grain structure modelled within a FE/CAE 

computational environment. Therefore, representation of the microstructure in a 

realistic manner is critical for accurate simulations.  

A wide range of approaches have been developed to fulfil the grain structure 

representation task. As this chapter outlined, the metallographic techniques, numerical 

models, and tessellations are the three most commonly applied methods to generate 

grain structures. A variety of experimentally-based methods using metallographic 

techniques have been developed to acquire images of actual grain structures, which can 

be used to define grain structures for micromechanics FE simulations. Simulations based 
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on the experimentally-determined geometric structure and crystallographic orientations 

allow for a comprehensive understanding of the relations between the structures and 

mechanical response in high fidelity. However, these methods are commonly very time-

consuming and extremely laborious, and often require destruction of the material 

sample. Some of them are very expensive or cannot be accessed by the mainstream 

research community. More importantly, these methods have difficulty producing large-

scale grain structures for large-scale FE simulation such as micro-forming of a 

polycrystalline material. The numerical models, on the other hand, have the advantages 

of repeatedly producing simulated grain structures in a large scale without experimental 

constraints. Successful simulations of the specific physical phenomena will achieve 

simulated grain structures in the computational environment, which can further be 

incorporated into a FE model. The geometrical models are the most efficient approaches 

in generating virtual grain structures in a FE/CAE platform. Although uniform 

tessellations have been used in prediction of crystallographic texture evolution, they paid 

little attention to the grain morphological anisotropy and hence the local strain-stress 

fields around grain boundaries and junctions. In contrast, random tessellations are 

capable of capturing various morphological properties meeting the requirements of 

advanced micromechanics simulations. In a broad sense, the random tessellation models 

also belong to the numerical models, which simulate physical phenomena, such as 

nucleation-solidification and grain growth. Defining them in a separate category is mainly 

due to their particular data representation features, i.e. lines or curves, which enable the 

generation of virtual grain structures to be accomplished highly efficiently, and allow for 

direct importation to a FE/CAE system for FE modelling.  

Note that all the above numerical models are oriented to simulate an evolution of a 

physical process, e.g. solidification. They mainly emphasise the feasibility and accuracy of 

the related simulated process, by which the resultant grain structures are assumed to be 

inherently equivalent to that of the originals. However, a critical issue that has been 

ignored is that these models are commonly based on some simplified conditions that 

inevitably affect the final grain structures. For example, in generating the virtual grain 

structure, the Poisson Voronoi tessellation model makes the assumption that grain 
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nucleation is generated from a Poisson point process, i.e. purely random. Since the seed 

distribution dominates the final grain structure’s uniformity and hence the grain size 

distribution [140], a lack of an effective specification of such a nucleation condition may 

not produce a proper grain structure model for micromechanics studies. In addition, in 

some simulation scenarios, original materials may not be available, e.g. when designing a 

special material with particular mechanical properties.  

Therefore, the method to generate application-oriented (AO) virtual grain structures 

is very valuable for micromechanics simulations. Such an AO method should be capable 

of generating a virtual grain structure that is statistically equivalent to the desired grain 

structures based on the requirements of a micromechanics simulation. These properties 

can be directly taken from the metallographic measurements, or the properties can be a 

set of arbitrary values with respect to an imaginary grain structure. Note that, in many 

circumstances, grain size distribution characteristics are vital properties for accurate 

prediction or simulation of mechanical behaviour of a polycrystalline material. A few 

studies have been proposed using the ellipsoid packing method to synthesise a virtual 

grain structure (e.g. [141, 142]).  As an AO method, it attempted to achieve grain size 

distribution control in generating polycrystalline material by means of a sequence of 

operations on optimal packing the pre-generated representative ellipsoids, and then 

some numerical models such as CA and MC Potts methods were used to adjust the final 

grain shapes. But, despite the complex geometric computations of e.g. optimal packing, 

overlaps and voids, the overlaps among grains and domain boundaries changed the size 

distribution properties. Instead of artificially producing and packing individual grains, this 

work develops a novel scheme self-consistently within one single tessellation framework, 

namely the controlled Poisson Voronoi tessellation model (CPVT), to generate virtual 

grain structures with grain size distribution control.   
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Chapter 3 Controlled Poisson Voronoi tessellations 

Controlled Poisson Voronoi tessellations 

3.1  Introduction 

In large-scale CPFE analyses, e.g. micro-forming simulations, a polycrystalline 

material contains a large number of grains so that the size of grains exhibits a 

distributional feature. Namely, the size of grains varies and overall appearance of grain 

structures with different grain size dispersion characteristics shows different uniformity. 

As intensive studies revealed, not only the mean grain size but also grain size dispersion 

have significant impact on both of the macroscopic plastic flow stress and local stain-

stress development [15]. In addition to crystal plasticity, other mechanical properties 

such as creep rate [20], crack propagation rate [21], and creep damage evolution [13] 

also strongly relate to the grain size distribution characteristics of a polycrystalline 

microstructure.   

Voronoi tessellations (VTs) have been used as a conventional tool to generate grain 

structure for large-scale CPFE simulations. Grains in a VT filling the domain contiguously 

are non-uniform and usually exhibit large variability, as observed in natural 

polycrystalline microstructures. However, as VTs are disordered, there are still no clear 

rules for interpreting the organisation and geometrical constraints of the grains produced 

by the tessellations. This is mainly because the initial nucleation distribution condition is 

completely simplified, although it simulates a homogeneous crystallisation process.  

In most applications of CPFE simulation, generating seeds for Voronoi tessellation is 

performed according to a Poisson spatial point process or by means of perturbing a 

uniform tessellation with random noises. Although there is no clear rule to verify 

whether a randomly generated seed lattice is appropriate to simulate a real solidification 

process for a particular microstructure; given any real polycrystalline microstructure, its 

seeds must have been nucleated based on a certain distribution pattern. This governs the 
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grain structural properties, e.g., the tessellation’s uniformity, the mean grain size, and 

the grain size distribution [140]. From the perspective of generating an application-

oriented virtual grain structures, one key issue is evaluating the degree of grain structural 

uniformity, and further using the degree of uniformity to generate the tessellation with 

control of the grain size distribution. 

 This chapter is dedicated to development of an application-oriented virtual grain 

structure generation model, namely the controlled Poisson Voronoi tessellation model. 

This model is based on the geometrical description of simple Voronoi tessellation, that is, 

all grains assuming an isotropic growth with an identical velocity. A virtual grain structure 

generated using the CPVT model has the property that its grain size distribution is 

statistically equivalent to the actual grain structure in term of the specified physical 

parameters: the mean grain size, a small grain size, a large grain size, and the percentage 

of grains within that range. Development of the CPVT model requires three steps:  

1) Defining the regularity that specifies the uniformity of a tessellation, and deriving 

the control parameter based on the regularity.  

2) Establishing the mapping from the regularity to the distribution parameter of a 

one-parameter gamma distribution.  

3) Defining the mapping from the set of physical parameters to the distribution 

parameter.   

Defining the quantities or mappings in the first two steps depends upon the domain’s 

dimension. The following part of this chapter only concentrates on establishing the 

relation of the specific physical parameters with the grain size distribution property of a 

given grain structure. In the beginning, definition of related tessellation models is 

provided and important geometrical relations are discussed. Then, a distribution function 

is applied to give a mathematical description of the grain size statistics of a grain 

structure. The relation between physical parameters with the parameter of the 

distribution function is rigorously studied. A mathematical proof of the uniqueness of the 

determination of the distribution parameter from the proposed set of physical 
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parameters is provided, and an efficient numerical procedure is proposed for computing 

the distribution parameter.   

3.2 The models 

3.2.1 Voronoi tessellations 

A polycrystalline grain structure can be modelled by a Voronoi tessellation, provided 

the physical assumptions are satisfied: 1) All nuclei (seeds) appear simultaneously and 

remain stationary during the grain growth process; 2) grain growth is isotropic and 

growth velocity is identical for all grains; and 3) grain growth ceases to form a grain 

boundary whenever a grain comes into contact with another growing grain boundary.   

The geometrical properties of a Voronoi tessellation can be described as follows (see 

e.g. [143] for further details). Given a domain     with a set of distinct points        

(i.e., no two or more points spatially coincide), where      is referred to as nuclei or 

seeds. Each seed    is associated with region given by  

       
                                            , 3.1 

where       denotes Euclidean distance and if    ,       are planar Voronoi polygons 

and if    ,       are Voronoi polyhedra. Equivalently,  

       
                  , 3.2 

where          is the closed halfspace to the seed  , that is, 

                                         . 3.3 

Provided    , the boundary between the two seeds              and              is a 

perpendicular bisector plane, which can be obtained by 

            , 3.4 
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where  ,  ,   and   are coefficients, determined by the given seeds as 

 

{
 

 
          

          

          

     
    

      
    

      
    

  

. 3.5 

For    , the boundary between two seeds           and          , are degenerated 

into a perpendicular bisector line. Similarly, the boundary can be decided by 

        , 3.6 

where the coefficients  ,  and   are determined by 

 {

          

          

     
    

      
    

  
, 3.7 

And further, the set given by  

                      3.8 

is named as the Voronoi diagram. Furthermore, a finite domain      is tessellated by 

 , that is,      and              , hence the Voronoi diagram   is referred to as a 

Voronoi tessellation. Note that, in this work, Voronoi tessellations are used to model 

grain structures, therefore, for simplicity, both polygons in a 2D tessellation and 

polyhedra in a 3D tessellation are denoted as grains of a Voronoi tessellation. 

3.2.2 Poisson Voronoi tessellation 

Most real-world Voronoi tessellations are non-uniform, and can be easily 

represented by a random Voronoi tessellation, in which generation of seeds are 

associating with a stochastic point process. A stochastic point process is a probabilistic 

generation of points in a given domain according to a probability distribution function 



42 

 

defined over the domain. That is, let a   be a non-empty subset of   , i.e.,      and 

     be the number of points in a subset  , where    . A stochastic point process is 

referred to as the process where points are generated in accordance with a probability 

distribution                   , for any   in  .  

The most fundamental point process is the Poisson point process. The points are 

stochastically independent and the probability of the number of points      in a region 

  is given by the Poisson distribution: 

            
            

 
         , 3.9 

where   is the intensity of the point giving the mean value of points in a unit area (or 

volume) and     means area (or volume) of  . Obviously, the distribution of      does 

not depend on the location of   but only on its area (or volume), and also there are no 

interactions among the points. Accordingly, the random tessellation, in which seeds are 

generated in accordance to the Poisson point process, is called the Poisson Voronoi 

tessellation. 

3.2.3 Hard-core model 

If relaxing the condition that seeds are independently generated and introducing a 

minimum scattering distance between seeds, a hard core process [143] can be defined by 

the distribution  : 

      ∫ ∫                               , 3.10 

where   is a set of points in the domain  , and the probability density function is given 

by  

                              , 3.11 

where the function   is referred to as interaction energy function, given by  
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                ‖     ‖         , 3.12 

and the potential function   is, 

  (‖     ‖)  {

      ‖     ‖    

–         ‖     ‖   

      ‖     ‖   

  . 3.13 

The function   is governed by the scattering distances   and  . If the distance is no more 

than  , the potential is such large that the consecutive seed is not allowed to be 

generated in this range, while if the distance is within      , there is an attraction (b>0) 

or repulsion (b<0) influence. Correspondingly, the new random Voronoi tessellation 

model based on the hard-core point process is named as the hard-core tessellation. Note 

that, introduction of the seed distance corresponds to a nucleation-exclusion zone for an 

individual seed, which may come from a pre-growing condition to all present seeds. If the 

scattering distances are set to zero and there is no propelling or attracting energy among 

the points, then the hard-core Voronoi tessellation model is reduced to the Poisson 

Voronoi tessellation model. 

3.2.4  The CPVT models 

Given a domain   and letting the seeds be generated in this domain by a hard-core 

process with the potential function defined by, 

  (‖     ‖)  {
      ‖     ‖   

      ‖     ‖   
  . 3.14 

The function   is only determined by the minimum seed spacing  , that is if the distance 

between a newly generated seed    to any of the existing seeds    is less than  , the 

potential is so large that the new seed is not accepted. In the CPVT model, the minimum 

seed spacing, determined by the specified physical parameters, is employed as a control 

parameter, dictating the distances between it and its neighbours to generate a seed 
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lattice for Voronoi tessellations. In detail, when providing a control parameter  , the 

seed lattice generation process proceeds as follows: Seeds are generated sequentially in 

a given domain by sampling their coordinates independently based on a uniform random 

number generator. After the first seed is produced, each subsequent seed is only 

accepted if it is greater than a minimum allowable distance from any existing seed. 

Provided that every seed has an exclusive zone with the same diameter  , the distance 

between a newly generated seed   and an existing seed   satisfies the condition 

        ,              . This procedure corresponds to a propelling force being 

present so that the simultaneous nucleation sites are scattered under their interactions 

before significant grain growth begins. For example, as illustrated in Figure 3.1, the new 

seed   is accepted because the distances between   and the other adjacent seeds are all 

equal to or larger than  . 

 

Figure 3.1. Schematic pattern of a controlled Poisson Voronoi tessellation, where 

the control parameter is the minimum seed spacing  , and the seed distance 

         and         , where          . 

The core mechanism of the CPVT model is the scheme to determine the control 

parameter   based on a set of physical parameters, by which any repeatedly generated 

Voronoi tessellations are expected to be statistically equivalent to the grain size 

distribution property given by the physical parameters. To be noted in the next chapter, 
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the control parameter dictates the seed dispersion and hence the uniformity of the 

related tessellation. That is, the larger the control parameter value, the more regular a 

tessellation appears. A global quantity of tessellation’s regularity   is used to define a 

Voronoi tessellation’s uniformity; as a global evaluation, it also relates to the grain size 

distribution characteristics. That is, by providing a probability distribution function to 

describe the grain size distribution characteristics, the global regularity can be mapped to 

the parameter(s) of the distribution function. The other module is established employing 

the physical parameters as input to specify the parameter(s) of the distribution function, 

which avoids directly using one or more obscure distribution function parameters to 

determine the control parameter.   

 

Figure 3.2. Scheme of the CPVT model for virtual grain structure generation. 

In all, the CPVT model aims to fully control the tessellation’s regularity and its 

corresponding grain size distribution using a set of physical parameter input. The control 

parameter is the primary link between the user-expected grain structure and the realised 
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virtual grain structure. Figure 3.2 shows the flow chart using CPVT to generate virtual 

grain structures. It is explained as follows:  

 Workpiece related input includes the size of a workpiece and the mean grain 

size, which are used to obtain the implementation parameters including the 

tessellation’s domain   and the number of grains       

 Grain structure related input consists of four physical parameters, which 

describe a set of higher order grain size distribution features, to determine the 

control parameter  .  

In this work, the controlled Poisson Voronoi model is denoted as                , 

where under the control of  ,       seeds are sequentially generated within the domain 

 . The following part of this chapter is dedicated to define a grain size distribution 

function and establish the mapping between the physical parameters to the distribution 

function parameter(s). Details of the realisation and implementation of the CPVT model 

for two- and three-dimensional grain structures generation will be discussed in the 

remainder of this work. 

3.3 Grain size distribution 

Traditionally, the statistical distributions of the size parameters for Poisson Voronoi 

tessellations have been intensively studied. Several distribution functions have been 

suggested to describe the perimeter and area of grains in a planar tessellation, and 

surface area and volume of grains in a spatial tessellation. The log-normal distribution 

[144], Rayleigh law [145] and Maxwell speed distribution function [146] were proposed 

in early work, while, the gamma distribution functions have been widely employed to 

model grain size distributions (e.g. [147-153]) in terms of grain area for 2D tessellations 

and grain volume for 3D tessellations. Reported results include a three-parameter 

gamma distribution [152], a two-parameter gamma distribution [151, 148] and a 

translated gamma function [111]. Importantly, if the grain size is normalised by the mean, 

then a one-parameter gamma distribution can provide an accurate fit for the grain size 

distribution [153-155]. The one-parameter gamma distribution function only requires the 
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specification of one parameter and also provides a quality fit for a normalised grain size 

distribution for a 3D VT. Therefore, it is most suitable to model grain size distributions in 

that the single distribution parameter can be a central link from the physical parameters 

to the tessellation’s regularity. 

The one-parameter gamma distribution function takes the form of, 

         
  

    
                      , 3.15 

where the parameter    , and      is the gamma function, defined as 

      ∫             
 

 

 3.16 

Note that the variance of the one-parameter gamma distribution is    . As the 

parameter   increases, the distribution becomes narrower, which is more suitable for 

modelling the tessellations having approximately similar grain sizes. In addition, there are 

two major advantages to using a one-parameter gamma distribution to describe the 

grain size distribution: Only one parameter   is involved in the relation for the 

tessellation’s regularity, and the mean value of this distribution is one, which is the 

normalised mean grain size. 

Consider a set of physical parameters                  from the quantitative 

metallography, where        is the mean grain size, defined as       
 

 
   ,    and 

   are two specific grain size values and    is the percentage of the grains with size in the 

range of         over the total number of the grains   , that is, 

    
 

 
   , 3.17 

where 
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    {
  
  

    
             
         

.  

It should be noted that grain size   henceforth represents area in a two-dimensional 

tessellation and volume in a three-dimensional tessellation. When modelling grain 

distributions by a one-parameter gamma distribution, the set of parameters conform to 

the following equation:   

    ∫
  

    
          

  

  

   3.18 

where            ,             and      is a gamma function as in Eq. 3.16. 

Figure 3.3 presents an example of a one-parameter gamma distribution with     , 

where the area of the shaded part between the lower limit             and upper 

limit             equals the percentage        . 

It can be observed that by specifying the physical parameters, the parameter   is 

correspondingly found by solving Eq. 3.18. However, there are still two major issues to 

be solved in order to utilise this scheme, which are: Conditions for which the parameter   

is uniquely determined by Eq. 3.18, and an efficient numerical algorithm to solve Eq. 

3.18.  
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Figure 3.3. Example of a one-parameter gamma distribution, where the lower 

and upper bounds of the integral are   =0.8 and   =1.2, respectively. 

3.4 Physical parameters  

This section consists of two parts: First is the presentation of the condition for 

existence of a unique solution to Eq. 3.18, followed by an efficient algorithm for solving 

Eq. 3.18. 

3.4.1  Uniqueness  

Here uniqueness implies the uniqueness of the value of   obtained by solving Eq. 

3.18. That is, given a set of physical parameters                 , there 

correspondingly exists a unique value of   characterising the one-parameter gamma 

distribution, describing the grain size distribution. Let, 

 {
        
        

        
      
      

 3.19 
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where    and    are the integral limits of Eq. 3.18. For the symmetric case where 

       ,  ̅             , which is also the mean value of a one-parameter 

gamma distribution.  

Lemma 1. There exists an interval       
    

  , such that for any interval          , 

where        , if     , the implicit function 

       ∫
  

    
          

  

  

 3.20 

is strictly monotonically increasing, as the parameter   increases for any    . Moreover, 

the interval       
    

   can be estimated by 

 {
  

    
 

√ 
        

  
    

 

√ 
                    

, 3.21 

where the term           . 

Theorem 1. Given the constants   ,    and the percentage value            , where 

       , if the interval                 
    

  , where   
  and   

  are 

determined from Eq. 3.21, the implicit function       in Eq. 3.20, defined over the domain 

            and range            , has the properties that:  

       is a bijection; 

       has a continuous inverse   
      on the range      . 

Lemma 1 and Theorem 1 explain the existence of a valid range of physical 

parameters, where uniqueness is satisfied. Proofs of Lemma 1 and Theorem 1 are given 

in Section 3.5. This is realised by choosing a small grain size   , a large grain size    and 

a mean grain size      , such that                 
    

  . Then, the parameter   is 

uniquely determined by the percentage value   . Although the existence of such an 

interval of physical parameters that uniquely defines the   values has been proved, this 
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interval, estimated by Eq. 3.21, is not large enough for all practical applications. In the 

following, efforts are made to extend the effective interval   . 

3.4.2 Estimation of    

To estimate the interval    means to find a valid interval       
    

   as large as 

possible such that 
   

  
  . Since       

    
        

      
  , to estimate the valid 

interval    is equivalent to finding possible large values of both   
  and   

 . For simplicity 

and without loss of generality, only a symmetrical situation is considered, where 

       . Let the function      be  

        
        

  
 

  

    
∫                             

   

   

  3.22 

where      is the digamma function defined as the logarithmic derivative of the gamma 

function, 

     
     

    
   

Furthermore, for any    , let 

 {
                              

                              
   3.23 

and there exist  ̃ ,  ̃        such that 

 {
  ( ̃ )   

  ( ̃ )   
   3.24 

Due to    ̃   ̃   , the property of        is studied with respect to three sub-

intervals: 

         (   ̃ ]  ( ̃   ̃ )  [ ̃   ). 
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Lemma 2. There exists a point    ( ̃   ̃ ), where  ̃  and  ̃  are given by Eq. 3.24, such 

that for any         ,         . Moreover, the function        is strictly 

monotonically increasing for          and strictly monotonically decreasing for 

        .  

(Proof of Lemma 2 is given in the Appendix of this chapter.) The shape of the function 

       is schematically illustrated in Figure 3.4, where it can be observed that as   

increases from   to   ,      increases, starting from a positive value. But after   , as the 

variable   increases, the function value        decreases correspondingly. Then 

    
      

        
   

       3.25 

In this situation, the asymptotic value of            is critical, that is, if            

 , then the interval    is such that         . 

Table 3.1 was calculated by means of the Gaussian quadrature method using the 

arbitrary precision package ARPREC [156]. From the numerical results, it can be verified 

that for any             and         ,          is satisfied. In the following work 

of development of 2D- and 3D-CPVT model, the   value takes below 200, therefore this 

numerical result is sufficient for this scheme. Hence the estimation of 

                 is achieved, where the mapping from the percentage value    to the 

distribution function parameter   is one to one. 
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Figure 3.4. Schematic illustration of        over the interval of        , where 

        is a constant value. 

Table 3.1. Asymptotic behaviour of               . 

                        

1 5.61E-02 100 2.89E-47 200 8.63E-91 300 2.23E-134 400 6.23E-178 500 1.86E-221 

10 6.26E-08 110 1.34E-51 210 3.77E-95 310 9.79E-139 410 2.76E-182 510 8.26E-226 

20 5.76E-13 120 6.10E-56 220 1.64E-99 320 4.31E-143 420 1.22E-186 520 3.68E-230 

30 1.80E-17 130 2.74E-60 230 7.18E-104 330 1.90E-147 430 5.43E-191 530 1.64E-234 

40 7.70E-22 140 1.22E-64 240 3.14E-108 340 8.37E-152 440 2.41E-195 540 7.30E-239 

50 5.68E-26 150 5.38E-69 250 1.37E-112 350 3.69E-156 450 1.07E-199 550 3.25E-243 

60 3.86E-30 160 2.36E-73 260 6.01E-117 360 1.63E-160 460 4.75E-204 560 1.45E-247 

70 2.27E-34 170 1.04E-77 270 2.63E-121 370 7.20E-165 470 2.11E-208 570 6.47E-252 

80 1.21E-38 180 4.53E-82 280 1.15E-125 380 3.18E-169 480 9.38E-213 580 2.89E-256 

90 6.04E-43 190 1.98E-86 290 5.07E-130 390 1.41E-173 490 4.17E-217 590 1.29E-260 

 

3.4.3 Lower bound on    

The preceding discussion shows that given             and             

within the interval given by Eq. 3.21, the function value             is monotonically 

increasing as   increases. On the other hand, the    value cannot be arbitrarily small due 

to the requirement of modelling grain size distributions, that is, a relaxation condition to 

determine the lower bound of    is derived based on    . Therefore, the lower bound 

for the percentage             is given by, 
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                      . 3.26 

For the symmetrical case, i.e.,        and       , the lower bound is 

determined by 

                   , 3.27 

where,            . 

3.4.4  Algorithm to solve the   value 

In [157-159], the   value is determined by means of exhaustive enumeration starting 

from   with a prescribed incremental step, such as      . Since each iterative step 

involves a series of computations including one numerical integration, this searching 

scheme is fairly inefficient. To improve the solution procedure, an efficient gradient 

search method is proposed as follows. Given the four input parameters,   ,      ,    

and   , the following equation must be solved for  , 

    ∫
  

    
          

        

        

       3.28 

where the constant      is calculated by Eq. 3.16. A Newton-Raphson method can be 

used to obtain the   value as follows. Let  

      ∫
  

    
          

        

        

     3.29 

then, 

       ∫
  

    
                                

        

        

  3.30 

and the iterative root finding procedure is 



55 

 

         
    

     
   3.31 

where        . Based on the preceding discussion, the denominator is always non-

zero. Since all the distributions are described by     , the searching process starts at 

    . This process continues until the prescribed tolerance,  , is achieved, where the 

termination condition is formulated in terms of the successive change as 

              3.32 

3.5 Appendix 

3.5.1 Proof of Lemma 1 

Consider a function            , where     and           . The partial 

derivative of    with respect to the parameter   is computed as, 
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Let                      . Note that            is always satisfied for any 

   . Then there is a sufficient condition that if       , then 
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For the term         , the inequality  of 
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holds (see [160]). Thus,        
 

  
      . To find a valid interval       

    
   

such that       , two subintervals   
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So,   
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Next for the interval   
 , the function      is differentiable. Based on Eq. 3.34, 
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In summary,           
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A conclusion, from Eq. 3.33, is the result that for any            and        , 

   

  
  , i.e.,             monotonically increases as   increases. 
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3.5.2 Proof of Theorem 1 

Lemma 1 shows that provided          where         and       
    

   

defined by Eq. 3.21, 
   

  
  , that is, the percentage value              monotonically 

increases as   increases. Thus, the function       is a one-to-one mapping with the 

domain         . Also,        has a continuous inverse   
      on the range      .  

3.5.3 Proof of Lemma 2 

For functions       and       in Eq. 3.23, the derivatives, 

 {
  

     
  

   

  
     

  

   

   3.36 

are negative, that is, they are decreasing on interval      . Moreover, let  ̃ ,  ̃    such 

that Eq. 3.24 is satisfied. Note that, for    , there are always  ̃ ,  ̃       . 

In the following, the property of        is studied with three intervals,          

(   ̃ ]  ( ̃   ̃ )  [ ̃   ) , respectively. The derivative      with respect to   is 

computed as 

 

       

  
 

  

    
                                     

                                    

                   

3.37 

and let 

 {
                      

                      
   3.38 
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where         and         for all        . Together with the notation in Eq. 

3.23, it has 

 
       

  
 

  

    
(                     )   3.39 

Obviously, for      (   ̃ ],         and        , and hence 
       

  
  . 

Therefore,      is monotonically increasing on the interval    (   ̃ ] . In contrast, for 

     [ ̃   ) ,         and        , and thus, 
       

  
  . Thus,      is 

monotonically decreasing on the interval   . 

Consider the property of 
       

  
 on      ̃   ̃  , where         and        . 

      and       in Eq. 3.38 have relation of              , for       ̃  . 

From Eq. 3.39, it can be derived that 
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In addition,   ( ̃ )    ( ̃ )    and   ( ̃ )    ( ̃ )   . There exists 

 ̅    ̃   ̃  , such that     ̅      ̅   . From Eq. 3.36, it has   
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for all     . Therefore, for  ̅     ̃ ,              , and hence 
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For  ̃     ̅, the second derivative of        has 
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Due to  
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and hence the term 

   
                 

          

In addition, the term 

   
                 

           
 

   
(             )   

is negative if and only if 

                         

Note that, for    ̅, it has     ̅      ̅   . It can be derived that  
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Thus    ̅   . Moreover, since  ( ̃ )    and         , it can be obtained that 

      , for  ̃     ̅ . Therefore, 
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decreases monotonically on the interval   ̃   ̅ . Additionally, 
       

  
   for       ̃   

and 
       

  
   for     ̃   ̅ . Therefore, there exist    ( ̃   ̅]    ̃   ̃   such that 

        

  
  . 

In conclusion, there exist      , such that 

1. 
        

  
  ,      ̃   ̃   

2. 
       

  
  , for        

3. 
       

  
  , for       . 

Therefore, the function        strictly monotonically increases for          and 

strictly monotonically decreases for         .  

3.6 Summary  

The fundamental methodology of the CPVT model was discussed in this chapter. This 

model employs a control parameter, i.e. the minimum seed spacing, to monitor the seed 

generation process. A virtual grain structure generated using a CPVT model has the 

properties that its grain size distribution is statistically equivalent to that of the specified 

physical characteristics, in addition to possessing the appropriate morphology in 

simulating true grains. 

Configuration of a CPVT model requires three steps: 1) defining distribution 

parameter from the input of physical parameters, 2) deriving the tessellation’s regularity 

from the distribution parameter, and 3) determining the control parameter from the 

regularity. In CPVT models, grain size distribution is described using a one-parameter 

gamma distribution function. The relationship between the proposed physical 

parameters and the gamma distribution parameter has been studied. A mathematical 

proof of the uniqueness of the determination of the distribution parameter from the 

physical parameters was provided by identifying a small valid interval, which was then 

extended into a larger region that fully satisfies the application requirements. 
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Furthermore, a series of computational results were presented to validate the 

uniqueness assumption of the proposed scheme. In addition an efficient numerical 

procedure was proposed for computing the distribution parameter. The other two steps 

are to be fulfilled in the following chapters with respect to the dimension of grain 

structures.  
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Chapter 4 2D CPVT model 

2D CPVT model 

4.1 Introduction  

In this chapter, the CPVT model is developed to generate two-dimensional virtual 

grain structures. A global quantity to be used to evaluate a tessellation’s uniformity is 

given and its dual relations with control parameters and distribution parameter are 

presented. In combination with the results of the preceding chapter, a 2D-CPVT model 

has been constructed. Implementation of the entire system is explained and the 

corresponding computational procedures are provided. 

 Emphasis is devoted to examining the effectiveness and robustness of the CPVT 

system in generating virtual grain structures with specified properties. Two series of 

statistical tests were performed to validate the agreement between the prescribed 

regularity and that of the resultant tessellations, and to investigate the details of the 

overall grain size distribution. In addition, two real microscopic images with different 

grain size distribution features were employed to examine the capability of the system to 

generate virtual grain structures that meet physical measurements. To demonstrate 

applications of the proposed 2D-CPVT model in micromechanics simulations and further 

explain the virtual grain structure generation procedures, two virtual grain structures 

with different regularities were generated and related CPFE models have been built for 

2D plane strain CPFE analyses of uniaxial tension.   

4.2 Model development  

4.2.1 Workpiece related input 

Representation of the FE model by means of a Voronoi tessellation requires 

prescription of a workpiece domain   and the number of seeds,      . As shown in 
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Figure 3.2, there are two groups of input required to configure a CPVT model: the 

workpiece and the grain structure related. The workpiece related input defines the 

domain of virtual grain structure and the number of seeds to be generated within that 

domain.  

There are two schemes in generating the grain structure. One is to prepare a 

sufficiently large tessellation and cut a region from it having a specific dimension, i.e., it 

accounts for the influence of outer seeds on grains cut by the region boundary. In 

contrast, the other scheme is to generate grains within the given domain, in which the 

effect of outside seeds is ignored. Figure 4.1 shows tessellations with and without 

external seeds. Neglecting neighbouring seeds, the tessellation in Figure 4.1 (b) has lost 

approximately half of the grains cut by boundaries, presented in Figure 4.1 (a). However 

the total area of the grains cut by boundaries is correspondingly increased in Figure 4.1 

(b) by a factor of   . 

 

Figure 4.1. Illustration of the effect of external seeds on the number of grains. (a) 

A case accounting for external seeds; (b) a case neglecting external seeds. 
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In quantitative metallography, the number of grains in a region is based on the 

heuristic rule that grains cut by the region boundary are counted as half grains, which 

corresponds to the first scheme. Note that, ignoring the outer seeds in the second 

scheme results in nearly half of the grains disappearing. In such a situation, grains cut by 

boundaries can be approximately treated as whole grains rather than half grains. 

Consequently, for a VT obtained by the second scheme, the number of seeds       to be 

generated is equivalent to the number of grains  , that is, 

        . 4.1 

In addition, the number of grains is calculated by means of the tessellation area    and 

the mean grain size (in terms of grain area)      , i.e., 

            . 4.2 

Note that, as a convention, to develop a quantitative mechanism for generating VTs, the 

second scheme is employed in the CPVT model, i.e., provided a mean grain size      , 

      seeds are generated in the given domain   . 

4.2.2 Regularity and control parameter 

Whilst Voronoi tessellations are capable of capturing natural variance of grain shape 

and organisation, a quantitative evaluation of the degree of uniformity is critical. It is 

important to note, based on the comparison results of the geometrical properties of 

space-filling regular polygons presented in Table 2.1, the hexagon has the minimum 

value of edge length per unit area. Therefore, a regular hexagonal tessellation (or a 

honeycomb) can be deemed as the most regular tessellation among those of the same 

mean grain size. 

For a regular tessellation (RT), consisting of regular hexagons, generated in the 

domain   , the size of an individual hexagon is       and the distance between any two 

adjacent seeds is given by [154] 
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      √
 

√ 
     . 4.3 

Since this RT is a fully ordered VT, and to construct a VT with a mean grain size       in 

the area   , the minimum distance between adjacent seeds   should be less than the 

regular distance     . In [154], Zhu et al. introduced a non-local regularity parameter,  , 

to evaluate a VT obtained by the second scheme of counting mean grain size. This 

regularity   of a VT is defined by: 

         . 4.4 

For a RT,        and    , while for any other irregular VT,   is less than     . As 

tessellations become more disordered, the regularity   decreases; if    , the 

tessellation corresponds a completely random tessellation, i.e the Poisson Voronoi. 

Figure 4.2 shows a series of tessellations with varying regularity values.  
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Figure 4.2. Voronoi tessellations with different regularities. 

The regularity parameter was initially used to evaluate a tessellation’s uniformity in 

terms of the minimum seed distance. This parameter could alternatively be used to 

monitor the seed generation process, and hence to produce a VT with a particular 

regularity. This mechanism is realised by introducing a control parameter  , which 

reformulates the meanings of the minimum seed distance as 

        . 4.5 
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The regularity parameter   must be derived to specify the control parameter   (Eq. 

4.5). But in practice, it is physical measurements from quantitative metallography rather 

than this abstract regularity parameter that are well known and widely used by engineers 

and scientists. In such a circumstance, the regularity parameter is too obscure for 

practical use. In the next section, the relationship between the regularity,  , with the 

distribution parameter,  , of one-parameter gamma distribution function is presented. 

Together with the mapping from the physical parameter to distribution parameter, the 

2D-CPVT model is able to employ physical parameter input to generate virtual grain 

structure with statistically equivalent grain area distribution.  

4.2.3 Regularity and distribution parameter 

As preceding discussion, a one-parameter distribution function (Eqs. 3.15-3.16) is 

used to represent a normalised grain size distribution in terms of grain area for 2D grain 

structure. Note that the variance of a one-parameter gamma distribution is    . As the 

distribution parameter   increases, the distribution function becomes narrower, which is 

more suitable for modelling regular VTs; smaller   values are more suitable for irregular 

VTs. In addition, there are two major advantages to using the one-parameter gamma 

distribution to describe the grain area distribution: 1) Only one parameter,  , is involved 

in the relation with the regularity parameter  , and 2) the mean value of this distribution 

function is 1, which makes the distribution capable of modelling the normalised grain 

area distribution of a VT. 

In [154], a series of statistical tests have been conducted to summarise the 

relationship between the fitting parameter   and the regularity  , where   ranges from   

to    . In [157] and [158], a descriptive model was proposed based on statistical data 

provided in [154]: 

                
                   4.6 

where          ,         ,         ,          ,           ,   

         and            .  
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Figure 4.3. Comparison of the two descriptive models, both of which describe the 

relationship between the grain area distribution parameter   and the regularity 

parameter  . The dotted line is the model proposed in [157] and [158], and the 

solid line is the improved model: (a) Global quality; (b) local quality. 

The dotted lines in Figure 4.3 show that this model provides good predictions for 

    . However, as   increases beyond   , the related regularity   decreases, which 

fails to describe the tendency of the tessellation’s regularity to increase as the 

distribution function becomes narrower. In order to fix this problem, a set of newly 

calibrated values are provided. This has been done by adding four supporting data points 

to the experimental data set to aid in formulating a sound objective function for 

optimisation. The CMA-ES algorithm [161] is applied here to find the model’s parameters. 

The new parameter values are         ,       ,       ,       and       . 

In Figure 4.3, the new result of      is given by the solid lines. Figure 4.3 (a) compares 

the overall quality of both descriptions. It can be seen that the newly proposed model 

provides a consistent description of the relationship between the regularity and the 

distribution parameter, i.e.,      is monotonically increasing. In contrast, the previous 

model failed to capture this feature. Figure 4.3 (b) also reveals that the fit quality of the 

new model is as good as the previous model for small   values.  
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4.2.4 Implementation  

The 2D-CPVT model is the two dimensional implementation of the general CPVT 

model proposed in Chapter 3, as the flow chart shown in Figure 3.2. There are two 

groups of use-inputs: a workpiece related input and the grain structure related input. The 

implementation procedure is explained as follows: 

The workpiece related parameters are input to the model, including the domain   

and the mean grain size      . This is followed by calculation of: 

a. The number of seeds       (using Eq. 4.1 and Eq. 4.2); 

b. The regular distance      (using Eq. 4.3);  

The physical parameters are input, followed by operations to: 

a. Compute the distribution parameter   by the Newton-Raphson method 

(using Eqs. 3.28-3.32). 

b. Derive the regularity parameter   from the empirical model (using Eq.4.6). 

c. Combine   and   with the obtained regular distance      to compute the 

control parameter   (Eq.4.5). 

In summary, a virtual grain structure generation process can be implemented when 

given a domain   with area    and a mean grain size      , the number of seeds      , 

the regular distance      and the control parameter   are correspondingly defined by Eqs. 

4.1-4.5. Seeds are to be generated sequentially in this domain by sampling their   and   

coordinates independently based on a uniform random number generator. It is assumed 

that a newly generated seed can only be accepted if its distance from any existing seeds 

is greater than or equal to the control parameter  . The resultant Voronoi tessellation is 

referred to as a two-dimensional controlled Poisson Voronoi tessellation (2D-CPVT) with 

the control parameter  , also denoted by                . As a seed lattice is 

generated from the 2D-CPVT model the corresponding VT geometry can be constructed 

using the results of Section 3.2.1.   
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Note that, if    , the 2D-CPVT is reduced to a planar Poisson Voronoi tessellation, 

and if    , the 2D-CPVT is a regular hexagonal tessellation with grain area      . In 

addition, a tessellation generated by the 2D-CPVT model has a regularity value that 

converges to the prescribed   with a small and allowable asymptotic error. When 

sampling a small number of seeds, the resultant VT tends to be slightly more regular than 

the prescribed regularity. This effect is to be discussed later.  

4.3 Model validation  

4.3.1 Statistical analysis 

The CVPT model works in sequence, mapping the user-defined physical parameters 

to the distribution parameter  , then from the distribution parameter   to the regularity 

 , and finally from the regularity   to the control parameter  . VTs are subsequently 

produced. The ultimate objective is to produce VTs with two properties: 1) Regularity of 

a generated tessellation similar to the value derived from the physical parameters input, 

and 2) the mean grain size and the overall grain size distribution of the tessellation 

conforming to the gamma distribution derived from the physical parameters. It is 

important to note that the equation linking the obtained tessellation’s regularity to the 

distribution parameter is based on statistical data from virtual grain structures. 

Additionally, there is an asymptotic error between the regularity value derived from the 

physical parameters input and the resultant value of a VT. Thus, a comprehensive 

investigation of the effectiveness and robustness of the CPVT model for regularity control 

and grain size distribution control is necessary.  

The number of grains in an individual tessellation is a factor that strongly influences 

evaluation of the statistical results. For a VT with fewer grains, statistical variation is 

greater. Therefore, all statistical tests were conducted for    ,      and      grains, 

respectively. The mean grain size used for all tessellations was       . For the VT having 

200 grains, the domain   was              ; for the VT having      grains,   was 

               ; and for the VT having      grains,   was              . The 
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following statistical results were all based on      independent generations of VTs for 

each individual case. 

4.3.1.1 Regularity analysis 

Regularity of a VT is determined by its minimum seed distance and mean grain size. 

In the 2D-CPVT model, regularity is employed as an intermediate parameter to derive the 

control parameter  . The small asymptotic error in the regularity mentioned previously is 

to be investigated in this section. In order to compare the difference between an ideal 

regularity and the regularity of a resultant VT, a relative error   is defined as 

   
 ̂   

 
 

 ̂      

 
  4.7 

where  ̂ and  ̂    are resultant values of the regularity and minimum seed distance of a 

VT, respectively. To estimate the accuracy of the regularity, the mean and standard error 

of  , given by  

  ̅  ∑   

 

   
   4.8 

    √
         

   

      
    4.9 

respectively, are calculated for a set of        independent runs.  

Values of   ̅and    were calculated for a range of regularity values and for three 

different numbers of grains and a fixed domain, as described previously, shown in Table 

4.1 and Figure 4.4. It can be observed that for a VT having      or more grains,   ̅is less 

than   , which can be ignored in practical usage. For a VT that has roughly 200 grains, if 

      , the mean asymptotic error   ̅becomes significant, greater than or equal to   . 

This occurs because when the regularity is sufficiently small, the value of the control 

parameter is significantly decreased, hence the acceptable interval of grain seed 

distances is enlarged. Furthermore, given a certain number of randomly generated seeds, 
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the larger the domain, the more uncertainty there will be in the regularity. In all cases, 

the standard error of   is very small, indicating that the error   is consistent from one 

generation to the next.  

Table 4.1. Statistical results for the mean value of relative error   ̅and the 

standard error, where the mean grain size for each VT was chosen to be        

  
                                
  ̅ se   ̅ se   ̅ se 

0.1 1.01E-01 3.36E-03 2.45E-02 7.54E-04 5.30E-03 1.60E-04 
0.2 3.13E-02 9.96E-04 6.23E-03 2.02E-04 1.32E-03 4.16E-05 
0.3 1.23E-02 3.96E-04 2.57E-03 7.87E-05 5.59E-04 1.77E-05 
0.4 6.55E-03 2.07E-04 1.26E-03 4.01E-05 2.55E-04 7.56E-06 
0.5 3.38E-03 9.89E-05 6.60E-04 1.97E-05 1.25E-04 3.96E-06 
0.6 1.61E-03 4.97E-05 2.85E-04 8.91E-06 5.50E-05 1.80E-06 
0.7 4.83E-04 1.56E-05 7.53E-05 2.33E-06 1.29E-05 4.33E-07 

 

 

Figure 4.4. The relative error of the ideal regularities and those of generated VTs. 

Error bars represent     confidence intervals. 
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The following facts about the effectiveness of the CPVT model for regularity control 

can be deduced from these results: 1) For a large number of grain (     ), the CPVT 

regularity control is very accurate and precise for all prescribed regularity values; 2) for a 

small number of grains, the CPVT regularity control is very precise for all prescribed 

regularity values, but is only very accurate for       ; 3) for any grain size, both the 

accuracy and precision are improved for larger prescribed regularity values. Overall, the 

CPVT model provides excellent accuracy and precision in the regularity control for 

tessellations either having large numbers of grains or highly regular distributions. 

4.3.1.2 Distribution analysis 

The other key feature of the CPVT model is automatic generation of VTs with grain 

size distribution control. The following results are presented to identify the quality of the 

grain size distribution control of the 2D-CPVT model. Results are shown for a range of 

regularity values, from which the distribution parameters can be found according to the 

descriptive model given by Eq. 4.6. Figure 4.5 summarises the grain size distributions of 

the generated VTs; the bar graphs are the ideal grain size distributions, and the data 

points and error bars give the mean and standard deviation respectively of the VT output 

based on 1000 generations with the same control parameters. The standard deviations 

demonstrate the degree of variation for the grain size intervals shown, which allows 

comparison between ideal and generated grain structure local distribution characteristics 

for the grain size intervals shown.  

VTs with greater than or equal to 1000 grains exhibit nearly perfect agreement, in 

terms of generated grain size accuracy and precision per grain size interval, with the ideal 

distributions for regularity values of       and      ; the remaining generated cases 

shown in Figure 4.5 are somewhat less accurate and/or precise compared to the ideal 

distributions. Notably, the distribution with 200 grains is very accurate in terms of mean 

grain size per interval but has a very large variability from one independent generation to 

the next. By contrast, the 5000 grains cases show little variability, but the accuracy is 

somewhat inferior for       and      . One reason for the inferior results for 

      and       is the stiffness of the      curve given by Eq. 4.6 for regularity 
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values less than 0.5. This can amplify stochastic errors and even very small inaccuracies in 

the fitting model given by Eq. 4.6. That is, a small noise may lead to appreciable lack of 

correlation between the   and   values. The statistical results of Figure 4.5 (f), (g), (j) and 

(k) suggest the value of the distribution parameter   is consistently too large, hence an 

improved descriptive model relating   to   should give a slightly smaller   value for a 

given value of   compared to the proposed model. In the case of 200 grains, and      , 

the relative inaccuracy is a result of the significance of the way in which grains cut by 

boundaries are counted, which influences the mean grain size. 

4.3.2 Comparison of virtual and true grain structures 

A process of applying the 2D-CPVT model to generate virtual grain structures is 

demonstrated in this section. SEM observations of the grain structures of commercial 

aluminium alloys were used to extract the necessary physical properties, shown in Figure 

4.6 (a) and Figure 4.7 (a). The workpiece related input to the 2D-CPVT model was taken 

directly from the domains of the images, while the physical parameters were identified 

by image processing including digital filtering and enhancement, segmentation of the 

grains by a watershed algorithm, and measuring the grain areas using pixel information. 

The images after segmentation are presented in Figure 4.6 (b) and Figure 4.7 (b), which 

clearly show the grain shapes and boundaries. The input parameters for the CVPT model 

test are listed in Table 4.2.  

 

Table 4.2. Physical parameters and corresponding grain structure properties for 

the two grain structures. 

Label 

Physical parameters 
(   ) 

Equivalent grain size† 
(  ) 

Model parameters 

                                    

Irregular 4078 2039 6117 75% 68.6 48.5 84.0 68.6 0.265 18.2 
Regular 2632 1579 3685 80% 55.1 42.7 65.2 55.1 0.453 25.0 

† Assuming a hexagonal grain shape. 
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Virtual grain structures were generated for the regular and irregular cases, as shown 

in Figure 4.6 (c) and Figure 4.7 (c), with histograms of grain size shown for the ideal and 

virtual cases in Figure 4.6 (d) and Figure 4.7 (d). As noted previously, repeated application 

of the same physical parameters using the CPVT model will result in slightly different 

grain structures, but all the virtual grain structures are statistically consistent with the 

specified physical parameters. The orientations of grains can be assigned based on a 

fixed texture, or be defined by a random number generator based on a uniform 

distribution or a normal distribution. Grain orientations can also be defined according to 

measurements, such as EBSD. In this case, grain orientations were created by a normal 

distribution random number generator. Figure 4.6 (e) and Figure 4.7 (e) show the 

resultant FE models with virtual grain structures and grain orientations assigned by a 

uniform random number generator. In addition, corresponding meshing results are given 

in Figure 4.6 (f) and Figure 4.7 (f). Further details of CPFE simulations carried out using 

the VGRAIN system have been described in [140] 
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Figure 4.5. Grain size distributions of VTs with different regularities and numbers 

of grains. Error bars with standard deviation highlight the dispersion of frequency 

variation of local grain distributions from generated VTs. 
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Figure 4.6. CPFE simulation for a regular grain structure. (a) Original microscopic 

image (domain is              , with        scale shown); (b) the result 

after image processing where the grain structure was segmented into 181 grains; 

(c) the sampled virtual grain structure; (d) the grain size distribution of the virtual 

structure (a histogram of the virtual structure is plotted by shaded bars, and the 

ideal distribution given by the remaining bars); (e) a FE model with assignment of 

grain orientations; (f) the FE model after meshing.  
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Figure 4.7. CPFE simulation for an irregular grain structure. (a) Original 

microscopic image (domain is               , with        scale shown); 

(b) the result after image processing where the grain structure was segmented 

into 179 grains; (c) the sampled virtual grain structure; (d) the grain size 

distribution of the virtual structure (a histogram of the virtual structure is plotted 

by shaded bars, and the ideal distribution given by the remaining bars); (e) a FE 

model with assignment of grain orientations; (f) the FE model after meshing.  
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4.4 CPFE application 

To facilitate grain structure generation and micro-mechanics modelling, an integrated 

system called VGRAIN has been developed and used in this work to build materials 

microstructures, where the proposed 2D-CPVT model is applied to generate virtual grain 

structures. The integrated process of defining the microstructure of the material is 

illustrated in Figure 4.8.  

 

Figure 4.8. The procedure for generating a CPFE model. 

Two more modules have also been developed to include grain orientation and 

material properties assignment. The orientation of each grain can be assigned based on a 

fixed texture, or be set by a random value from a random number generator based on a 

uniform distribution or a normal distribution. Grain orientations can also be defined 

according to measurements, such as EBSD. In the VGRAIN system, the generated grain 

structure together with the grain orientations can be directly imported into commercially 

available FE codes, e.g., ABAQUS/CAE, for further pre-processing operations, such as 

meshing, boundary and loading conditions defined based on the simulation requirements. 
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The details about the VGRAIN system development will be presented in Chapter 8. 

Crystal plasticity constitutive equations as in Wang et al. [18] were implemented in the 

commercial FE code ABAQUS/EXPLICT through the user defined material subroutine 

VUMAT. The detailed implementation and CPFE analysis procedures are presented in 

Chapter 6. 

To demonstrate the proposed CPVT model and material properties definition 

procedure in the VGRAIN system, 2D plane strain CPFE analyses of uniaxial tension have 

been performed. It is worth noting that singly-, doubly- or triply-periodic boundary 

conditions can be prescribed for representative volume elements with grain structures 

generated by VGRAIN, although this has not been automated in the present version to 

maintain generality. The crystal plasticity calibration of [6] for 316L stainless steel is used 

here. The crystal plasticity is not the focus of this study; details of the calculations can be 

found in [18]. The overall dimensions of the microfilm workpiece are 1            

and a displacement of         is applied at the right edge of the model and the 

lateral faces are free of constraint. The overall setup is shown in Figure 4.9. 

 

Figure 4.9. Schematic diagram for the plane strain CPFE model. 

Two specimens were generated with different regularities: One was much more 

regular than the other. The physical parameters and the corresponding distribution 

parameters from the CPVT model are given in Table 4.3. Both microstructures have the 

same mean grain size of       , in terms of area, that is, the equivalent grain diameter 
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is approximately      assuming a hexagonal grain shape. By assigning different physical 

parameters, different regularities were achieved using the CPVT model. The simulated 

irregular and regular grain structures are presented in Figure 4.10 (a) and Figure 4.11 (a), 

respectively. It should be noted that repeated application of the same physical 

parameters using the CPVT model will result in slightly different grain structures, but all 

the simulated grain structures have the feature that the grain sizes are statistically 

conformal with the specified physical parameters. 

Table 4.3. Physical parameters and corresponding grain structure properties for 

the two CPFE models. 

Label 

Physical parameters 
(   ) 

Equivalent grain size† 
(  ) 

CPVT model parameters 

                           
     

(  ) 
  

   
     

  

Irregular 50 20 80 79% 7.6 4.8 9.6 7.6 0.156 1.18 60 
Regular 50 30 70 95% 7.6 5.9 9.0 7.6 0.666 5.06 60 

† Assuming a hexagonal grain shape. 

Figure 4.10 and Figure 4.11 show the CPFE simulation procedures for both irregular 

and regular microstructures. Every simulation involves three major steps: definition of 

the grain structure as shown in (a)s, assignment of material properties, mesh and 

boundary conditions, as illustrated in (b)s, and post-processing and analysis as in (c)s. The 

deformed models are presented in (c)s, where contours of accumulated plastic strain (  ) 

are shown and the necking features of both models can be observed. 

Figure 4.12 correlates the necking regions with the original microstructures. It was 

found in [18] that necking caused by strain localisation is increasingly prohibited by a 

greater number of grains through the specimen width. Although strain localisation 

necking is delayed until greater applied strain when the number of grains through the 

specimen width is greater, the onset of necking in that case was demonstrated to be 

sudden with rapid progression towards a high level of thinning. The grain structures 

shown in Figure 4.10 (a) and Figure 4.11 (a) have the same average grain size. However, 
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the regular grain structure has approximately the same number of grains through the 

specimen width at any location along the length, whereas the irregular grain structure 

has between two and seven grains through the width. Although necking by strain 

localisation was shown in [18] to occur in locations with fewer grains through the width, 

the situation shown here is distinctly different in that only regular grain patterns were 

simulated in [18]. Although in the case of an irregular grain pattern there may be a 

location with relatively few grains through the specimen width, strain localisation 

necking also requires that those grains have crystallographic orientations favourable to 

slip, that is, there must be at least one slip system available having a relatively high 

Schmid factor under the applied loading. For a specimen with a regular grain pattern 

having, for example, an average of two grains through the specimen width, there is 

statistically a much higher (depending on the specimen aspect ratio) likelihood there will 

be a location along the length with grains oriented such that they are favourable to slip, 

compared to a specimen with an irregular grain pattern having a higher mean grain size 

but also one or more locations along the length with two grains through the specimen 

width.  

Hence, there is a greater statistical variation in the necking response for the film 

shown in Figure 4.12 (c) and (d) than for that in (a) and (b). The necking zones (NZ) shown 

in Figure 4.12 indicate that, for the strain shown which is quite extreme, the NZ with 

more grains through the width, given by (a) and (b), actually necked more than the NZ 

give by (c) and (d). However, this can be understood by the previous discussion in that 

either the grains in the NZ of the irregular grain pattern were oriented in a way not 

favourable to crystallographic slip, compared to those in the NZ of the regular grain 

pattern, or, the level of applied strain was sufficient for the sudden onset of necking and 

rapid thinning demonstrated in [18] to occur in the regular grain pattern such that it 

overcame the more gradual necking in the irregular grain pattern (in the latter case, the 

degree of necking in the irregular grain pattern would have been greater than that in the 

regular grain pattern for some smaller value of applied strain). 
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Figure 4.10. CPFE simulations for an irregular grain structure. 

 

Figure 4.11. CPFE simulations for a regular grain structure. 
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Figure 4.12. Comparison of local deformation for both grain structures. 
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4.5 Summary 

The controlled Poisson Voronoi tessellation model,                , has been 

applied to generate planar virtual grain structure. 2D grain structure uniformity is 

described by a non-local quantity, i.e. the regularity parameter  , which is used to derive 

the control parameter   in the 2D-CPVT model. An improved descriptive model has been 

established for the mapping from   to  . In conjunction with the solution of   from a set 

of physical parameters, as given in Chapter 3, the control parameter   can be 

determined for a 2D-CPVT model to generate virtual structure with grain area 

distribution control.   

To investigate the performance of the CPVT model, two groups of statistical tests 

have been conducted. The first group of tests concentrates on the fitness of the 

regularity control. Results show that for VTs with medium and large numbers of grains, 

the improved descriptive model performs extremely well. In contrast, for VTs with a 

small number of grains, random noise arises in irregular grain structure cases, whilst for 

structures with a regularity value larger than 0.3, the regularity control mechanism 

performs well regardless of the number of grains in the tessellation. The second group of 

tests provides a comprehensive comparison of virtual and ideal grain size distributions 

given as user input. Comparisons have been carried out with consideration of scale 

effects, i.e., random noise occurred in structures with few grains. The statistical results 

show the robustness of the CPVT model for generating expected grain structures in 

terms of grain size distribution. It should be mentioned that the VTs with       and 

      were slightly more irregular than the user input. This might be due to the 

characteristics of the mapping from the distribution parameter   to the regularity  , in 

which a tiny fitting error in   may result in a large disturbance in  .      

Another case study was focused on engineering applications of the 2D-CPVT model 

and the VGRAIN system. Two images of a commercial aluminium alloy, which present 

different regularity and grain organisations, have been employed to derive the physical 
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parameters for configuration of the 2D-CPVT. The overall process has been presented, 

including image processing for the physical parameters, generation of virtual grain 

structures and formation of corresponding FE models, which can be used for CPFE 

analysis. It has been shown that the 2D-CPVT model can now be fully operated based 

upon real microstructure data via the ability to input physical parameters. The major 

benefit of this model is the flexibility to repeatedly reconstruct virtual grain structures at 

any scale with proper regularity and grain size distribution characteristics.  Therefore, the 

procedure to reconstruct virtual grain structures from metallographic measurements has 

been seamlessly integrated. 

Two plane strain CPFE analyses have been performed to demonstrate applications of 

the 2D-CPVT model for planar grain structure generations. By assigning different physical 

parameters two virtual grain structures with different regularities (grain area distribution 

properties) were obtained. Simulation results showed the influence of grain regularity on 

the mechanical behaviour, and strain localisation on the necking behaviour. 
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Chapter 5 2D Cohesive zone model 

2D Cohesive zone model 

A novel scheme is presented for incorporating cohesive interfaces in virtual grain 

structures for crystal plasticity finite element (CPFE) analyses of inter-granular crack 

initiation and propagation. The 2D-CPVT model has been used to define the virtual grain 

structure. The main objective was to provide a novel cohesive zone representation and 

meshing scheme for CPFE simulations. This has been achieved by the development of an 

efficient geometrical algorithm designed to generate non-zero thickness cohesive zones 

(CZs) representing the grain boundaries and multiple junctions. In order to automatically 

partition multiple junctions, two feasible junction-partitioning schemes are presented, 

the second of which has the advantage of partitioning junctions using uniform 

quadrilateral elements and naturally defining their normal and tangential directions. For 

the second scheme, a rule-based method is presented that carries out the preliminary 

meshing of CZ junctions, including data representation, edge event processing, cut and 

trim operations. Furthermore, a grain structure modelling system is presented that was 

used to generate grain structures, implement the proposed cohesive zone formation and 

junction partition methods and generate models for CPFE studies. To demonstrate the 

proposed junction-partitioning and CZ representation schemes, two finite strain CPFE 

simulations are presented for plane strain uniaxial tension and three-point bending, 

demonstrating large scale crack initiation and propagation under shear and opening 

modes.  

5.1 Motivation 

Micro-forming processes are required to manufacture micro-components for 

miniature devices and products. In micro-forming, deformation dominated by localised 

strain in a relatively small number of grains may occur when the number of grains in the 

smallest part dimension is sufficiently small, and a sufficient number of grains in a given 
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cross section are capable of large crystallographic slip (i.e. crystal orientations with a 

large Schmid factor), which is statistically more likely for parts with a high aspect ratio, 

for example, micro-films, micro-pins and micro-tubes [162]. In these cases, significant 

thinning and/or localised damage may lead to rapid, random failure in the part 

depending upon the underlying microstructure. Strain localisation can be captured 

naturally by crystal plasticity finite element analyses of the forming process [18]. 

However, capturing large-scale inter- and intra-granular fracture in crystal plasticity finite 

element (CPFE) analyses requires the addition to the standard CPFE formulation of a 

method capable of simulating both crack nucleation and propagation with no prior 

prescription of the crack path. A multitude of methods exist for predicting nucleation, for 

example, by coalescence of micro-cracks [163], continuum models of ductile damage 

based on void growth and coalescence  [164-166] and other continuum damage criteria 

[167]. The subject of predicting crack propagation has been extensively studied for over 

half a century, including classic analytical field solutions for brittle and ductile materials 

(e.g. power-law hardening materials [168, 169], perfectly-plastic FCC and BCC single 

crystals [170]), energy based methods [171], critical equivalent plastic strain [172] and 

mixed critical stress and energy methods, such as the cohesive zone [173, 174]. 

Traditional linear elastic fracture mechanics (LEFM) methods can be used for effectively 

predicting crack propagation [175] provided the initial crack and crack path are 

prescribed, that is, they cannot directly handle the problem of nucleation. Furthermore, 

there are numerical difficulties in simulating more than one crack propagating 

simultaneously [176].  

Another technique for simulating crack evolution with the potential for simulating 

decohesion and sliding between grains deforming according to crystal plasticity theory is 

the extended finite element method (XFEM). This method has been utilised to simulate 

crack propagation without the need for remeshing [177], including crack face separation 

by a traction-separation law [178], although requires further development in order to 

simulate the complicated cracking scenario considered here. The cohesive zone itself 

stands out as uniquely well suited to the present objective as it is capable of capturing 

both nucleation and propagation of multiple cracks without prior specification of the 
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crack path.  However, this is only the case provided cracks are restricted to occur at 

material interfaces, and that its implementation is independent of the grain material 

model, which in this case is crystal plasticity. Cohesive zone models (CZMs) provide an 

effective and versatile means for simulating the fracture process [179-183] and have 

been increasingly employed in finite element simulations of delamination, debonding 

and general crack initiation and propagation [184-186], hence are appropriate for 

implementation within CPFE simulations.  

In micro-forming, the grain size is often comparable to the smallest dimension of the 

part, hence the assumption of material homogeneity is inappropriate. In heterogeneous 

polycrystalline materials, crack initiation and propagation are not dominated by the 

mean values of stress and strain, but by local maximal values around grain boundaries or 

interfaces [19], hence properties of the microstructure including size, shape, 

arrangement and orientation of grains should be considered in understanding the 

evolution of deformation and local damage. In crystal plasticity finite element (CPFE) 

analysis, microstructural properties are included in the FE model by explicit 

representation of grains and their orientations, with plasticity occurring by a continuum 

representation of crystallographic slip. Traditionally, the concept of Voronoi tessellation 

(VT) has been extensively used in modelling polycrystalline grain structures for 

metallurgical applications [22, 23, 111, 153]. The formulation of a VT is naturally 

analogous to a grain growth process and correspondingly the final structure accounts for 

the natural variation of grains in terms of both morphology and organisation.  

In order to perform micromechanics analyses of inter-granular crack nucleation and 

propagation for micro-forming applications, there are essentially three geometrical 

features that need to be represented in a CPFE model: a realistic grain structure, a 

representation of the grain boundary network (in this case by a group of embedded 

cohesive zone elements) and a feasible scheme for partitioning grain boundary junctions. 

Therefore, in employing a VT for the grain structure representation, the original single-

line grain boundaries must be replaced by cohesive layers having a specified thickness. 

Figure 5.1 (a) shows an example of a CPFE model with a grain structure described by a VT 

with cohesive layer boundaries (henceforth referred to as a VTclb) generated by the 
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scheme proposed in this chapter. Note that, whilst VTs provide a natural representation 

of grain structures, they also introduce significant complexity in grain boundary 

connectivity. Therefore, a primary difficulty in developing a generic algorithm for 

automatically generating cohesive layers and partitioning the cohesive layer junctions is 

coping with the event of degeneration of small edges, which is one of the major aims of 

the present study. 



91 

 

 

 

Figure 5.1. An example of the VTclb scheme and specific cases of cohesive 

junctions. 
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Furthermore, to build a FE model in commercial FE/CAE software, e.g. ABAQUS, 

which is typically required for industrial implementations, the following restrictions apply:  

1) Each interface zone between two grains should be discretised with a single layer. 

2) Cohesive zones including the layers themselves and their multiple junctions (e.g. 

triple points) can only be meshed by means of quadrilateral elements, since this 

shape naturally identifies the normal and tangential directions. 

3) At least one of either the top or bottom edges of the cohesive element must 

coincide with a grain element.  

Obviously, automatically meshing a cohesive layer boundary is straightforward. 

However, at a junction of multiple cohesive layers, as shown in Figure 5.1 (b)-(e), further 

procedures must be introduced to partition the CZ junction into quadrilateral elements. 

In addition to triple junctions, as shown in Figure 5.1 (b), there are a number of special 

junction types. For example, Figure 5.1 (d) shows an occurrence of a fivefold junction 

ABCDE. Figure 5.1 (c) depicts a linked triple junction, where one edge of a cohesive layer 

degenerates to a point A upon offsetting the boundaries, hence two neighbouring triple 

junctions, i.e., EDA and CBA, are linked to the point A. Similarly, the junction in Figure 5.1 

(e) presents a double linked triple junction. In FE simulations, it is a common fact that a 

more uniform mesh generally gives more accurate results, but the complicated junctions 

that may occur in a VTclb make it difficult to automatically generate uniform junction 

partitions.   

5.2 Voronoi tessellation with cohesive layer boundaries 

In this section, an offset method is presented that transforms ordinary Voronoi 

tessellations into non-zero thickness boundaries. The transformed VTs can be used to 

represent virtual grain structures and model cohesive zones for studying grain boundary 

sliding, inter-granular cracking nucleation and propagation, etc.  
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5.2.1 VT and VTclb 

In order to incorporate a CZ model to formulate inter-granular traction-separation 

relations, cohesive interface elements need to be embedded along grain boundaries. As 

stated above, the grain boundaries in a VT consist of a network of lines. Naturally, in the 

presence of a VT, cohesive elements can be directly produced by replacing the original 

lines with a network of cohesive layers. Figure 5.2 (b) illustrates a VTclb, where grains are 

reconstructed by inward offsetting of the original grain boundaries, shown in Figure 5.2 

(a), by a specified distance. Although the thickness of cohesive layers is generally thin, 

whatever thickness is specified, there is a chance that small grain edges can disappear as 

a result of the offsetting procedure, e.g., after offsetting the boundary AB of the two 

adjacent grains in Figure 5.2 (a), the two offset upper and lower boundaries degenerate 

to vertices C and D for the two grains, respectively, as shown in Figure 5.2 (b). 

 

Figure 5.2. Illustration of offsetting grain boundaries to represent cohesive 

layers. (a) A grain structure based on the VT representation; (b) a VTclib, with a 

degenerate grain shown with one of the original boundaries missing after the 

offsetting procedure. 
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5.2.2 Grain boundary offsetting 

Generation of cohesive layers for a VT can be achieved through the processing of 

individual grains. An intuitive method of inward offsetting of a convex polygon can be 

described by: 1) Creating offsets for all decomposed edges followed by reconnecting the 

resulting pieces according to the original topological relations, i.e., the head-to-tail 

sequence of consecutive edges; 2) tracking and removing boundary inversions [187]. 

However, tracking boundary inversions in this context requires complex heuristics to 

patch various special cases; this sacrifices efficiency for the sake of robustness.  

Instead, in this work, a structured offset method is employed to reliably produce 

inward-offset polygons, hence a complete VTclb. In this context, the term “structured” 

means that for each single edge, the inward offset is restricted to a decomposed sub-

polygon, which is divided by the polygon’s medial axis. The medial axis of a simple 

polygon is a tree-like planar structure consisting of a set of line segments, as illustrated 

by the dot-lines in Figure 5.3 (a). Any point on one of the line segments has more than 

one closest point lying on the boundary of the polygon, e.g., the point L on the medial 

axis in Figure 5.3 (a), to which the points   and   on the polygon are equidistant, and 

the point  , to which the points  ,  ,   and   are equidistant. Therefore, it follows that 

each line segment of the medial axis bisects the angle formed by the two sides that it 

intersects or, in the case of line segments that do not intersect the boundary of the 

polygon, the angle between the sides nearest to it. For example, in Figure 5.3 (a), the 

medial axis    bisects the angle      and the medial axis GH bisects the angle     . 

The algorithm to build the medial axis has been detailed in [188], which takes      time 

complexity where   is the edge number of the polygon. 

Furthermore, the medial axis of a simple polygon with   edges divides the polygon 

into   sub-regions, as shown in Figure 5.3 (b), such that any point in the     region is 

closest to the     edge of the polygon among the edges of the given polygon. Thus, for 

each edge    of the polygon, there corresponds a decomposed sub-region   , which 

contains the offset edge     of the edge   . If the offsetting distance is large enough, the 

offset line may be external to the given sub-region, hence be degenerated into a point, as 
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in sub-region 4 in Figure 5.3 (c). Determination of whether the offset edge     is 

degenerated can be directly obtained by comparing the offset distance with the distance 

between the far endpoint and the edge   . Once all the offset edges are obtained, the 

inward-offset grain can be generated by linking these edges, as shown in Figure 5.3 (d). 

The algorithm to generate the cohesive zone layers for a given VT is presented in Figure 

5.4. 

 

Figure 5.3. Illustration of the structured offset method. (a) Generating the medial 

axis; (b) decomposing the grain into a set of sub-polygons; (c) structured offset 

boundaries; (d) formation of an inward-offset grain. 
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Figure 5.4. The algorithm to generate the VTclb structure for a given VT. 

5.3 Cohesive junction partition 

Utilisation of finite element methods to solve boundary value problems requires 

explicitly discretising the cohesive zones including grain boundaries and cohesive 

junctions into mesh elements. As mentioned before, there must be a single layer of 

cohesive elements between two adjacent grains, and all the mesh elements must be 

quadrilateral. Conversely, due to the geometrical complexity of grains in a VT, there are a 
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range of complex junctions, e.g., triple points, quadruple junctions, fivefold junctions, 

and other types of linked junctions. In addition, to ensure simulation accuracy, there is a 

general requirement for the mesh to be as uniform as possible. Therefore, formulation of 

a consistently uniform junction partition scheme and developing efficient algorithms for 

the partitioning are critical for crystal plasticity finite element simulations. 

5.3.1 Schemes 

In a real grain structure, grains are generally organised irregularly, hence the junction 

shapes are highly variable. The most common is the triple junction, where three 

boundary layers meet. Despite the variety of junction shapes, a general pattern scheme 

is required to mesh junctions automatically using quadrilateral elements. Here, a triple 

point junction is considered to present possible junction partition patterns.  

 

Figure 5.5. Illustration of two junction partition patterns for meshing cohesive 

zones. 

Figure 5.5 (a) shows a simple way to subdivide the junction. In this pattern, corner 

vertices including  ,  , and  , are directly linked to define the junction domain. In this 

way, the junction and boundary layers of the grains are separated into different domains. 

Since this junction is a triangle area, it should be further subdivided into quadrilateral 
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elements. This can be achieved by constructing three perpendicular line segments to the 

triangle’s sides from the centre of the triangle. However this partition pattern involves 

free nodes, i.e., the intersection nodes   ,    and   . Although this can be remedied by 

introducing a linear multi-point constraint (MPC) to tie free nodes to the midpoints of the 

corresponding cohesive elements sides, this scheme does not provide any rationale for 

the choices of normal and tangential directions for the junction elements and adds 

computational complexity.  

Figure 5.5 (b) provides an alternative scheme not requiring the introduction of 

unnecessary free nodes. In this pattern, the junction region is initially cut by the line 

segments linking the centre and corner vertices, i.e.,   ,    and   . In this way, the 

cohesive zone junction is divided into three independent cohesive layers without 

requiring an extra central junction as in the first pattern. To minimise the effect of the 

irregular layer end shape, particular procedures are required to mesh the ends of the 

cohesive layers nearest the junction. A duplicate node is introduced at  , then moved to 

  , etc., hence forming the quadrilaterals      ,      ,      . It can be seen that 

this scheme results in more uniform junction elements, and also the assignment of 

normal and tangential directions becomes natural and convenient, as illustrated by the 

arrows in Figure 5.5 (b). Although the second pattern is a clear improvement, junctions 

are not always as simple as the triple junction. The rest of this section describes a 

geometrical method for implementing this junction partition scheme for any junction 

type. 

5.3.2 Algorithm 

Whilst the second partition scheme has the merits of avoiding the introduction of 

free nodes and capability of providing more regular mesh elements, especially around 

the junction region, this scheme introduces significant difficulties in automatically 

dividing cohesive junctions in a real VT and meshing the cohesive layer ends. There are 

two procedures required: 1) Divide the junctions and segment the entire cohesive zone 

into a set of n individual cohesive layers for an n-fold junction, and 2) mesh the cohesive 

layer ends. 
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5.3.2.1 Initial partition 

Here, a cohesive layer unit comprises an elementary rectangular cohesive zone, with 

upper and lower boundaries of the two adjacent grains, and two ends, each defined by 

its respective junction partition, the grain boundaries and the boundary of the 

elementary cohesive zone. As illustrated in Figure 5.6 the region of           forms a 

cohesive layer unit. In this unit, the edges of     and     are the interfaces between the 

cohesive layer unit and the adjacent grains. The two ends     and        are 

partitioned from the two corresponding cohesive junctions based on the second scheme. 

In order to prepare for further meshing operations, the cohesive layer unit is represented 

by a data structure consisting of the six points of the three line segments, including the 

two cohesive layer interface boundaries     and    , and a central line segment     

defined as the edge of the original VT. 

 

Figure 5.6. Illustration of a cohesive layer unit in a VTclb. 

There are six categories of cohesive layer units, as shown in Table 5.1. Type-I and 

type-II are classified based on the shape of a layer’s ends. In type-I, the two ends are 

defined by the junction partitions, whereas type-II intersects the VT’s domain border, 

hence loses one of its two ends. Each type of layer unit has three possible configurations: 

the ideal case, the case of one edge degenerated to a point and the case of two 

degenerated edges. Henceforth, the six categories of layer units are labelled as “type-

case”, for example, II-2 indicates a type-II cohesive layer unit with one degenerate edge.  
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Table 5.1. Summary of the six types of elementary cohesive layer unit. (Thick 

lines represent the boundaries of a VTclb, dot-lines are the original grain 

boundaries in the corresponding VT, and normal lines are junction partitions.)  

 
1. Ideal 

2. One edge 

degenerated 

3. Two edges 

degenerated 

Type-I 

(Inner layer) 

   

Type-II 

(Border layer) 

   

 

5.3.2.2 Adjustment  

In a FE model, cohesive layer units are prepared for meshing by quadrilateral 

elements. Since meshing starts from the ends of a cohesive layer unit, the two edges 

forming a layer’s end are taken as part of the first quadrilateral element. It is important 

to note that, in this situation, the centre of the junction is assumed to be one node of an 

element, e.g., the points   and    shown in Figure 5.6. However, in a real VTclb structure, 

there are a few complicated special cases that require further consideration.  

There are four possible elementary special cases listed in Table 5.2 (others may occur 

as combinations of the elementary cases) resulting from partitioning junctions into 

cohesive layer units. The first is referred to as the corner case, in which the cohesive layer 

is split by a domain corner and the central line does not intersect the corner. In this case, 

the end is still formed by two edges, but, in contrast to the normal layer unit, in which 

the end point is the centre of a junction, the end point is the VT’s domain corner. 



101 

 

Therefore, for the purpose of uniformly deriving the data structure, the end point of the 

central line in this case is moved to the corner. The border case is that of a cohesive 

junction cut by a border, where the related central lines cannot meet in the junction 

centre. Note that, although there is no centre point to be used to form the mesh element 

nodes, there are still two edges existing for each layer unit. Therefore, the central lines 

can be moved to the junction intersection, and the intersection point can then be used as 

the centre of cohesive junction.  

Table 5.2. Special case ends of a cohesive layer unit. 

  Initial geometrical data Transformed geometrical data 

Corner 

 
 

Border 

  

TEDC 
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TED 

  

 

The third case usually occurs at the VT’s domain border, when the border cuts a 

cohesive layer unit such that only some part of the unit end remains. This case is referred 

to as the two-edges-degenerated cut case (TEDC), that is, this type of layer unit is 

regarded as a cohesive layer unit that has its junction centre moved to the domain 

boundary, as shown in Table 5.2. This case is the same as the II-3 type of cohesive layer 

unit shown in Table 5.1. The original triangle is relatively tiny, hence can be removed and 

the centre of the junction then moved to the other end of the central line segment. The 

final case, TED or two-edges-degenerated, is a case of cohesive layer unit of type I-3, as 

shown in Table 5.1. The I-3 type can be represented by a simple quadrilateral element. 

However, the shape of the TED case might be non-convex, as shown in Table 5.2. 

Therefore, an additional procedure is required for generality that adjusts its shape by 

means of repositioning the two junction centres. If an end of a cohesive layer unit is 

found to be non-convex, or some inner angle is larger than a user-specified tolerance, the 

related junction centres, for example,   is moved to   , which is the centroid of triangle 

   . After processing these special cases, all the layer units can be passed to the next 

meshing procedure.   

5.3.2.3 Preliminary mesh 

The cohesive layer unit types, listed in Table 5.1 dictate the algorithms used to mesh 

the cohesive zone. Note that layer unit II-3 is processed as the TEDC case, hence is 

removed from the cohesive zone geometry. In addition, layer units I-3 and II-2 are 

quadrilateral elements, which can be represented directly by mesh elements. Layer unit 

A

C

B
O

A

C

B
O
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I-2 has one interface edge degenerated to a point. In this case, the interface layer 

consists of a point and one edge, so this unit can be efficiently split into two quadrilateral 

elements by linking the degenerated point to a selected point in the other interface edge, 

which may be chosen to be the middle point of that line segment, as the point P shown 

in Figure 5.7 (a). As a result, there are only two types of cohesive layer unit that need to 

be considered in meshing. 

The mechanism to mesh a cohesive layer unit can be described as a two-step process, 

including “cut” and “trim” operations. The cut operation aims to turn a two-edge end 

into a one-edge end by cutting the end corner, while the trim operation is applied to a 

one-edge end, by cutting a quadrilateral element from the layer unit. The result from the 

trim operation is a regular layer with rectangular ends and a trimmed mesh element. The 

rules of preliminary meshing are demonstrated in Figure 5.7 (b)-(d) and implementation 

details are explained by the following:  

1) Initially, a minimum element width   is specified by the user, which determines 

the minimum edge length of mesh elements in a cohesive layer.  

2) Given a two-edge end of a cohesive layer unit, e.g.,     in (b) and (c) of Figure 

5.7, if          , the end is cut, starting from A along the line perpendicular 

to the opposite edge. The intersection point is denoted as  . If       , the 

preliminary mesh of this end is finished, as shown in Figure 5.7 (b). Otherwise, 

the point   is moved to  , where       , as shown in Figure 5.7 (c). For the 

latter case, first the cut operation is finished, although, a further trim operation 

is required. The trimming operation starts from the point  , where       , 

then the cohesive layer is trimmed along the line perpendicular to the opposite 

edge, i.e.,   . 

3) Given a one-edge end of a cohesive layer unit, the starting point for the trim 

operation is determined by the angle of the end, as illustrated in Figure 5.7 (d). 

The criterion is that if            , the starting point   is chosen along the 

boundary edge    .  
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Two examples demonstrating the implementation of the aforementioned meshing 

operations are shown in Figure 5.8 for the general cases of a two-edge end and a one-

edge end. For the right end of the layer unit in Figure 5.8 (a), since              , the 

opposite edge from    is cut by a perpendicular line. Since         , the point    is kept 

as the 4th node for the first mesh element. Note that no further trim is required in this 

case. For the left end in Figure 5.8 (a),          , hence the opposite edge from A is 

cut by a perpendicular line. Since       ,   is moved to   with       . Thus the 

mesh element      is obtained from the cut operation. Furthermore, the point   is 

selected such that       . From  , this end is trimmed by a perpendicular line, by 

which a mesh element      is formed. The left end in Figure 5.8 (b) is a type II-1 layer 

unit. The line    is part of a border of the VT’s domain. Since this end is one edge, only a 

trim operation is needed. The point   is selected from the edge    , since       

      and       . The opposite edge is trimmed from point   by a perpendicular line, 

by which a mesh element      is obtained.  

 

Figure 5.7. Illustration of meshing rules. 
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Figure 5.8. Example cases of meshing operations. 

In summary, the meshing process is performed in the order of cutting, trimming and 

further meshing the rest of the elementary rectangular CZ. It is worth noting that if a 

boundary edge is less than a certain length, e.g.,   , only cutting operations are required, 

as shown in Figure 5.9 (a) and (b). Moreover, the selection of the minimum element 

width   should be comparable to the thickness of the cohesive layers. The relation that   

is half the thickness is used in this study. 

 

Figure 5.9. Example cases of meshing CZ layer units with short interface 

boundaries. 
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5.4 CPFE applications 

In [140] and [189], the controlled Poisson Voronoi tessellation (CPVT) model has 

been developed to generate virtual grain structures for crystal plasticity finite element 

simulations. Voronoi tessellations are taken as the geometrical representation of 

polycrystalline materials grain structures. The CPVT model incorporates four physical 

parameters: the mean grain size, a small grain size, a large grain size and the percentage 

of grains within that range. These physical parameters are intuitive input to describe the 

grain morphology, which essentially determines grain distribution features including the 

regularity. Virtual grain structures obtained from the CPVT model are statistically 

equivalent to metallographic observations of polycrystalline materials in terms of the 

tessellation’s regularity [154] and grain size distribution [140].  

5.4.1 System for Grain structure generation 

In this work, the proposed cohesive zone representation technique and the 

preliminary meshing scheme, as illustrated by the shaded modules in Figure 5.10, are 

incorporated into the 2D-CPVT model for simulations of grain boundary sliding and 

separation. The major implementation steps to generate a virtual grain structure with 

cohesive zones at grain boundaries are explained as follows.  
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Figure 5.10. Illustration of a grain structure generation and CPFE model definition 

process. 

Two groups of user input, including the physical parameters, which determine the 

implementation parameter for the 2D-CPVT model, and workpiece parameters, which 

define a virtual structure’s domain, are specified. It is worth mentioning that by assigning 

the physical parameters, including the mean grain size      , a small grain size   , a 

large grain size    and the percentage    of grains in that range, repeatedly generated 

VTs are statistically equivalent in terms of regularity and grain size distribution. If the 

generated virtual grain structure is required to include a cohesive zone model for grain 
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boundaries representation, the grain structure is further processed using the proposed 

VTclb method. Next, material properties including mechanical properties and grain 

orientations are assigned to the grains in the resultant grain structure, and for the 

cohesive zones, junctions are preliminarily partitioned. The final virtual grain structure 

with material properties and cohesive junction partitions can be directly exported to 

commercial FE/CAE platforms, e.g., ABAQUS, by means of corresponding text scripts such 

as the python script for ABAQUS. Final meshing is then carried out based on the VTclb 

partitions by the commercial solver.  

5.4.2 Case studies  

To demonstrate the proposed VTclb method and the novel cohesive junction 

partition scheme in modelling cohesive zone grain boundaries in polycrystalline materials, 

two crystal plasticity finite element analyses, including a 2D plane strain analysis of 

uniaxial tension and a 2D three-point bending test, have been performed. The two virtual 

grain structures, including the grains, the cohesive zones and junction partitions, were 

generated using the VGRAIN system. Schematic diagrams of the simulations are 

presented in Figure 5.11 and Figure 5.15. In both virtual specimens, grain boundaries 

were represented by cohesive elements. The thickness of cohesive layers for both FE 

models was        , which is much smaller than the dimensions of the grains whose 

fracture was analysed [190] and also compromised the number of mesh elements to be 

used. The grain grayscale values correspond to the grain orientations, which were 

randomly generated using the VGRAIN system. Crystal plasticity constitutive equations as 

in Wang et al. [18] were implemented in the commercial FE code ABAQUS/EXPLICT 

through the user defined material subroutine VUMAT. A calibration of the crystal 

plasticity equations for a free-cutting steel, as described in Karimpour et al. [191], using 

tensile test data generated over a range of strain rates and temperatures, was used in 

the simulations. 
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5.4.2.1 Uniaxial tension  

For the uniaxial tension model shown in Figure 5.11, the overall dimensions of the 

specimen were        –150   . The physical parameters input to the VGRAIN system 

were presented in Table 5.3. A displacement  , corresponding to an engineering strain 

level of    , was applied on the right edge of the model with the lateral faces free of 

constraint.  

 

 

Figure 5.11. Schematic diagrams of the plane strain model for CPFE simulation.   

 

Table 5.3. Physical parameters and corresponding grain structure properties for 

the two CPFE models. 

Label 
Physical parameters 

(   ) 
Equivalent grain size† 

(  ) 
CPVT model parameters 

                            
     

(  ) 
  

   
     

  

Tension                                      0.6         
Bending                                      0.6      320 

† Assuming a hexagonal grain shape.  
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The damage initiation criterion of the cohesive constitutive law was based on the 

maximum of the ratios of the cohesive stress components to the corresponding damage 

initiation stresses reaching unity 

   {
  〈  〉

  
  

    

  
 }      

where 〈 〉 is the Heaviside step function and superscript 0 denotes the damage initiation 

threshold. The normal and tangential cohesive stresses    and    were calculated by: 

   {
       ̅      ̅    

  ̅                 ̅    
  

and 

          ̅ , 

where   ̅  and   ̅  are the linear elastic traction components and   is the damage 

parameter ranging from   to  . The damage evolution is based on a failure energy 

criterion, defined by: 

  
  

    
      

  

  
      

    
  

   

where    √〈  〉    
  is the effective displacement,   

    is the maximum value 

attained during the loading history and   
  is the value at damage initiation. (Note that 

necessarily   
      

  if the damage initiation criterion is satisfied.) Moreover,  

  
          

  , 

where     
  is the effective traction at damage initiation and    is the fracture energy.  

Two different ratios of the normal to tangential damage initiation stresses, i.e.,   
    

 , 

were simulated:   
    

   , and   
    

   , i.e. a very high damage initiation stress of 

the normal direction relative to that of the tangential direction, forcing damage to occur 

only under shear. For the first case, the damage initiation stresses were   
    

     ; 
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for the second case, the damage initiation stresses were   
       and   

     . For 

both cases, the damage evolution energy of CZs was        . In Figure 5.13, the results 

of a demonstration uniaxial tension CPFE simulation with   
    

   , i.e. equal separation 

and shear behaviour are presented. Figure 5.13 (a) shows the initiation of a crack and 

contours of damage accumulation in other areas, while Figure 5.13 (b) shows the 

propagation of the crack. Early-stage strain localisation necking can also be observed. In 

Figure 5.13 (c), the geometrical evolution of a junction (indicated in Figure 5.13 (a)), 

where the crack passed through, is shown. The results of the junction partition operation 

are highlighted by the dot-lines, of which the white dot-lines and black dot-lines are from 

the cut and trim operations, respectively. It can be seen that both of the triple junctions 

were partitioned uniformly by three quadrilateral elements and these elements exhibited 

smooth geometrical deformation during cracking. The crack path is normal to the 

direction of applied tension, as expected given the equal weighting of the normal and 

shear cohesive stresses, and that the maximum shear stress is lower than the maximum 

normal stress. Figure 5.14 shows the results of a uniaxial tension CPFE simulation with 

  
    

   , i.e., with only shear failure possible. Crack nucleation and full propagation 

are presented in Figure 5.14 (a) and (b), respectively. The oblique angle of the crack path 

(roughly     to the axis of applied loading, along grain boundaries where the shear stress 

is greatest), as shown in Figure 5.14 (b), confirms that failure in the simulation is 

governed by maximum shear stress, and depicts the limit of the interplay between shear 

and normal damage modes. Figure 5.14 (c) illustrates the damage evolution of the 

junctions specified in Figure 5.14 (a). In both cases (Figure 5.13 and Figure 5.14) at each 

junction, elements which share the centroid node have the same normal and tangential 

directions as their corresponding cohesive layer units, hence their behaviour is consistent 

with that of the other elements in their units. In addition, Figure 5.12 presents the strain-

stress properties of the two simulations, results show that the grain structure with the CZ 

property only considering pure shear damage was more ductile than the grain structure 

with the CZ property of equal normal and tangential damage initiation stresses. This 

feature can also be observed from the deformed grain structures shown in Figure 5.13 

and Figure 5.14.  
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Figure 5.12. The stress-strain curves corresponding to the two different ratios of 

the normal to tangential damage initiation stresses. 

 

5.4.2.2 Three-point bending  

The three-point bending model demonstration shown in Fig. 14 has a specimen 

domain of–           –   and physical parameters are given in Table 5.3; the 

crystal plasticity calibration is also the same. The model configuration was set up in 

accordance with the metallic materials bend test standard specified in ISO 7438:2005. It 

can be seen that the proposed VTclb grain structure model and junction-partitioning 

scheme are capable of simulating the crack initiation at the tensile surface, shown in Fig. 

14 (a), and subsequent inter-granular fracture and crack propagation through the 

entirety of the specimen, shown in Fig. 14 (b). Besides the major crack path shown in Fig. 

14 (b), there were other boundaries with considerable accumulated damage during the 

bending process shown by the contours of damage. Fig. 14 (c) illustrates the geometrical 

separation behaviour of two of the junctions under this mode of loading in the region 

specified in Fig. 14 (a). 
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5.5 Summary  

Voronoi tessellations account for the natural variation of grain shapes and sizes. 

However, this advantage leads to complexity in the grain boundary connectivity. There 

are usually triple junctions, quadruple junctions, higher order multiple junctions and 

complex special cases. Therefore, in order to simulate grain boundary sliding and inter-

granular crack nucleation and propagation using non-zero thickness CZ models in a 

general (any number of grains, any regularity) virtual polycrystal, automatically 

generating cohesive zones and effectively meshing the junctions must be accomplished. 

The main objectives of this work were the development of an effective CZ representation 

method for the Voronoi tessellation model, and resolving the challenging problem of 

automatically partitioning multiple junctions for meshing with quadrilateral elements for 

any possible scenario.  

The method to automatically generate cohesive layer boundaries (VTclb) has been 

proposed to define the grain structures for polycrystal CZ simulations. Furthermore, a 

robust geometrical algorithm has been developed to produce the VTclb structure for any 

given Voronoi tessellation. The algorithm is based on the medial axis structure and 

proceeds in three major steps: Generating the medial axis for a grain, dividing the grain 

into sub-regions in accordance to its edges and finding the offset edges, and linking all 

the offset edges into the inward-offset grain.  

Two feasible junction-partitioning schemes were presented. The first scheme 

requires extra edges and hence additional nodes in order to mesh the junction by 

quadrilateral elements. In addition to the resultant extra geometrical complexity, the 

extra nodes are free of constraints and thus MPCs must be provided. In contrast, the 

second scheme is able to partition a junction by more uniform quadrilateral elements 

and has the advantage of assigning the partitioned elements with natural normal and 

tangential directions. Therefore, a rule-based method has been developed to implement 

the second scheme for general junction partitioning and preliminary meshing of CZ 

junctions. It consists of dividing the cohesive layer units and partitioning the layer units 

by cut and trim operations.  
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The proposed VTclb junction-partitioning and preliminary meshing method is a 

powerful companion for the 2D-CPVT model. Using this combination, VTclb grain 

structures can be automatically generated with grain size distribution control. After a 

grain structure has been generated, the junction partitioning is then performed and the 

preliminary mesh automatically obtained. Grain orientations can be assigned for CPFE 

analysis with preferred texture or randomly generated based on a random number 

generator. The quality of the resultant grain structure and mesh has been verified by 

CPFE simulations: Two virtual uniaxial tensile tests and a three-point bending test. Crack 

initiation and propagation have been studied, and the details of junction elements 

deformation were examined. The results show that the novel junction-partitioning 

scheme is ideal to automatically generate nonzero thickness CZ boundaries for simulating 

grain boundary sliding and decohesion in polycrystals.  
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Figure 5.13. Plane strain uniaxial tension CPFE simulation with   
    

   . (a) 

Crack initiation; (b) complete failure; (c) grain boundary triple point before and 

after the crack passing through it, where L1 - L5 are cohesive layer units. 

 



116 

 

 

 

Figure 5.14. Plane strain uniaxial tension CPFE simulation with   
    

   . (a) 

Crack initiation; (b) complete failure; (c) grain boundary triple point before and 

after the crack passing through it, where L1 - L5 are cohesive layer units.  
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Figure 5.15. Schematic diagrams of the three-point bending model for CPFE 

simulation.   
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Chapter 6 3D CPVT models 

3D CPVT models 

6.1 Introduction 

In this chapter, the CPVT model has been further developed to generate three-

dimensional (3D) virtual grain structures. A virtual grain structure generated using the 

3D-CPVT model has the property that its grain volume distribution is statistically 

equivalent to the actual grain structure in term of the specified physical parameters: the 

mean grain volume, a small grain volume value, a large grain volume value, and the 

percentage of grains within that range. Development of the 3D-CPVT model requires 

three steps: 1) Defining the regularity,  , that specifies the uniformity of a tessellation, 

and deriving the control parameter,  , based on the regularity, 2) establishing the 

mapping from the regularity to the distribution parameter of a one-parameter gamma 

distribution, i.e.     ; and 3) defining the mapping from the set of physical parameters to 

the distribution parameter.  

A regularity parameter is proposed to evaluate the uniformity of a 3D tessellation. Its 

dual relations with control parameters and distribution parameter are addressed. 

Wherein, the relations between the regularity and the distribution parameter, for a 

range of regularity values, are determined by a comprehensive set of statistical 

experiments. Data fitting for the grain volume distribution model is in each case obtained 

by an evolutionary optimisation algorithm, due to the difficulty in identifying a proper 

distribution parameter for highly regular grain structures. In conjunction with the results 

of the preceding chapter, a 3D-CPVT model is constructed. Implementation of the entire 

system is explained and the corresponding computational procedures are provided. To 

demonstrate the proposed scheme and the application for CPFE simulations, CPFE 

analyses of compression of micro-pillars are carried out. The effects of both regularity 

and grain size on the deformation are studied.  



119 

 

6.2 Model development  

6.2.1 General considerations 

6.2.1.1 Regularity  

As discussed before, grain shape and size in a VT are determined by two factors: the 

grain seed lattice and grain growth velocity. Under the assumption of a homogeneous 

crystallisation process, for a VT, the grain morphology and size distributions are 

completely determined by the initial seed lattice. Due to the complexity of the initial 

seed lattice, grains in different Voronoi tessellations vary in both topological and 

morphological characteristics. The topological and morphological characteristics of a 

three-dimensional Poisson Voronoi tessellation have been intensively studied (e.g. [152, 

153, 192-194]). The empirical results and rules relating to the mean volume and surface 

area of a 3D PVT, the number of vertices and edges of a typical grain and the length of a 

typical edge have been derived. In addition, a few higher level properties, such as the 

density of grain vertices or grain centroids, the expected edge length density and face 

area density were also obtained.    

Although these empirical laws are useful in charactering PVTs in terms of topological 

and morphological relations, they cannot be applied to evaluate the degree of 

randomness of Voronoi tessellations in general. For example, the tessellation in Figure 

6.1 (b) has a much more regular grain structure than that in Figure 6.1 (a). However, 

intuitive judgements must be quantified based on a general criterion. In Chapter 4, a 

regularity parameter,  , was proposed for planar Voronoi tessellations. This parameter is 

a relative quantity defined by the ratio of the minimum seed spacing in the given VT, and 

the regular distance in the equivalent regular hexagonal tessellation, which assumes the 

most regular planar tessellation. The parameter   takes values between 0 to 1, such that 

    corresponds to the regular hexagonal tessellation, and     to a Poisson Voronoi 

tessellation.  
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Figure 6.1. Voronoi tessellations with different degrees of uniformity. (a) An 

irregular structure of a PVT type; (b) a regular structure of a non-PVT type. 

 

 

Figure 6.2. Definition of the regular distance     , where s1 and s2 are seeds 

taken from a BCC lattice. 

For a three-dimensional Voronoi tessellation, a similar parameter was proposed by 

Zhu et al. in [195, 196]. The 3D regularity,  , is defined by the ratio of the minimum seed 

spacing of the tessellation to that of the equivalent regular truncated octahedral 

tessellation. As aforementioned, there are basically three types of uniform tessellations 

consisting of cubes, rhombic dodecahedron, and truncated octahedron. With comparison 

of the surface area per unit volume, presented in Table 2.1, a uniform tessellation filling 

with truncated octahedrons, i.e. tetrakaidecahedral tessellation (TT), is regarded as the 
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most regular tessellation, since it has the minimum value of surface area per unit volume. 

Note that as a fully ordered 3D Voronoi tessellation, the seeds in a TT are arranged in a 

BCC lattice. A tetrakaidecahedron has 14 planar sides, 8 are regular hexagons and 6 are 

squares. As illustrated in Figure 6.2, two adjacent grains in a TT are coincident at regular 

hexagonal faces and the seed distance must be equal to 

      
√ 

 
(
     

√ 
)
   

   6.1 

where       is the mean grain size (in terms of volume) of the given VT. Therefore, the 

regularity parameter   can be defined as 

   
 

    
   6.2 

where   is the minimum seed spacing in the given VT. Note that, as the regularity   

decreases from   to  , the corresponding tessellation becomes more disordered, 

changing from a uniform TT to a fully-random tessellation, i.e., a PVT.   

6.2.1.2 Control parameter 

The minimum seed spacing,  , used to define a VT’s regularity by Eq. 6.2, also 

provides an alternative way to generate a VT with regularity control. That is, a 3D 

Voronoi tessellation with a specified regularity can be achieved by controlling the 

generation of the seed lattice for the VT, with a minimum allowable seed spacing 

distance,  , defined by  

         . 6.3 

Explicitly, given a Cartesian coordinate system and a cubic domain with volume  , seeds 

are placed in the cubic domain by generating  ,   and   coordinates sequentially from a 

uniform distribution random number generator. A constraint is introduced requiring that 

a subsequent seed is accepted only if the distances from it to the other existing seeds are 



122 

 

all larger than or equal to  . This process is continued until       points have been 

generated. This seed generation process is referred to as a 3D-CPVT seed generation 

process and the minimum seed spacing,  , is used as the control parameter of a 3D-CPVT 

model. Note that, since seeds in the final seed lattice are controlled by a minimum 

distance, the final tessellation tends to have a slightly larger regularity than the specified 

value. Moreover, as the number of seeds       increases, the regularity of a resultant VT 

asymptotically approaches the specified value.   

It worth noting that, this seed generation process is conducted within a given 

domain, that is, when forming a VT tessellation, no outside seeds are to be considered. 

Thus, the local space surrounding to the domain boundaries is totally taken by the grains, 

whose seeds are near to these boundaries. At this point, it is different from an observed 

real microstructure cut from a polycrystalline material. In quantitative metallography, 

grains cut by domain boundaries are counted as half grains, since parts of outside grains 

remain in the observed area and also parts of the internal grains bordered with 

boundaries are removed. In contrast, for a VT determined by the 3D-CPVT seed 

generation process, grains cut by boundaries are assumed to be whole grains rather than 

half grains. That is, the number of seeds       to be generated is equivalent to the 

number of grains  ,  

        , 6.4 

where the number of grains   is determined by means of the domain volume    and the 

mean grain size (in terms of grain volume)      ,  

            . 6.5 

 In addition, the 3D-CPVT seed generation process does not require periodicity 

prescribed around the boundary areas. Therefore, when using the estimation of the 

number of grains in Eq. 6.4, random noise may be induced. On the other hand, an 

increasing number of grains within the specified domain diminish the effect of this 

random noise.   
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6.2.2 Regularity and grain size distributions 

As aforementioned, the regularity parameter   takes a dual relation: It is used to 

derive the control parameter   and also links to the physical parameters via the 

distribution parameter  . As addressed in Chapter 3, the physical parameters are 

employed for users to characterise grain size distribution properties of a desired grain 

structure, which are modelled by a one-parameter gamma distribution function. 

Therefore, if the relation between the grain size distribution of VTs and their regularities 

can be established, the 3D-CPVT model is fully developed.    

6.2.2.1 Volume distribution modelling  

In Chapter 4, the relation between a range of regularity values and the grain area 

distributions was modelled for 2D Voronoi tessellations. The grain size distribution was 

fitted by a one-parameter gamma distribution function, and the results provided a non-

linear one-to-one mapping between the regularity and the distribution parameter (Eq. 

4.6).  

The grain size (volume) distribution of a 3D PVT was modelled by a variety of 

distribution functions: a Maxwell speed distribution function [146], as well as by three-, 

two- and one-parameter gamma distribution functions [147-150]. The one-parameter 

gamma distribution function (Eqs. 3.15-3.16) only requires the specification of one 

parameter and also provides a quality fit for the normalised grain size distribution of a 3D 

VT. Therefore, it is most convenient to build the mapping from grain size distribution to 

the regularity of a 3D tessellation, i.e. from   to  .  

6.2.2.2 Statistical data of   to   

The relation of   to   is based on empirical results from a comprehensive statistical 

tests conducted in this section. Voronoi tessellations were produced based on the above 

3D-CPVT seed generation process, i.e., without periodicity, within a cubic domain. With 

considerations of reducing random noise around surface regions, for each Voronoi 

tessellation,     grains were generated. For each regularity value, 100 Voronoi 



124 

 

tessellations were produced independently, which were used for a one-parameter 

gamma distribution function to fit a grain volume distribution for a specified regularity. 

The data fitting using a parameter gamma distribution function is usually achieved 

using moment estimator [197]. However, in the case of the regularity value exceeding 0.7, 

the grain size values are all concentrated about the mean. To identify the distribution 

parameter for such a narrow distribution, the moment estimator does not give a 

sufficiently good result. Therefore, an optimisation procedure has been employed to fit 

the grain size distribution in this work. The one-parameter gamma distribution is given in 

Eqs. 3.15-3.16. The mean value of this distribution is one, hence 10 intervals given by 

              , where          , within a truncated domain       are used to 

evaluate the difference between the model and the statistical data; it can be observed 

from the statistical data in Figure 6.3 that for the most random case    , there are 

very few grains with          .  

The least squares error function is defined by 

      ∑           
 

 

   
 6.6 

where       is the ideal probability in the interval   , i.e., 

       ∫          
        

    

   6.7 

and    is the frequency of the grains whose sizes are within the interval   . The CMA-ES 

optimisation algorithm [161] was used to find the appropriate   values for corresponding 

regularity values. The optimisation results are presented in Table 6.1, where the second 

row lists the distribution values for the model fits and the third row list the related 

objective function values, defined by Eq. 6.6. illustrates the difference between the 

statistical data and the model fits. It can be observed that the one parameter gamma 

distribution provides highly accurate fit to grain size distributions for VTs with regularities 

     , while some small inaccuracies are apparent for higher regularities.  



125 

 

Table 6.1. The fitting results including the relations between the regularity   and 

the distribution parameter  , and the corresponding fitting errors defined in Eq. 

6.6.  

  0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.75 0.8 

  5.156 5.209 5.446 6.210 7.702 10.609 16.031 28.971 38.310 48.187 
     1.9E-5 1.9E-5 1.2E-5 1.5E-5 6.7E-5 1.1E-4 4.6E-5 2.1E-3 5.7E-3 1.1E-2 
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Figure 6.3. Comparison of the statistical data (bars) and the model fits (points) 

for different regularity values.  
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6.2.2.3 Descriptive model of   to   

The data pairing between the regularity measurement   and the corresponding 

model parameter  , presented in Table 6.1, reveals a non-linear mapping, whereas   

increases,   increases accordingly. In order to fully establish this mapping over a 

continuous interval        , a descriptive model proposed in Eq. 4.6 was also utilised 

for the three dimensional model. The experimental data pairs in Table 6.1 were used to 

calibrate the constants in Eq. 4.6.  Determination of the model parameters in Eq. 4.6 was 

performed using the highly efficient optimisation algorithm, CMA-ES, and the results are 

        ,       ,      ,        and      . The final calibrated model and 

the     data pairs used in the calibration are plotted in Figure 6.4.  

 

Figure 6.4. The descriptive model, relating the regularity parameter   to the 

distribution parameter   of a one-parameter gamma distribution function. 

6.2.3 Implementation 

The 3D-CPVT seed generating scheme, described in Section 6.2.1, combined with Voronoi 

tessellation modelling, presented in Section 3.2.1, is referred to as the three-dimensional 

controlled Poisson Voronoi tessellation model, denoted as a 3D-CPVT model. A flow 

diagram of the CPVT model was given in Figure 3.2, where the domain   is in 3D space 
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and the grain sizes are in terms of volume. The 3D-CPVT model is a three-dimensional 

adaptation of the general CPVT model; hence it is capable of generation of a virtual 3D 

grain structure with desired grain volume distribution specified via a user input 

procedure. A summary of the procedure is as follows: 

Step 1. The parameters characterising the domain grains of the structure are used to 

determine: 

a. The domain   of a virtual grain structure.  

b. The number of seeds,       (using Eq. 6.4). 

c. The regular distance,      (using Eq. 6.1). 

d. The control parameter,  , (using Eq. 6.3). 

Step 2. The physical parameters are input by the user, followed by the operations:  

a. Compute the distribution parameter   by the Newton-Raphson method 

(using Eqs. 3.28-3.32). 

b. Derive the regularity parameter   from the empirical model      (using 

Eq. 4.6 with the calibrated constants in Section 6.2.2).  

c. Combine   and   with the obtained regular distance      to compute the 

control parameter   (Eq. 6.3)). 

Step 3. Once the required parameters are achieved, the 3D-CPVT seed generation 

process is applied to generate seeds, hence the corresponding virtual grain structure. 

The following points are worth noting when applying the CPVT model to generate 

VTs with regularity control: 1) If the control parameter    , there is no constraint on 

the seed generating process, and the resultant Voronoi tessellations are Poisson Voronoi 

tessellations; 2) generating a VT with regularity larger than 0.8 is not always successful, 

because the randomly produced seeds affect on the subsequent seed locations; the 

larger the regularity value, the smaller the probability of successfully achieving the VT; 

and 3) the proposed CPVT model is based on an empirical relation between   and  , 
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which was achieved using a cubic domain without periodicity. Thus, grains built by the 

border of the domain affect the number of grains, hence the average grain area      , 

which in turn affects the regular distance     . Therefore, increasing the number of 

grains in a VT will reduce the random noise and produce better regularity control 

performance. 

6.3 CPFE application 

To demonstrate the proposed 3D CPVT model, simulations of uniaxial compression 

of micro-pillars are studied. The overall setup is shown in Figure 6.5, where the tapered 

cylinder micro-pillar has a height of 180   , bottom radius of 30    and angle of   . A 

displacement of         (equivalent to     engineering strain) was applied on the 

upper face of the micro-pillar in all the simulations; the bottom face was fixed and the 

remaining faces were free of constraint. Two sets of simulations were conducted, one of 

which focuses on the influence of the grain structure’s regularity, i.e. the grain size 

distribution characteristics, on the compression deformation, and the other concentrates 

on the effect of grain size on the micro-pillar’s inhomogeneous behaviour.  
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Figure 6.5. Schematic diagram for the CPFE simulation of micro-pillar 

compression. 

The finite element analysis in this demonstration uses a rate-dependent finite 

deformation crystal plasticity formulation to describe the deformation of individual 

grains within a polycrystalline material. The elasticity is assumed to be isotropic, defined 

by the Young’s modulus and Poisson’s ratio. The shear strain rate on the     system,  ̇ , 

is related to the resolved shear stress   , as defined in [198] by, 

  ̇    ̇ (
  

  
) (|

  

  
|)

   

   6.8 

where   ̇ is a reference strain rate on slip system  ,   is the stress exponent, and    is 

the current hardness of the slip system. Obviously as   increases to infinity, the material 

model becomes rate-independent [199]. The resolved shear stress on the     slip system, 

  , is given by 

      
      

 , 6.9 

where   
  is the slip plane normal,   

  is the slip direction, and the stress tensor     is 

given in terms of the elastic strain by  

             
  . 6.10 

The number of slip systems and their orientation depends on the crystal structure, e.g., 

an FCC crystal contains four slip planes and each slip plane has three independent slip 

directions, hence     ; the simulations here are for an FCC material. The plastic strain 

rate is given by 

   ̇ 
  

 

 
∑(  

   
    

   
 )  ̇    

 

   

 6.11 
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and the stress rate takes the form 

  ̇        (   ̇    ̇ 
 ) , 6.12 

where    ̇  is the total strain rate tensor,   ̇ 
  the plastic strain rate tensor, and       is the 

fourth-order stiffness tensor. Furthermore, the strain hardening of the slips system for 

FCC crystals is defined by 

  ̇  ∑     ̇
 

  

   
    6.13 

where     is the matrix of slip hardening moduli. If    ,     , the self-hardening 

moduli are given by: 

              
 |

   

     
|   6.14 

where    is the initial hardening modulus,    is the initial shear strength, and    is the 

break-through stress . If    ,    , i.e.    , the latent hardening moduli are defined by 

               
 |

   

     
|   6.15 

In Taylor’s isotropic-hardening assumption, the self- and latent-hardening rates are 

assumed to be identical, hence the hardening factor   is set to unity. Moreover, the 

accumulated shear strain   is defined by  

   ∑    

  

   

   6.16 

In the initial state,      ,     ,       and      . The material constants were 

calibrated for a free cutting tool steel [191] for a temperature of       . Young’s 

modulus and Poisson’s ratio are 6.06 GPa and 0.3, respectively. The other material 



132 

 

constants in Eqs. (6.8)-(6.16) are presented in Table 6.2. This crystal plasticity 

constitutive model has been implemented in the commercial FE package ABAQUS using 

the user defined material model subroutine, VUMAT, for which the fundamental 

procedure was introduced in [200]. 

Table 6.2. The values of material constants for the crystal-plasticity constitutive 

equations in Eqs. (6.8)-(6.16). 

                                 
3 10 33 150 23 

 

Table 6.3. Physical parameters and corresponding grain structure properties for 

the two microstructures. 

Label 

Physical parameters (   ) 
Mean grain 
diameter† 

(  ) 
CPVT model parameters 

            
   

(%) 
 ̃     

     

(  ) 
  

  
     

  

R-1 14140 7070 21210 76.6 30 26.4 0.0 0 46 
R-2 14140 9900 18380 60.3 30 26.4 0.4 10.5 46 
R-3 14140 11310 16970 87.6 30 26.4 0.8 21.1 46 
S-1 8180 5730 10630 60.3 25 22.0 0.4 8.8 78 
S-2 4190 2930 5450 60.3 20 17.6 0.4 7.0 154 
S-3 1770 1240 2300 60.3 15 13.2 0.4 5.3 361 

 † Assuming a spherical grain shape. 

In the first set of simulations, three specimens with different grain structure 

regularities were generated. As shown in Table 6.3, the specimen R-1 is a purely random 

grain structure, i.e.,    ; the specimen R-2 has regularity      , and specimen R-3 

has the most regular grain structure,      . The physical parameters used to generate 

the three grain structures are presented in Table 6.3, where the implementation 

parameters derived by the CPVT model are also given. Note that, the grain size input to 

the CPVT model is in terms of grain volume, while the equivalent grain size assumed a 
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spherical shape. The undeformed micro-pillars with the specified regularities are shown 

in Figure 6.6. It should be mentioned that repeated use of the same physical parameters 

using the CPVT model will result in slightly different grain structures, but all the virtual 

grain structures are statistically consistent with the specified physical parameters. The 

grain structures shown in Figure 6.6 also have crystallographic orientations, assigned by 

the VGRAIN system using a random number generator based on a uniform distribution. 

In the VGRAIN system, grain orientations can be assigned based on a fixed texture, or 

randomly taken from a uniform or normal distribution. In addition, grain orientations can 

also be defined according to measurements, such as EBSD.  

The deformed specimens shown in Figure 6.6 are demonstrations of regularity and 

grain size control in three dimensions, and compare the different deformation 

characteristics resulting from different grain size distribution properties. The three 

specimens have an identical mean grain size of      . The contours of accumulated 

shear strain (c.f. [191]) show that the degree of plastic strain localisation is lower for 

sufficiently regular grain structures; the maximum value of   is lower for the       

case, relative to the irregular grain structures,       and    . The axial deviation is 

also lower for       than it is for either       or    , although there is inherent 

variability depending on the details of the grain orientation distribution. Irregular grain 

structures have an inherently larger variability in deformation features, such as axial 

deviation in this case. For a given average grain size, a higher irregularity leads to a larger 

maximum grain size which may or may not dominate the deformation in a given cross 

section depending upon its orientation, which is randomly assigned. In contrast, a regular 

grain structure has a more homogeneous grain size distribution, which precludes the 

occurrence of larger grains that may accommodate severe slip localisation if 

appropriately oriented, i.e. having a high Schmid factor for the boundary conditions. The 

force-displacement curves shown in Figure 6.8 also confirm the behaviour, where it can 

be seen that the response is identical for all pillars until the onset of softening due to 

strain localisation, which occurs for a lower displacement value the more irregular the 

grain size distribution, whereas the regular model exhibits persistent hardening 

throughout the deformation. 
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Figure 6.7 shows micro-pillar specimens with different mean grain sizes and the 

same regularity (     , moderately irregular); the normalised grain size distributions 

are statistically equivalent. Axial deviation of the deformed sample increases with 

increasing mean grain size for a given regularity, and a material with a smaller mean 

grain size exhibits a more homogenous deformation. This is clearly shown by the 

simulation in Figure 6.7 (c) where the maximum value of the accumulated shear strain,  , 

is considerably lower and the cylinder has maintained its shape and not deviated axially 

after deformation. The force versus displacement curves given in Figure 6.9 illustrate that 

strain localisation reduces the applied force required to achieve a given pillar 

displacement, and that the onset of softening is delayed by a smaller grain size to the 

point that in the case of         there is no evident softening due to strain 

localisation and the material continues to harden steadily. Note that, according to the 

simulation results obtained from different grain structures with different regularities and 

different mean grain sizes, it can be found that the property of mean grain size have 

more significant influence on the mechanical responses than the characteristics of 

regularity, i.e., grain size distribution. 

6.4 Conclusion 

Representing a grain structure within a FE/CAE computational environment is 

essential for micromechanics simulations. Two approaches may be used, depending on 

the requirements of the application: Computer reconstruction of an actual grain 

structure using, e.g. EBSD, or high-fidelity virtual grain structures generation for accurate 

prediction of material deformation. In order to correlate the latter with actual material in 

an average sense, the virtual grain structure must be statistically equivalent to the actual 

material, have the desired grain size distribution features and exhibit realistic grain 

morphology. In this chapter, a three-dimensional virtual grain structure generation 

model, the 3D CPVT model, has been developed to fulfil these requirements. The three-

dimensional CPVT model involves four steps: (1) Determination of the grain size 

distribution (i.e., the distribution parameter   of a one-parameter gamma distribution) 

based on specified physical parameters, (2) derivation of the tessellation’s regularity,  , 
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from the mapping     , (3) calculation of the control parameter,  , based on the 

regularity and the desired mean grain size, and (4) generation of the virtual grain 

structure using the 3D CPVT model with respect to the specified physical parameters. The 

most important advantage of using the 3D CPVT model to generate a virtual grain 

structure is that the grain size distribution of a resultant grain structure is statistically 

equivalent to the user-specified physical parameters: Mean grain volume, a small grain 

volume, a large grain volume and the percentage of grains within that range. The 

algorithms are also very computationally efficient, allowing very large grain structures to 

be generated in real time. Therefore, this method is ideal for FE simulations requiring 

virtual grain structures, providing realistic grain structure representation in terms of both 

grain morphology and grain size distribution.  

Derivation of the 3D-CPVT model required: 1) Defining a regularity parameter,  , 

that specifies the uniformity of a tessellation, 2) deriving the control parameter,  , based 

on the regularity, 3) establishing the mapping from the regularity to the distribution 

parameter of a one-parameter gamma distribution, i.e.     , and 4) defining the 

mapping from the set of physical parameters to the distribution parameter  . The 

relations between the regularity and control parameters, and the regularity and 

distribution parameters, were given. The relation between the regularity and the 

distribution parameter was determined by a comprehensive set of statistical experiments. 

Data fitting for the grain volume distribution model was in each case obtained by an 

evolutionary optimisation algorithm, due to the difficulty in identifying a proper 

distribution parameter for highly regular grain structures. Implementation of the entire 

system was explained and the corresponding computational procedures were provided. 

To demonstrate the 3D-CPVT model for micromechanics studies, CPFE analyses of 

compression of micro-pillars were carried out exploring the effects of grain size and 

regularity of the grain size distribution on the deformation characteristics. 
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Figure 6.6. CPFE simulations of Micro-pillar compression for regular and irregular grain structures. 
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Figure 6.7. CPFE simulations of Micro-pillar compression for grain structures with different grain sizes. 
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Figure 6.8. The force – displacement properties during compressing the micro-pillars with 

different regularities. 

 

Figure 6.9. The force – displacement properties during compressing the micro-pillars with 

different grain sizes.    
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Chapter 7 Advanced Models 

Advanced Models 

7.1 Introduction  

In the preceding studies, the 2D- and 3D-CPVT models have been developed for the 

generation of virtual grain structures with grain size distribution control. In the grain structures 

generated by the CPVT models, grains are equiaxed and cross the grain structure domain, all 

grains share identical grain size distribution properties, i.e., their grain size distribution is 

unimodal. A grain structure with these features is called homogeneous. However, for generating 

true grain structures, there are some typical variations, where grain structures may not be always 

homogeneous, which must be considered for advanced micromechanics simulations. Two of the 

most important cases are gradient grain structures and grain structures with elongated grains. 

This chapter aims at presenting a multi-zone CPVT scheme for generating inhomogeneous 

grain structures, especially for the gradient grain structures. The scheme employs the CPVT 

models to generate grains simultaneously in multiple zones and fills a grain structure domain 

with the desired grain size properties for individual zones. In the next section, desired 

functionalities of the multi-zone CPVT model are presented according to true features from real 

grain structures. Here, the multi-CPVT model has been proposed for gradient structure 

generation and an additional discussion is presented for deformed grain structures with non-

equiaxed grains. In addition, a series of cases have been demonstrated to show the capabilities 

and applications of the multi-zone CPVT model, and comparisons have been carried out with real 

grain structures and virtual grain structures from Monte Carlo simulations.   

7.2 Motivations 

Although, in industry, metallurgical processing technology is usually targeted to ensure the 

homogeneity of materials, there are many situations where inhomogeneous materials can be 
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involved. The inhomogeneous grain structures may result from the mixture of different material 

substances, multiple phases, recrystallisation, or joints of dissimilar materials (e.g. welding, 

coating), due to a variety of metallurgical processes. Based on the grain size variation properties 

across one dimension, there are basically two types of gradient grain structures with continuous 

variation of grain size and discontinuous variation of grain size.  

 

Figure 7.1. A gradient grain structure formed by processing Ti-based BMGs via surface 

mechanical attrition treatment (SMAT) (c.f. [201] for details). (a) The spatial distribution 

of gradient mean grain sizes; (b) the three micrographs taken from the surface to the 

deep matrix. 

For the first type, the size of the grains across the domain varies gradually and can be 

depicted with a smooth distribution function with respect to a specified dimension. This type of 

grain structure is commonly presented in a material that has been work hardened via mechanical 

processes, for example, cold-rolling.  This harnesses the effect of plastic strain to refine grains in 

metals and alloys in order to substantially enhance their properties. The resultant processed 

material has a finer grain size in the surface region compared to the base material. Figure 7.1 

shows a gradient grain structure of Ti-based bulk metallic glasses (BMGs) processed via surface 



141 

 

mechanical attrition treatment (SMAT). The spatial distribution curve implies a continuously 

varying characteristic in terms of grain size.  

A gradient grain structure with a discontinuous variation of grain size generally comprises a 

set of individual grain aggregates with each grain aggregate having a common properties and 

grain size distribution. Figure 7.2 shows a case of this type of gradient grain structure. This grain 

structure was observed from a weld zone of AA5754 after friction stir welding. In the central zone, 

traces of oxide inclusions were mixed into the weld, where the grains are distinctively smaller 

than those in the neighbouring grain aggregates. This type of grain structure mostly occurs under 

situations such as joining dissimilar materials or grain recrystallisation.   

 

Figure 7.2. A grain structure of weld joint of an AA 5754 FSW weld zone, where fine 

grains in the middle area are a trace of oxide inclusions from surfaces of a butted 

interface [202]. 

As previously mentioned, grain size distribution properties significantly affect various 

material mechanical properties from both the macro-scale, for example, the plastic flow stress, to 

the micro-scale, in the form of subgrain stress or strain distributions. Understanding of the 

corresponding mechanical properties of a gradient grain structure is crucial for developing or 

tailoring the properties of advanced materials. For materials with gradient mean grain size, the 

macro-scale mechanical properties, for example, hardness, shear and tensile behaviours, have 

attracted a lot of attention (e.g. [203-205]). However, the micro-scale mechanical features have 
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not been studied in sufficient detail. One particular issue is the lack of effective grain structure 

representation methods for efficient generation of a gradient grain structure with desired mean 

grain size gradient and grain size distributions along the mean grain size gradient zones.    

7.3 The multi-zone CPVT model 

7.3.1 Multi-zone settings 

In the preceding work, the 2D- and 3D-CPVT models have been developed for corresponding 

grain structure generation. The CPVT models aim to quickly generate a virtual grain structure 

with grain size distribution control within a given grain structure domain. However, all these 

features can only be achieved under the assumption that the grains in a grain structure exhibit a 

homogeneous grain size distribution. That is, grain sizes can be depicted by a unimodal 

distribution function. Since in a gradient grain structure, different regions have different grain 

size distribution properties, the CPVT models cannot directly apply to generation of this type of 

virtual grain structure, and hence a scheme of employment of the CPVT models must be provided 

to produce virtual grain structures with desired mean grain size gradient and multi-modal grain 

size distribution control. 

Note that for a gradient grain structure with continuous or discontinuous size variation, a 

domain can be divided into a set of sub-regions according to their mean grain size and size 

dispersion characteristics. In each individual region, the grain size distribution can be 

approximated as unimodal. For a continuous gradient grain structure, distribution features slowly 

vary along a dimension, therefore, there can be a reasonable division of the whole domain into a 

set of piecewise zones with the property that grains belonging to each individual zone share an 

identical distribution. For example, the gradient grain structure shown in Figure 7.1 has the grain 

size spatial distribution feature that its grain size   follows the tendency 

         
 

   , 7.1 

with respect to the distance   to the material surface. A feasible division of the domain into three 

zones along the depth from the surface is illustrated in Figure 7.3. The three zones have the 
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mean grain sizes: 316   , 95    and 15    respectively, and in each zone, the grain structure 

along the thickness direction has similar uniformity and grain size distribution characteristics. In 

contrast, for discontinuous gradient grain structures, a structural domain usually consists of a set 

of grain aggregates with distinct grain size features. Since the aggregates can be recognised 

according to their sizes, a convenient division of the grain structure domain is based on the 

regions of the aggregates.  

 

Figure 7.3. Illustration of the domain of a gradient structure in Figure 7.1 into three 

zones.  

For the example of the region specified along the arrow in Figure 7.2, the arrow spanned two 

zones from one with larger grain size to the other with smaller grain size. A two-zone structure 

can be used to decouple the gradient grain structure into two separate grain structures with their 

own grain size features, as shown in Figure 7.4. The mean grain sizes of zone I and zone II are 12 

   and 4    respectively. In addition, for each zone, grains can be modelled by a unimodal 

distribution function.  

In general, the scheme of dividing the domain of a gradient structure into multiple zones is 

referred as to multi-zone scheme. The fundamental idea is that grain size in each individual zone 

can be modelled by a unimodal function. Therefore, the proposed 2D- and 3D-CPVT models can 
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be correspondingly applied to generate a virtual grain structure within an individual zone. The 

remaining issue is the mechanism of processing seed generation and the formation of grain 

structure at the region near to the borders of adjacent zones. 

 

Figure 7.4. Illustration of the domain of a gradient structure in Figure 7.2 into two zones.  

7.3.2 Coupling multiple zones 

The multi-zone scheme operates a set of adjacent zones, having their own grain size 

distributions, to fill the grain structure domain. A straightforward method is to directly stack 

them side by side, but this fails to consider the interactions of grains near to the zone boundaries. 

The direct combination of individual grain structures forms lines from zone boundaries, and more 

significantly, fails to account for the natural morphological variation of the grains from one zone 

to the other zone. To avoid these issues, the following multi-zone CPVT model is proposed to 

generate gradient grain structures with grain size distribution control for individual zones.  

To generate a multi-zone grain structure, an initial multiple zone layout must provided, which 

includes a set of   sub-domains, i.e.,        
 , where   denotes the zone index and        . 

For each of the sub-domains, the grain size distribution properties are assigned by an individual 

group of physical parameters       
    

    
    

  . Each group of physical parameters is taken as 
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input to a 2D- or 3D-CPVT model and correspondingly the control parameters       can be 

achieved respectively. A multi-zone CPVT model is defined by such a seed generation process 

that seeds are consecutively generated based on the following rules:  

1. Within an individual zone, the minimum seed spacing is decided by the control parameter 

of this zone.  

2. The minimum distance of a pair of seeds spanning two zones is determined by the smaller 

control parameter of the two zones  

More specifically, given the physical parameters and workpiece-related parameters for   

sub-domains, there are   sets of implementation parameters          
     

    and control 

parameters        
  prepared for the multi-zone CPVT. Then for the zone        , let    

denote the distance of a pair of seeds within the zone  ; let     represent the distance of a seed 

pair spanning the zone   and its neighbour  . If the seeds within the zone   are generated 

according to  

 

      

       
         

        7.2 

a Voronoi tessellation can be formed and this virtual grain structure generation scheme is 

renamed as a multi-zone CPVT.  

Figure 7.5 (a) presents a grain structure generated using the multi-zone CPVT model. In this 

grain structure, two zones show different mean grain sizes: the mean grain area in Zone II is 10 

times of that in Zone I, while the two zones have identical uniformity with the tessellation’s 

regularity. In addition, the control parameters of Zone I and Zone II, i.e.,    and    , have the 

relation of       . The detailed physical parameters are listed in Table 7.1. In accordance with 

the 2D-CPVT mode, the distance of any seed pair in Zone I is no less than   , and that in Zone II is 

no less than    . That is, the generation of seeds for any individual zone is independent of the 

other. However, the two individual zones are coupled to each other and share interfacial grains. 

Based on the seed generation rule, the minimum distance of seed pair spanning two zones is 

determined by the minimum control parameter of the two zones, that is, they are defined by   .  

In comparison with the multi-zone grain structure in Figure 7.5 (a), the grain structures in Figure 
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7.5 (b) and (c) depict the Voronoi tessellation formed from the seeds within the given zone. It 

shows that within each zone, grain structures are identical due to the same seed lattice, while the 

interfacial grains are different due to the influence of neighbouring seeds.      

 

Figure 7.5. Comparison of the CPVT model with the multi-zone CPVT model. (a) A multi-

zone grain structure generated based on the control parameters         ; (b) the grain 

structure formed based on the seed lattice in Zone I; (c) the grain structure formed based 

on the seed lattice in Zone II. 

Table 7.1. Physical parameters for grain structure I and II in Figure 7.5.  

Label 

Physical parameters 
(   ) 

Equivalent grain size† 
(  ) 

Model parameters 

                           
     

(  ) 
  

  
(  ) 

Zone I 200 100 300 90% 15.2 10.7 18.6 15.2 0.5 7.7 
Zone II 2000 1000 3000 90% 48.1 33.4 58.9 48.1 0.453 24.2 

† Assuming a hexagonal grain shape.   
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7.3.3 Property of interface region 

As aforementioned, for each individual zone, the grains not in direct contact with the 

interfacial region between adjacent zones can be treated as an independent CPVT grain structure. 

But the shape and size of a grain spanning a zone boundary tends to be transformed due to the 

different seed lattice property of the two sides, i.e., the minimum seed spacing. Figure 7.6 

highlights the interfacial grains of the grain structure in Figure 7.5 (a), where the dark nodes show 

the seeds of their neighbouring grains and the dot-line depicts the interfacial boundary of the 

original two zones in Figure 7.5 (b) and (c). According to the property of a Voronoi tessellation, i.e. 

a grain boundary is a bisector of two adjacent seeds, the seed lattice in Figure 7.6 determines 

that boundaries of the interfacial grains need to be translated forwards to zone II due to the 

difference of minimum seed spacing between two zones. Therefore, each grain in the two-zone 

grain structure of Figure 7.6 has a generally larger grain area than the grain with the correlated 

seed in Figure 7.5 (a). In contrast, the grains near to the interfacial grains in zone II reduce their 

grain areas comparing to those in Figure 7.5 (b), due to the translation. This feature can be 

deemed as a natural grain size gradient between two adjacent zones, which is generally 

analogous to the gradient grains in metallographic observations. In summary, the multi-zone 

CPVT model has two important advantages:  

a. The flexibility of grain size distribution control for individual zones in terms of both mean 

grain size and also grain structure’s regularity.  

b. The smooth transition between two coupled zones, and natural morphological properties 

of the grains spanning different domains.  
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Figure 7.6. Illustration of grains spanning two adjacent zones. 

7.4  Case studies 

In this section, the proposed multi-zone CPVT model is applied to generate a variety of 

virtual grain structures to compare with real grain structures and simulated grain structures using 

the Monte Carlo model. In addition, the mechanism to generate deformed multi-zone grain 

structure, where the shape of grains in some zones is elongated, is also demonstrated. It is noted 

that the gradient grain structures using for comparison with the multi-zone CPVT model were all 

adopted directly from literature. Since there are only a few micrographs with the small number 

of grains presented, only the mean grain size can be well determined, while for other physical 

parameters including the small grain size, the large grain size and the percentage within the 

range cannot be accurately specified due to the lack of sufficient information. Therefore, all the 

following studies only concentrate on the gradient mean grain size and the procedures to 

implement the multi-zone CPVT model. For other physical parameters relating to the grain 

structure’s regularity only rough estimates have been used. 

7.4.1 Comparison of real grain structures 

A grain size gradient nano-structured Ni coating was used to derive the physical parameter 

input for the multi-zone CPVT model. The grain size varies from 22 nm on surface to about 586 

nm near the coating–substrate interface observed by transmission electron microscopy [205]. 

Four micrographs were obtained at the depths of roughly     ,      , 25    and      . The 

mean grain sizes of the four regions are      ,      ,        and       . Due to the large 

mean grain size difference between the region of       and      , an additional zone with the 

mean grain size      , (z5 in Figure 7.7 (b)), was added to the multi-zone layout for the multi-

zone CPVT model as well as an extra zone with a mean grain size       , (z3 in Figure 7.7 (b)). 

Note that, in the real coating structure, the length ratio between the domain and an individual 

grain is too large, thus, in order to clearly show small grains and the size gradient, the sizes of 

domain and corresponding zones were reduced for the virtual grain structure. The multi-zone 

settings and physical parameters for individual zones are listed in Table 7.2.  Figure 7.7 (b) shows 

a resultant grain structure, which simulates the smooth grain size gradient from zone 1 to zone 5. 
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For any individual zone the normalised grain size distribution property is independent to others 

and can be generated based on the related physical parameter input. Moreover, repeated 

generation of this five-zone gradient virtual grain structures can be easily performed with the 

same input and equivalent results in terms of grain size distributions. It is worth mentioning that 

the virtual structure presented in Figure 7.7 (b) was taken from ABAQUS/CAE and ready to 

conduct CPFE simulations.  

Table 7.2. Parameters for the multi-zone CPVT.  

Label 
Zone width 

(  ) 

Grain size 
Implementation 

parameters 

      
(   ) 

     † 
(  ) 

     

(  ) 
  

  
(  ) 

Zone 1 2000 1.08E6 586 1120 0.5 560 
Zone 2 1200 4.85E5 393 749 0.5 374 
Zone 3 500 1.96E5 250 476 0.6 287 
Zone 4 1800 2.72E4 93 177 0.5 89 
Zone 5 300 5.03E3 40 76 0.6 46 
Zone 6 800 1.52E3 22 42 0.5 21 

† Assuming a circular grain shape.   
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Figure 7.7. Comparison of a grain size gradient nano-structured Ni coating with a virtual 

grain structure generated using the multi-zone CPVT model. (a) Grain structures in 

different zones of the coating [205]; (b) a virtual gradient grain structure generated by 

the multi-zone CPVT model. 

7.4.2 Comparison with a numerical model 

Numerical models such as the Monte Carlo (Potts) method have been successfully applied to 

simulate grain structure evolution such as grain growth. Figure 7.8 (a) and Figure 7.9 (a) present 

two simulated grain structures of the heat affected zones (HAZ) of commercially pure titanium 

welds using the Monte Carlo model [206]. The chart in Figure 7.9 (a) specifies the mean grain size 

spatial distribution, and the region highlighted by the rectangles in the grain structure was taken 
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as a reference for the multi-zone CPVT model to generate equivalent two-dimensional virtual 

gradient grain structure. The multi-zone settings and physical parameter input are given inTable 

7.3, and the generated virtual grain structure using the multi-zone CPVT model is shown in Figure 

7.9. Furthermore, a three-dimensional gradient grain structure was generated based on the same 

mean grain size gradient and grain size distributions, which relates to  . The parameters for the 

3D multi-zone CPVT model are provided in, and the generated 3D virtual grain structure is 

presented in Figure 7.9 which is statistically equivalent to the gradient grain structure in the 

selected region highlighted by rectangles.  

Table 7.3. Parameters for the multi-zone CPVT to generate a 2D virtual grain structure of 

a HAZ.  

Label 
Zone width 

(  ) 

Grain size 
Implementation 

parameters 

      
(   ) 

     † 
(  ) 

     

(  ) 
  

  
(  ) 

Zone 1 800 3.14E4 200 190 0.5 95 
Zone 2 800 1.77E4 150 143 0.5 72 
Zone 3 550 7.90E3 100 96 0.5 48 
Zone 4 350 1.96E3 50 48 0.5 24 

† Assuming a circular grain shape.   

Table 7.4. Parameters for the multi-zone CPVT to generate a 3D virtual grain structure of 

a HAZ.  

Label 
Zone width 

(  ) 

Grain size 
Implementation 

parameters 

      
(   ) 

     † 
(  ) 

     

(  ) 
  

  
(  ) 

Zone 1 800 4.19E6 200 176 0.5 88 
Zone 2 800 1.77E6 150 132 0.5 66 
Zone 3 550 5.24E5 100 88 0.5 44 
Zone 4 350 6.55E4 50 44 0.5 22 

† Assuming a spherical grain shape.   
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It can be found that both 2D and 3D virtual gradient grain structures generated using the 

multi-zone CPVT model have high quality agreement with the numerically simulated results from 

the MC model in terms of grain size and morphology. Under the input of the physical parameters 

relating to the grain size distribution properties and multi-zone settings, the multi-zone CVPT 

model can repeatedly generate statistically equivalent virtual gradient grain structures without 

efforts.  

 

Figure 7.8. Comparison of 2D gradient grain structures obtained by the MC method and 

the multi-zone CPVT model respectively. (a) A grain structure using the MC method 

[206]; (b) a virtual gradient grain structure generated by the multi-zone CPVT model. 
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Figure 7.9. Comparison of 3D gradient grain structures obtained by the MC method and 

the multi-zone CPVT model respectively. (a) A grain structure using the MC method 

[206]; (b) a virtual gradient grain structure generated by the multi-zone CPVT model. 

 

7.4.3 Deformed structures 

As aforementioned, the other typical inhomogeneous grain structure is that consists of 

deformed grains with the average grain aspect of   . In engineering, this type of grain 

structures are generally formed in a cold-work, or produced with a special fabrication, for 
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example, coating structures. Geometry for a planar virtual grain structure with a grain aspect 

ratio,  , can be approximately achieved by transforming the coordinates of all vertices in an 

equiaxed Voronoi tessellation along the desired long-axis direction. In Figure 7.10, the hexagonal 

grain is elongated based on the specified aspect ratio value (   ), so is the grain structure with 

three grains. Note that, the area of the elongated grain structure in Figure 7.10 (b) is twice the 

original one. This is an approximate scheme of achieving a deformed structure in terms of grain 

size and morphology and is ready to be applied to the multi-zone CPVT model.  

 

Figure 7.10. Illustration of transforming an equiaxed grain to (a) a Voronoi tessellation; 

(b) elongated grains.   

Figure 7.11 (a) shows a grain structure of thermally grown oxide, which contains two sub-

regions of grains with different grain aspect ratio. The upper region has equiaxed grains, while 

the lower part has columnar grains with aspect ratio approximately equal to 4. In the upper 

region, the mean grain size is equal to         , while the mean grain size is approximately four 

times the value in the lower region. Since the grain aspect ratio in the lower region is    , the 

grain structure in the lower region can be produced by means of generating equiaxed grain 

structure with the mean grain size                and then transforming the coordinates of 

equiaxed grains to elongated grains with    . Table 7.5 presents the physical parameters as 

input to the multi-zone CPVT model. Initially, a two-zone grain structure with equiaxed grains was 
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generated using the multi-zone CPVT model. Then, for Zone 2, grains were elongated by 

transforming the vertices’ coordinates based on the given aspect ratio value of Zone 2. Figure 

7.11 (b) presents a generated virtual grain structure, which is statistically equivalent to the true 

grain structure given in Figure 7.11 (a) in terms of the specified physical parameters in Table 7.5.   

Table 7.5. Parameters for the multi-zone CPVT to generate a 2D virtual grain structure, 

containing an elongated zone. The parameters for the elongated zone describe the 

properties of the undeformed grain structure, and the final shape is determined in 

combination with the specified  .  

Label 
Zone width 

(  ) 

Grain size 
Implementation 

parameters 

      
(   ) 

     † 
(  ) 

aspect 
ratio ( ) 

     

(  ) 
  

  
(  ) 

Zone 1 4 1.77 1.5 1 1.43 0.5 560 
Zone 2‡ 1 1.77 1.5 4 1.43 0.5 374 

† Assuming a circular grain shape.  
‡ Parameters were used to generate an equiaxed grain structure.  
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Figure 7.11. Illustration of a multi-zone grain structure, in which grains in different zones 

have different aspect ratio. (a) A grain structure of thermally grown oxide [207]; (b) a 

virtual gradient grain structure generated by the multi-zone CPVT model.  
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7.5 Summary 

In many special situations, a grain structure may not be homogeneous along the given 

domain. Gradient grain structures can be found in a cold-worked metal or in a special fabricated 

functional material. Since representation of the grain structure is an essential step to perform 

micromechanics analysis for micro-forming simulations, generation of gradient virtual grain 

structure in agreement with micromechanics simulation requirements is critical.  

In this chapter, the multi-zone CPVT model has been developed to fulfil this task, which is 

capable of generating grain structures statistically equivalent to a gradient grain structure. The 

multi-zone CPVT generates seeds in a domain containing joint multiple zones: within each 

individual zone, seeds are purely determined by the correlated physical parameters input to the 

CPVT model, and seeds near boundary regions are produced based on the proposed rule. The 

property of grains spanning two coupled zones was also addressed. Case studies have been 

presented that compare grain size gradients and grain morphological variations for both virtual 

grain structures, generated using the multi-zone CPVT model, and those obtained by other 

approaches, including true metallographic observations and numerical simulation of the Monte 

Carlo Potts model. These results showed high-quality agreements of grain size and morphology 

and verified the capabilities of the multi-zone CPVT for virtual gradient grain structure generation.  
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Chapter 8 Development of VGRAIN System  

Development of VGRAIN System  

8.1 Introduction 

A novel software system, VGRAIN, has been developed as a powerful finite element pre-

processing tool, to support a variety of large-scale CPFE analyses. The system employs the 

proposed CPVT models to fully automate the generation of virtual grain structures for versatile 

applications of micromechanics studies, especially CPFE simulations.  In addition to the 

generation of grain boundaries for a virtual grain structure, VGRAIN is capable of producing an 

entire materials model, including assignment of crystallographic orientations and material 

properties. The final structure can be directly imported into the commercial FE computational 

platforms, e.g. ABAQUS, via script-file input.  

 

Figure 8.1. Illustration of a micromechanics simulation process employing the VGRAIN 

system.  

Figure 8.1 presents the procedures of a micromechanics simulation using the pre-processing 

tool of VGRAIN. In VGRAIN software, a virtual grain structure, crystallographic orientations, and 
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material properties can be sequentially produced depending upon interactive user inputs via a 

collection of comprehensive and well-organised graphic user interfaces. A grain structure model 

presented in the GRAIN system can be exported into commercial FE/CAE platform, and 

subsequent FE simulations can be performed based on the imported FE model. The following 

section is dedicated to explanation of the organisation and functionality of the VGRAIN software 

system, and presents a practical example showing the use of VGRAIN to generate a virtual grain 

structure and study the grain structure’s properties. 

8.2 System development 

8.2.1 System workflow 

The VGRAIN system is an interactive windows application, which allows users to specify 

parameters or send commands via a collection of graphic user interfaces (GUIs) in a related 

context. There are four main tasks for a pre-processing system to generate a grain structure 

model including generating grain structure, specifying crystallographic orientations, assigning 

mechanical constants and exporting models to FE/CAE.  All four of these tasks have been 

accomplished by four corresponding modules in the VGRAIN software. In addition, virtual grain 

structures can be produced in accordance with a set of properties.  Therefore, an extra module is 

provided to study a variety of properties of a yielded virtual grain, e.g. grain morphology, grain 

size distributions, and crystallographic texture. The five modules and a general computational 

routine are presented in the flow chart of Figure 8.2.  

 The primary module (Module I in Figure 8.2) is the virtual grain structure generation 

module, which implements all the proposed grain structure models in this thesis including the 

2D-CPVT model, the multi-zone 2D-CPVT model, the 3D-CPVT model, the multi-zone 3D-CPVT 

model and the cohesive zone model. Definition and generation of an initial grain structure is the 

first and critical step. Specification of parameters, e.g. the physical parameters and workpiece-

related parameters, for any type of grain structures can be handled via a related GUI. With the 

configuration of a CPVT model, corresponding virtual grain structures can be repeatedly 

generated for further processing.  
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The crystallographic orientation definition module is provided to generate crystallographic 

orientations for grains in a given grain structure. The main GUI is a wizard-based dialogue for 

users to select and configure a generator: the uniform distribution random generator, the normal 

distribution random generator or the input of a constant orientation. In addition, a form dialogue 

is also provided to manually input or modify individual orientations. The third module is provided 

to allow users to assign mechanical properties of grains, which involves a collection of pre-

defined parameter sets for different materials. Users are allowed to define their own material 

constants and state variables for FE analyses. 

After generation of a grain structure and definition of its properties, the yielded structure is ready 

for build a FE model in a commercial FE/CAE environment. Importing a virtual grain structure 

from VGRAIN to a commercial FE/CAE platform is performed via text-based scripts. In current 

version, VGRAIN supports two platforms: ABAQUS and DEFORM. Note that there are many 

occasions where properties such as grain size distribution and crystallographic texture need to be 

provided. Module IV in Figure 8.2 incorporates a group of numerical procedures for users to 

analyse the characteristics of a grain structure, verifying the agreement of both the CPFE 

simulation requirements and the yielded structure. The main functionalities provided in the 

VGRAIN system include:  

 Grain size distribution analysis, providing the histograms comparing distributions of the 

current generated grain structure and the user specified. 

 Grain orientation analysis, providing the pole figures of the grain orientations assigned 

to the current grain structure. 

 Grain morphological analysis, giving statistics on the number of edges and vertices, and 

other topological relations. 

 Raw data spreadsheets, presenting the raw data on all the information of grains. 
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Figure 8.2. Flow chart of the VGRAIN system, showing the relations of the modules and 

their corresponding functionalities. 
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8.2.2 User interfaces 

The graphical interface for the VGRAIN software is designed with considerations of providing 

user-friendly dialogues to define the CPVT model parameters, specify a variety of properties, 

export a well-built model and to also present sufficient information, including graphic 

visualisation and spreadsheets, to analyse a yielded structure. The layout of the main application 

window is presented in Figure 8.3. The right-hand view is a read-only region that visualises the 

information relating to the current virtual grain structure. In addition, the left-hand view also 

provides the entities for user to request the information of the current model, which is to then be 

displayed in the right-hand view with plots or spreadsheets. The major queries include plots of 

the current grain structure, reports of statistics of grains, and directly access of grain 

morphological and orientation data.  

The menu bar and toolbar contains buttons relating to model and analysis operations. In the 

toolbar, there are mainly five groups of buttons to launch corresponding dialogues for user to 

specify related parameters. Group 1 contains the buttons to launch the dialogues for defining the 

CPVT models. A set of the buttons in group 2 perform save/open operations of a VGRAIN project 

file and the others are used to launch the dialogue to export the current virtual grain structure 

model for commercial FE platforms. Group 3 invokes the dialogues to specify mechanical 

constants for the current grain structure and group 4 focuses on the orientation generators to 

assign grain orientations for a presented grain structure. Group 5 corresponds to the definition of 

the cohesive zone model for a given grain structure, by which users can specify the parameters of 

a CZ model and perform junction partitioning. Different from the other groups, the buttons in 

Group 6 and 7 are shortcuts to query current grain structure information, which is displayed in 

the right-hand view. They are the plots of the geometrical grain structure, the coloured structure 

with grain orientations, the detailed grain structure, the grain size distribution histogram and the 

pole figures. Note that, the toolbar can be left to float over the GUI or attached to any border; in 

Figure 8.3 it was attached to the bottom in order to clearly present the graphic information.   
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Figure 8.3. The application window of VGRAIN. 

8.2.3 Code organisation  

The system is written in C++ and three major classes, including the CPVT class, the view class 

and the frame class, coordinate the core workflow of the system. The CPVT class implements all 

the CPVT models for virtual grain structure generation. It receives the interactive user input via 

graphic dialogues and generates an entire grain structure model according to the invoked 

commands. Moreover, it also comprises a set of functions, interacting with external systems or 

devices: 1) Execution of the save and open operations for the current VGRAIN project, which 

contains the data of current grain structure model; 2) exportation of a grain structure model into 

a script file for a FE/CAE platform. Note that, the current version mainly focuses on the ABAQUS 

FE platform, where the format of a script file conforms to the specifications of ABAQUS journal 

file, and the DEFORM platform, where a script file is produced based on the specifications of 

DEFORM’s key file. In the preceding chapters, all CPFE simulations were carried out using the 

integrated scheme of VGRAIN-ABAQUS. The view class maintains the left-hand view command 

flow and also updates the right-hand view displays, either plots or spreadsheets, by accessing the 

data of a present grain structure model. The commands received from the left-hand view 

originate from user context commands via a keyboard or mouse input. In contrast, the frame 
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class only executes the user commands invoked from the menu or the buttons of the toolbar. The 

schematic command and data flows of the system are illustrated in Figure 8.4.  

 

Figure 8.4. Illustration of the internal data flows and command flows. 

 

8.3 Usage example and interface explanation 

As discussed before, the VGRAIN system is capable of fulfilling the tasks of generating a 

virtual grain structure, analysing a generated grain structure, and export to the FE/CAE platform 

for FE simulations. To explore the functionalities and implementation procedures of the VGRAIN 

system, a case of a FE model of 2D multi-zone virtual grain structure with cohesive zones was 

built.  
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Figure 8.5 presents the procedure of definition and generation of a three-zone grain 

structure. Figure 8.5 (a) is the GUI to define the domain parameters and physical parameters for 

the 2D multi-zone CPVT model. According to the user inputs, a three-zone structural layout was 

defined and related physical parameters were specified. Note that, the symbol AR means aspect 

ratio of grains in a related zone. The right region in the GUI shows the computational results of 

the internal parameters such as      ,     , and  . Figure 8.5 (b) displays the domain and grain 

boundaries of a three-zone virtual grain structure.  

Figure 8.6 presents the definition of grain orientations and mechanical properties of the 

grains. The user interfaces in Figure 8.6 (a) are used to define orientation generators and specify 

mechanical constants of grains. There are three types of generators to produce the local 

coordinates of grains, including a normal distribution random number generator, a uniform 

distribution random number generator and a constant number assigning procedure. In this case, 

a uniform generator was used to generate angles for the transformation of local coordinates. This 

model was assumed to be a single phase material, and hence, all grains had identical mechanical 

properties. As a result, Figure 8.6 (c) presents the final polycrystalline material model with 

complete geometry, grain orientations, and material properties. Note that, the colours of grains 

denote the grain orientations. Furthermore, the cohesive zones were produced using the 

cohesive zone procedure in the grain structure generation module with a user-specified initial 

thickness. Figure 8.7 shows the resultant cohesive zone geometry, where the bottom-left box 

highlights the junction partitioning results for the selected region. After presenting the cohesive 

zones, properties of the cohesive zones, for example, a set of traction-separation parameters, 

were specified via the related GUI.   

The VGRAIN system interacts with the commercial FE codes through various script files, 

which are based on the corresponding file formats. Figure 8.8 presents the way to export the 

generated grain structure into ABAQUS/CAE. In this example, the grain structure including 

cohesive zones with their junction partitioning meshes, grain orientations and material 

properties were all exported into ABAQUS/CAE, represented as a CPFE model. With the 

presentation of partitioned junctions, ABAQUS/CAE can easily perform the meshing operation. In 

addition, to generate virtual grain structure models VGRAIN also provide a set of useful functions 

to analyse the characteristics of a generated grain structure. As illustrated in Figure 8.9, users are 
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allowed to access the original data including grain morphological properties and orientation 

information, and are also able to achieve the grain size and orientation distribution features. 

These functions allow users to determine in advance whether the current grain structure model 

is satisfactory for their simulation requirements. 

 

 

Figure 8.5. User interface for definition of a 2D multi-zone CPVT model and the 

visualisation of a resultant virtual grain structure.  
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Figure 8.6. User interfaces for definition of a CPFE model based on a generated grain 

structure. (a) The crystallographic orientation generator; (b) assignment of material 

properties; (c) the resultant virtual grain structure, where colours relate to grain 

orientations.  
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Figure 8.7. Illustration of the generation of cohesive zones and junction partitioning 

results. 

 

Figure 8.8. Illustration of the input of a CPFE model from VGRAIN to ABAQUS. 
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Figure 8.9. Illustration of the sub-modules in the VGRAIN system for analysing 

microstructure properties. (a) Accessing raw geometrical data; (b) comparing the grain 

size distributions between user-input physical parameters and the generated structures; 

(c) studying the crystallographic texture.  
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8.4 Summary  

Representing a grain structure within a FE/CAE computational environment is essential for 

micromechanics simulations. The VGRAIN system has been developed to implement the virtual 

grain structure modelling methods proposed in this thesis. In summary, four major types of grain 

structures can be produced by the system, including two- and three-dimensional grain structures 

with grain size distribution control and two- and three-dimensional multi-zone (gradient) grain 

structures with independent grain size distribution control. A special cohesive zone modelling 

facility is provided to generate non-zero thickness cohesive zones and perform automatic 

junction partitioning for a virtual grain structure. 

The design and architecture of the VGRAIN system was reviewed and the involved modules 

and functionalities were summarised. As a versatile FE pre-processing system, VGRAIN can 

provide a complete materials model with assignment of material properties and grain 

orientations, and it can also export a generated grain structure model into a commercial FE 

platform by text-based input files, for example, the journal file for ABAQUS. Moreover, as a 

stand-alone virtual grain structure generation system, VGRAIN has also been facilitated by a 

series of modules for analyses of grain morphological features and grain structure texture 

properties providing users with sufficient information on the generated structure. The usage 

example of a planar three-zone virtual grain structure has been presented to demonstrate the 

implementation details and the overall functions of the VGRAIN system for building a grain 

structure FE model. 
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Chapter 9 Conclusions and Future Work 

Conclusions and Future Work 

9.1 Conclusions 

Micromechanics simulations often require representation of a grain structure for FE 

simulation. There is an increasing demand for effectively generating high-fidelity virtual grain 

structures for accurate prediction of material deformation. Methods to construct virtual grain 

structures must be capable of generating realistic or statistically equivalent structures at any 

scale. That is, grain size distributions in the virtual structure must conform to physical 

observations, with the virtual grain structure generated within any specified area efficiently. In 

this work, a range of CPVT models have been developed to fulfil these requirements. The 

methodology of a CPVT model is summarised in the schematic diagram of Figure 9.1. It proceeds 

in four steps: 

1. Determination of the grain size distribution (i.e., the distribution parameter   of a one-

parameter gamma function), according to the physical parameters. 

2. Derivation of the tessellation’s regularity,  , from the mapping of     . 

3. Calculation of the control parameter,  , based on the regularity and the desired mean 

grain size. 

4. Generation of virtual grain structures using the CPVT model with respect to the specified 

parameters. 

The most important advantage of using CPVT models to generate a virtual grain structure is that 

the grain size distribution of a resultant grain structure is statistically equivalent to the user-

specified physical parameters. Therefore, this method is an ideal FE simulation-oriented virtual 

grain structure method, providing realistic grain structure representation in terms of both grain 

morphology and grain size distribution.  
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Figure 9.1. Schematic diagram showing the methodology of a CPVT model. 

Development of a CPVT model requires three tasks to be accomplished: 1) Defining the 

mapping from the set of physical parameters to the distribution parameter, 2) establishing the 

mapping from the regularity to the distribution parameter of a one-parameter gamma 

distribution, 3) defining the regularity that specifies the uniformity of a tessellation, and deriving 

the control parameter based on the regularity. The first task concerns an essential component for 

all the CPVT models. In this work, a one-gamma distribution function was used to describe a grain 

size distribution characteristic and a group of four physical parameters were employed to 

represent the metallographic measurements of a grain size distribution property. Mathematical 

proofs of the uniqueness of the determination of the distribution parameter from the proposed 

set of physical parameters were studied, and an efficient numerical procedure was provided for 

computing the distribution parameter. 

Tasks 2 and 3 correspond to the dimension of grain structure domain and the measurement 

of grain size. Thus, they were achieved in the context of generation of two- and three-

dimensional grain structures, respectively. For the 2D-CPVT model, the grain size was measured 
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by grain area, and a descriptive model was proposed to establish the relationship between the 

regularity to the distribution parameter based on the statistical data studied in [154]. 

Furthermore, the regular hexagonal tessellation was taken as the reference of the most regular 

grain structure to define the regularity of a grain structure and derive the control parameter. For 

the 3D-CPVT model, the grain size was defined by grain volume, and a group of comprehensive 

statistical experiments have been performed to obtain the data pairs of the tessellation’s 

regularity and corresponding grain size distribution parameter. The descriptive model used for 

the 2D-CPVT model was applied to the 3D-CPVT model with newly calibrated constants 

depending upon the statistical data. The BCC lattice was assumed to be the most regular three-

dimensional grain structure, and hence was used to define the regular distance and the control 

parameter of the 3D-CPVT model. In addition to the development of the 2D- and 3D-CPVT 

models, CPFE simulations have also been carried out to demonstrate the typical applications and 

versatility for virtual grain structure modelling in micromechanics simulations. 

 Furthermore, a multi-zone scheme was proposed for the CPVT models to generate 

corresponding gradient grain structures, where grain size varies across the grain structure 

domain. The multi-zone CPVT model involves a novel mechanism of controlling the seed 

generation for grains spanning different zones in conjunction with the CPVT model that controls 

the seed generating process within individual zones. The multi-zone CPVT model can be applied 

to generate virtual grain structure with a continuous grain size gradient or consisting of a number 

of grain aggregates. Its merits are the flexibility of producing a large variety of gradient grain 

structure patterns and the natural morphological representation of interfacial grains between 

adjacent zones. Both of the 2D- and 3D-CPVT models are capable of generating a virtual grain 

structure with mean grain size gradient for the overall domain and grain size distribution control 

for individual zones.  

 In addition, to facilitate the applications of the 2D-CPVT model to incorporate cohesive 

interfaces for CPFE analyses of inter-granular crack initiation and evolution, a grain boundary 

offsetting algorithm was proposed to efficiently produce the cohesive boundaries for a virtual 

grain structure. In the CPFE framework a cohesive zone model requires its grain boundaries to be 

represented by quadrilateral elements. The most challenging issue in the current application of 

the cohesive zone models in micromechanics simulations is being able to automatically mesh 
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multiple junctions with quadrilateral elements. In this study, a novel junction partitioning scheme 

was proposed, which has the advantage of partitioning junctions with uniform quadrilateral 

elements and naturally assigning the normal and tangential directions to the junction elements. A 

rule-based method was presented to perform the automatically partitioning CZ junctions, 

including data representation, edge event processing, cut and trim operations. In order to 

demonstrate the novelty of the proposed cohesive zone modelling and junction partitioning 

schemes, the CPFE simulations of plane strain uniaxial tension and three point bending have 

been studied. 

 All the above virtual grain structure models have been implemented in the VGRAIN pre-

processing software system. This system contributes to the current research on large-scale CPFE 

simulations, especially the field of micro-forming CPFE analyses. Via user-friendly interfaces and 

the well-organised functional modules, a virtual grain structure can be generated in a very large-

scale (i.e. containing the large number of grains) with desired properties of grain morphology and 

grain size. Crystallographic orientations and mechanical constants of grains can be specified by 

user inputs based on a generated grain structure. A set of additional functions has also been 

developed for users to study a generated grain structure and verify the feasibility of the 

generated case for their simulation requirements. A well-built grain structure model in VGRAIN 

can be easily exported into the commercial FE/CAE platform, for example ABAQUS and DEFORM, 

via script input, whereby the VGRAIN system is seamlessly integrated into CPFE modelling and 

simulation. 

9.2 Recommendations for future work 

Representation of a virtual grain structure is an essential step to perform micromechanics 

simulations. Morphology and size distribution of a grain structure model must be realistic, and 

most importantly, it must be oriented to the requirements of a particular study. On many 

occasions, a grain structure model cannot exactly represent an engineering material, for example, 

in tailoring or optimising a new material. Therefore, the application-oriented virtual grain 

structure modelling techniques are of at least the same importance with a variety of models on 

simulating grain structure evolution such as the Monte Carlo models and the phase field models.  
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 In this work, a comprehensive study was carried out to present a set of application-

oriented virtual grain structure modelling tools. All the methods are based on the standard 

Voronoi tessellation representation, which assumes a simultaneous seed lattice and an isotropic 

grain growth. As presented in literature, there are a large number of tessellation models 

depicting a wide variety of solidification and grain growth processes. The methodology proposed 

in this work can be potentially extended to the other tessellation models, where a statistical 

relationship should be established between the grain size distribution parameter with a 

dominant quantity of the involved tessellation model such as the seed nucleation time interval 

and the ratio of grain growth velocity.  

The novel cohesive zone representation and junction partitioning scheme has resolved the 

challenging problem of applying the Voronoi tessellation in simulating grain boundary sliding and 

separating behaviours. The demonstrated CPFE studies have shown the novelty and merits of this 

approach. However, this scheme is currently only implemented for a two-dimensional grain 

structure and current work is underway to extend this scheme to handle three-dimensional 

representation and meshes. 

The multi-zone CPVT model is a powerful companion for versatile engineering applications. A few 

researches have been working to apply this model in a variety of micro-mechanics simulations in 

real engineering setups, such as simulating the mechanical properties of thermal barrier coatings 

and weld materials. Moreover, the CPVT models developed in this work concentrate on a single-

phase material.  An extension of this type of modelling to represent a multi-phase material will 

be extremely useful. 
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Appendix  A. Scripts for ABAQUS 

Appendix A. 

Scripts for ABAQUS 

A.1 2D grain structure 

A.1.1    Script file 

from part import * 

from material import * 

from section import * 

from assembly import * 

from step import * 

from interaction import * 

from load import * 

from mesh import * 

from job import * 

from sketch import * 

from visualization import * 

from connectorBehavior import * 

mdb.models['Model-1'].Sketch(name='__profile__', sheetSize = 1000.000 ) 

mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0.000, 0.000),point2=(10.000, 
10.000)) 

mdb.models['Model-1'].Part(dimensionality=TWO_D_PLANAR, name='twoD', 
type=DEFORMABLE_BODY) 

mdb.models['Model-1'].parts['twoD'].BaseShell(sketch=mdb.models['Model-
1'].sketches['__profile__']) 

del mdb.models['Model-1'].sketches['__profile__'] 

mdb.models['Model-1'].Sketch(gridSpacing=0.7, name='__profile__', sheetSize = 1000.000 , 
transform=mdb.models['Model-
1'].parts['twoD'].MakeSketchTransform(sketchPlane=mdb.models['Model-
1'].parts['twoD'].faces[0], sketchPlaneSide=SIDE1, sketchOrientation=RIGHT, origin=(0.0, 0.0, 
0.0))) 
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mdb.models['Model-1'].parts['twoD'].projectReferencesOntoSketch(filter=COPLANAR_EDGES, 
sketch=mdb.models['Model-1'].sketches['__profile__']) 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 6.420 , 5.832 ), point2=( 10.000 , 
4.056 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 6.420 , 5.832 ), point2=( 6.081 , 
10.000 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 0.000 , 6.659 ), point2=( 4.365 , 
4.719 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 2.339 , 0.000 ), point2=( 4.365 , 
4.719 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 4.365 , 4.719 ), point2=( 6.420 , 
5.832 ) ); 

mdb.models['Model-1'].parts['twoD'].PartitionFaceBySketch(faces=mdb.models['Model-
1'].parts['twoD'].faces[0:1], sketch=mdb.models['Model-1'].sketches['__profile__']) 

 

mdb.models['Model-1'].Material(name='M5-290deg') 

mdb.models['Model-1'].materials['M5-290deg'].Depvar(n=135) 

mdb.models['Model-1'].materials['M5-290deg'].Density(table=((8.000000e-015,),)) 

mdb.models['Model-1'].materials['M5-290deg'].UserMaterial(unsymm=ON, 
mechanicalConstants=( 

193000.000, 0.300, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0,  0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0,  1.0,  1.0,  1.0,  1.0,  1.0,  0.0,  0.0, 0.0, 

    0.0,   0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0,  0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.352, 

    0.902,  -0.251, 0.0, 0.0, 0.0, 1.0, 0.0, -0.601,0.012,-0.799, 

    0.0,   0.0, 20.000, 0.001,0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 225.000,330.000,50.000,0.0,  

    0.0,   0.0, 0.0,  0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.5, 1.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 1.0, 10.0,1.0e-5,0.0,0.0, 0.0, 0.0, 0.0)) 
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mdb.models['Model-1'].HomogeneousSolidSection(material='M5-290deg', name='Section-M5-
290', thickness=1.0) 

mdb.models['Model-1'].parts['twoD'].SectionAssignment(region=Region(faces= 
mdb.models['Model-1'].parts['twoD'].faces.findAt((  (6.219, 1.396, 0.000), ),  )), 
sectionName='Section-M5-290')  

 

mdb.models['Model-1'].Material(name='M2-741deg') 

mdb.models['Model-1'].materials['M2-741deg'].Depvar(n=135) 

mdb.models['Model-1'].materials['M2-741deg'].Density(table=((8.000000e-015,),)) 

mdb.models['Model-1'].materials['M2-741deg'].UserMaterial(unsymm=ON, 
mechanicalConstants=( 

193000.000, 0.300, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0,  0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0,  1.0,  1.0,  1.0,  1.0,  1.0,  0.0,  0.0, 0.0, 

    0.0,   0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0,  0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.571, 

    0.727,  -0.380, 0.0, 0.0, 0.0, 1.0, 0.0, 0.760,-0.644,-0.090, 

    0.0,   0.0, 20.000, 0.001,0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 225.000,330.000,50.000,0.0,  

    0.0,   0.0, 0.0,  0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.5, 1.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 1.0, 10.0,1.0e-5,0.0,0.0, 0.0, 0.0, 0.0)) 

 

mdb.models['Model-1'].HomogeneousSolidSection(material='M2-741deg', name='Section-M2-
741', thickness=1.0) 

mdb.models['Model-1'].parts['twoD'].SectionAssignment(region=Region(faces= 
mdb.models['Model-1'].parts['twoD'].faces.findAt((  (9.830, 8.676, 0.000), ),  )), 
sectionName='Section-M2-741')  

 

mdb.models['Model-1'].Material(name='M1-525deg') 

mdb.models['Model-1'].materials['M1-525deg'].Depvar(n=135) 

mdb.models['Model-1'].materials['M1-525deg'].Density(table=((8.000000e-015,),)) 
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mdb.models['Model-1'].materials['M1-525deg'].UserMaterial(unsymm=ON, 
mechanicalConstants=( 

193000.000, 0.300, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0,  0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0,  1.0,  1.0,  1.0,  1.0,  1.0,  0.0,  0.0, 0.0, 

    0.0,   0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0,  0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -0.016, 

    -0.153,  -0.988, 0.0, 0.0, 0.0, 1.0, 0.0, 0.195,-0.970,0.147, 

    0.0,   0.0, 20.000, 0.001,0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 225.000,330.000,50.000,0.0,  

    0.0,   0.0, 0.0,  0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.5, 1.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 1.0, 10.0,1.0e-5,0.0,0.0, 0.0, 0.0, 0.0)) 

 

mdb.models['Model-1'].HomogeneousSolidSection(material='M1-525deg', name='Section-M1-
525', thickness=1.0) 

mdb.models['Model-1'].parts['twoD'].SectionAssignment(region=Region(faces= 
mdb.models['Model-1'].parts['twoD'].faces.findAt((  (2.596, 8.088, 0.000), ),  )), 
sectionName='Section-M1-525')  

 

mdb.models['Model-1'].Material(name='M1-881deg') 

mdb.models['Model-1'].materials['M1-881deg'].Depvar(n=135) 

mdb.models['Model-1'].materials['M1-881deg'].Density(table=((8.000000e-015,),)) 

mdb.models['Model-1'].materials['M1-881deg'].UserMaterial(unsymm=ON, 
mechanicalConstants=( 

193000.000, 0.300, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0,  0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0,  1.0,  1.0,  1.0,  1.0,  1.0,  0.0,  0.0, 0.0, 

    0.0,   0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0,  0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -0.370, 
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    -0.354,  0.859, 0.0, 0.0, 0.0, 1.0, 0.0, -0.910,-0.046,-0.411, 

    0.0,   0.0, 20.000, 0.001,0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 225.000,330.000,50.000,0.0,  

    0.0,   0.0, 0.0,  0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.5, 1.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 1.0, 10.0,1.0e-5,0.0,0.0, 0.0, 0.0, 0.0)) 

 

mdb.models['Model-1'].HomogeneousSolidSection(material='M1-881deg', name='Section-M1-
881', thickness=1.0) 

mdb.models['Model-1'].parts['twoD'].SectionAssignment(region=Region(faces= 
mdb.models['Model-1'].parts['twoD'].faces.findAt((  (0.679, 3.775, 0.000), ),  )), 
sectionName='Section-M1-881')  

 

A.1.2    Model in ABAQUS/CAE 

 

Figure A.1. A 2D grain structure consisting of four grains represented in ABAQUS. 

 

A.2 2D cohesive zone model with junction partitioning 
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A.2.1    Script file 

from part import * 

from material import * 

from section import * 

from assembly import * 

from step import * 

from interaction import * 

from load import * 

from mesh import * 

from job import * 

from sketch import * 

from visualization import * 

from connectorBehavior import * 

mdb.models['Model-1'].Sketch(name='__profile__', sheetSize = 300.000 ) 

mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0.000, 0.000),point2=(10.000, 
10.000)) 

mdb.models['Model-1'].Part(dimensionality=TWO_D_PLANAR, name='twoD', 
type=DEFORMABLE_BODY) 

mdb.models['Model-1'].parts['twoD'].BaseShell(sketch=mdb.models['Model-
1'].sketches['__profile__']) 

del mdb.models['Model-1'].sketches['__profile__'] 

mdb.models['Model-1'].Sketch(gridSpacing=0.7, name='__profile__', sheetSize = 300.000 , 
transform=mdb.models['Model-
1'].parts['twoD'].MakeSketchTransform(sketchPlane=mdb.models['Model-
1'].parts['twoD'].faces[0], sketchPlaneSide=SIDE1, sketchOrientation=RIGHT, origin=(0.0, 0.0, 
0.0))) 

mdb.models['Model-1'].parts['twoD'].projectReferencesOntoSketch(filter=COPLANAR_EDGES, 
sketch=mdb.models['Model-1'].sketches['__profile__']) 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 6.419 , 5.833 ), point2=( 6.421 , 
5.775 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 6.468 , 5.864 ), point2=( 6.451 , 
5.760 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 6.555 , 5.820 ), point2=( 6.511 , 
5.731 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 9.970 , 4.127 ), point2=( 9.926 , 
4.037 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 10.000 , 4.112 ), point2=( 10.000 , 
4.000 ) ); 
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mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 6.419 , 5.833 ), point2=( 6.468 , 
5.864 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 6.421 , 5.775 ), point2=( 6.451 , 
5.760 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 6.468 , 5.864 ), point2=( 6.555 , 
5.820 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 6.451 , 5.760 ), point2=( 6.511 , 
5.731 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 6.555 , 5.820 ), point2=( 9.970 , 
4.127 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 6.511 , 5.731 ), point2=( 9.926 , 
4.037 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 9.970 , 4.127 ), point2=( 10.000 , 
4.112 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 9.926 , 4.037 ), point2=( 10.000 , 
4.000 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 6.419 , 5.833 ), point2=( 6.468 , 
5.864 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 6.368 , 5.860 ), point2=( 6.465 , 
5.897 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 6.360 , 5.955 ), point2=( 6.460 , 
5.963 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 6.034 , 9.959 ), point2=( 6.134 , 
9.967 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 6.031 , 10.000 ), point2=( 6.131 , 
10.000 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 6.419 , 5.833 ), point2=( 6.368 , 
5.860 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 6.468 , 5.864 ), point2=( 6.465 , 
5.897 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 6.368 , 5.860 ), point2=( 6.360 , 
5.955 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 6.465 , 5.897 ), point2=( 6.460 , 
5.963 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 6.360 , 5.955 ), point2=( 6.034 , 
9.959 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 6.460 , 5.963 ), point2=( 6.134 , 
9.967 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 6.034 , 9.959 ), point2=( 6.031 , 
10.000 ) ); 
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mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 6.134 , 9.967 ), point2=( 6.131 , 
10.000 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 4.356 , 4.717 ), point2=( 4.363 , 
4.775 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 4.300 , 4.693 ), point2=( 4.333 , 
4.788 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 4.231 , 4.724 ), point2=( 4.272 , 
4.815 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 0.030 , 6.591 ), point2=( 0.071 , 
6.682 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 0.000 , 6.604 ), point2=( 0.000 , 
6.714 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 4.356 , 4.717 ), point2=( 4.300 , 
4.693 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 4.363 , 4.775 ), point2=( 4.333 , 
4.788 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 4.300 , 4.693 ), point2=( 4.231 , 
4.724 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 4.333 , 4.788 ), point2=( 4.272 , 
4.815 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 4.231 , 4.724 ), point2=( 0.030 , 
6.591 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 4.272 , 4.815 ), point2=( 0.071 , 
6.682 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 0.030 , 6.591 ), point2=( 0.000 , 
6.604 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 0.071 , 6.682 ), point2=( 0.000 , 
6.714 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 4.356 , 4.717 ), point2=( 4.404 , 
4.683 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 4.300 , 4.693 ), point2=( 4.391 , 
4.653 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 4.273 , 4.631 ), point2=( 4.365 , 
4.591 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 2.314 , 0.070 ), point2=( 2.406 , 
0.031 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 2.284 , 0.000 ), point2=( 2.393 , 
0.000 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 4.356 , 4.717 ), point2=( 4.300 , 
4.693 ) ); 
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mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 4.404 , 4.683 ), point2=( 4.391 , 
4.653 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 4.300 , 4.693 ), point2=( 4.273 , 
4.631 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 4.391 , 4.653 ), point2=( 4.365 , 
4.591 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 4.273 , 4.631 ), point2=( 2.314 , 
0.070 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 4.365 , 4.591 ), point2=( 2.406 , 
0.031 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 2.314 , 0.070 ), point2=( 2.284 , 
0.000 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 2.406 , 0.031 ), point2=( 2.393 , 
0.000 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 6.419 , 5.833 ), point2=( 6.421 , 
5.775 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 6.368 , 5.860 ), point2=( 6.392 , 
5.759 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 6.286 , 5.816 ), point2=( 6.333 , 
5.728 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 4.451 , 4.822 ), point2=( 4.499 , 
4.734 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 4.392 , 4.790 ), point2=( 4.404 , 
4.683 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 4.363 , 4.775 ), point2=( 4.356 , 
4.717 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 6.419 , 5.833 ), point2=( 6.368 , 
5.860 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 6.421 , 5.775 ), point2=( 6.392 , 
5.759 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 6.368 , 5.860 ), point2=( 6.286 , 
5.816 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 6.392 , 5.759 ), point2=( 6.333 , 
5.728 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 6.286 , 5.816 ), point2=( 4.451 , 
4.822 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 6.333 , 5.728 ), point2=( 4.499 , 
4.734 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 4.451 , 4.822 ), point2=( 4.392 , 
4.790 ) ); 
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mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 4.499 , 4.734 ), point2=( 4.404 , 
4.683 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 4.392 , 4.790 ), point2=( 4.363 , 
4.775 ) ); 

mdb.models['Model-1'].sketches['__profile__'].Line(point1=( 4.404 , 4.683 ), point2=( 4.356 , 
4.717 ) ); 

mdb.models['Model-1'].parts['twoD'].PartitionFaceBySketch(faces=mdb.models['Model-
1'].parts['twoD'].faces[0:1], sketch=mdb.models['Model-1'].sketches['__profile__']) 

 

mdb.models['Model-1'].Material(name='M5-290deg') 

mdb.models['Model-1'].materials['M5-290deg'].Depvar(n=135) 

mdb.models['Model-1'].materials['M5-290deg'].Density(table=((8.000000e-015,),)) 

mdb.models['Model-1'].materials['M5-290deg'].UserMaterial(unsymm=ON, 
mechanicalConstants=( 

193000.000, 0.300, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0,  0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0,  1.0,  1.0,  1.0,  1.0,  1.0,  0.0,  0.0, 0.0, 

    0.0,   0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0,  0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.352, 

    0.902,  -0.251, 0.0, 0.0, 0.0, 1.0, 0.0, -0.601,0.012,-0.799, 

    0.0,   0.0, 20.000, 0.001,0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 225.000,330.000,50.000,0.0,  

    0.0,   0.0, 0.0,  0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.5, 1.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 1.0, 10.0,1.0e-5,0.0,0.0, 0.0, 0.0, 0.0)) 

 

mdb.models['Model-1'].HomogeneousSolidSection(material='M5-290deg', name='Section-M5-
290', thickness=1.0) 

mdb.models['Model-1'].parts['twoD'].SectionAssignment(region=Region(faces= 
mdb.models['Model-1'].parts['twoD'].faces.findAt((  (6.219, 1.396, 0.000), ),  )), 
sectionName='Section-M5-290')  
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mdb.models['Model-1'].Material(name='M2-741deg') 

mdb.models['Model-1'].materials['M2-741deg'].Depvar(n=135) 

mdb.models['Model-1'].materials['M2-741deg'].Density(table=((8.000000e-015,),)) 

mdb.models['Model-1'].materials['M2-741deg'].UserMaterial(unsymm=ON, 
mechanicalConstants=( 

193000.000, 0.300, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0,  0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0,  1.0,  1.0,  1.0,  1.0,  1.0,  0.0,  0.0, 0.0, 

    0.0,   0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0,  0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.571, 

    0.727,  -0.380, 0.0, 0.0, 0.0, 1.0, 0.0, 0.760,-0.644,-0.090, 

    0.0,   0.0, 20.000, 0.001,0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 225.000,330.000,50.000,0.0,  

    0.0,   0.0, 0.0,  0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.5, 1.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 1.0, 10.0,1.0e-5,0.0,0.0, 0.0, 0.0, 0.0)) 

 

mdb.models['Model-1'].HomogeneousSolidSection(material='M2-741deg', name='Section-M2-
741', thickness=1.0) 

mdb.models['Model-1'].parts['twoD'].SectionAssignment(region=Region(faces= 
mdb.models['Model-1'].parts['twoD'].faces.findAt((  (9.830, 8.676, 0.000), ),  )), 
sectionName='Section-M2-741')  

 

mdb.models['Model-1'].Material(name='M1-525deg') 

mdb.models['Model-1'].materials['M1-525deg'].Depvar(n=135) 

mdb.models['Model-1'].materials['M1-525deg'].Density(table=((8.000000e-015,),)) 

mdb.models['Model-1'].materials['M1-525deg'].UserMaterial(unsymm=ON, 
mechanicalConstants=( 

193000.000, 0.300, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0,  0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,  
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    0.0,   0.0,  1.0,  1.0,  1.0,  1.0,  1.0,  0.0,  0.0, 0.0, 

    0.0,   0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0,  0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -0.016, 

    -0.153,  -0.988, 0.0, 0.0, 0.0, 1.0, 0.0, 0.195,-0.970,0.147, 

    0.0,   0.0, 20.000, 0.001,0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 225.000,330.000,50.000,0.0,  

    0.0,   0.0, 0.0,  0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.5, 1.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 1.0, 10.0,1.0e-5,0.0,0.0, 0.0, 0.0, 0.0)) 

 

mdb.models['Model-1'].HomogeneousSolidSection(material='M1-525deg', name='Section-M1-
525', thickness=1.0) 

mdb.models['Model-1'].parts['twoD'].SectionAssignment(region=Region(faces= 
mdb.models['Model-1'].parts['twoD'].faces.findAt((  (2.596, 8.088, 0.000), ),  )), 
sectionName='Section-M1-525')  

 

mdb.models['Model-1'].Material(name='M1-881deg') 

mdb.models['Model-1'].materials['M1-881deg'].Depvar(n=135) 

mdb.models['Model-1'].materials['M1-881deg'].Density(table=((8.000000e-015,),)) 

mdb.models['Model-1'].materials['M1-881deg'].UserMaterial(unsymm=ON, 
mechanicalConstants=( 

193000.000, 0.300, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0,  0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0,  1.0,  1.0,  1.0,  1.0,  1.0,  0.0,  0.0, 0.0, 

    0.0,   0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0,  0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -0.370, 

    -0.354,  0.859, 0.0, 0.0, 0.0, 1.0, 0.0, -0.910,-0.046,-0.411, 

    0.0,   0.0, 20.000, 0.001,0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 225.000,330.000,50.000,0.0,  

    0.0,   0.0, 0.0,  0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0,  
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    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 0.0,  0.0, 0.5, 1.0, 0.0, 0.0, 0.0, 0.0,  

    0.0,   0.0, 1.0, 10.0,1.0e-5,0.0,0.0, 0.0, 0.0, 0.0)) 

 

mdb.models['Model-1'].HomogeneousSolidSection(material='M1-881deg', name='Section-M1-
881', thickness=1.0) 

mdb.models['Model-1'].parts['twoD'].SectionAssignment(region=Region(faces= 
mdb.models['Model-1'].parts['twoD'].faces.findAt((  (0.679, 3.775, 0.000), ),  )), 
sectionName='Section-M1-881')  

 

mdb.models['Model-1'].Material(name='Cohesive') 

mdb.models['Model-1'].materials['Cohesive'].Density(table=((8.000000e-015,),)) 

mdb.models['Model-1'].materials['Cohesive'].Elastic(table=((210000.0,210000.0,210000.0),), 
type=TRACTION) 

mdb.models['Model-1'].materials['Cohesive'].MaxsDamageInitiation(table=((260.0, 260.0, 
260.0),)) 

mdb.models['Model-
1'].materials['Cohesive'].maxsDamageInitiation.DamageEvolution(table=((75.0,),),type=ENERGY) 

mdb.models['Model-
1'].CohesiveSection(initialThickness=0.100,initialThicknessType=SPECIFY,material='Cohesive', 
name='Cohesive', outOfPlaneThickness=None, response=TRACTION_SEPARATION) 

 

myEdge=mdb.models['Model-
1'].parts['twoD'].edges.getClosest(coordinates=((6.420186,5.804142 ,0.),)) 

myRegion=mdb.models['Model-1'].parts['twoD'].faces.findAt(((6.436084,5.824029,0.),),) 

mdb.models['Model-1'].parts['twoD'].setMeshControls(regions=myRegion, technique=SWEEP, 
elemShape=QUAD) 

mdb.models['Model-1'].parts['twoD'].setSweepPath(edge=myEdge[0][0], 
region=myRegion[0],sense=REVERSE) 

mdb.models['Model-
1'].parts['twoD'].setElementType(elemTypes=(ElemType(elemCode=COH2D4,elemLibrary=EXPLIC
IT), ElemType(elemCode=UNKNOWN_TRI,elemLibrary=EXPLICIT)),regions=(mdb.models['Model-
1'].parts['twoD'].faces.findAt(((6.436084,5.824029,0.),),) ,)) 

mdb.models['Model-
1'].parts['twoD'].SectionAssignment(offset=0.0,offsetField='',offsetType=MIDDLE_SURFACE,regio
n=Region(faces=mdb.models['Model-1'].parts['twoD'].faces.findAt(((6.436084,5.824029,0.),),) ), 
sectionName='Cohesive') 
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myEdge=mdb.models['Model-
1'].parts['twoD'].edges.getClosest(coordinates=((6.459543,5.812126 ,0.),)) 

myRegion=mdb.models['Model-1'].parts['twoD'].faces.findAt(((6.491483,5.814889,0.),),) 

mdb.models['Model-1'].parts['twoD'].setMeshControls(regions=myRegion, technique=SWEEP, 
elemShape=QUAD) 

mdb.models['Model-1'].parts['twoD'].setSweepPath(edge=myEdge[0][0], 
region=myRegion[0],sense=REVERSE) 

mdb.models['Model-
1'].parts['twoD'].setElementType(elemTypes=(ElemType(elemCode=COH2D4,elemLibrary=EXPLIC
IT), ElemType(elemCode=UNKNOWN_TRI,elemLibrary=EXPLICIT)),regions=(mdb.models['Model-
1'].parts['twoD'].faces.findAt(((6.491483,5.814889,0.),),) ,)) 

mdb.models['Model-
1'].parts['twoD'].SectionAssignment(offset=0.0,offsetField='',offsetType=MIDDLE_SURFACE,regio
n=Region(faces=mdb.models['Model-1'].parts['twoD'].faces.findAt(((6.491483,5.814889,0.),),) ), 
sectionName='Cohesive') 

 

myEdge=mdb.models['Model-
1'].parts['twoD'].edges.getClosest(coordinates=((6.533148,5.775621 ,0.),)) 

myRegion=mdb.models['Model-1'].parts['twoD'].faces.findAt(((7.678811,5.226024,0.),),) 

mdb.models['Model-1'].parts['twoD'].setMeshControls(regions=myRegion, technique=SWEEP, 
elemShape=QUAD) 

mdb.models['Model-1'].parts['twoD'].setSweepPath(edge=myEdge[0][0], 
region=myRegion[0],sense=REVERSE) 

mdb.models['Model-
1'].parts['twoD'].setElementType(elemTypes=(ElemType(elemCode=COH2D4,elemLibrary=EXPLIC
IT), ElemType(elemCode=UNKNOWN_TRI,elemLibrary=EXPLICIT)),regions=(mdb.models['Model-
1'].parts['twoD'].faces.findAt(((7.678811,5.226024,0.),),) ,)) 

mdb.models['Model-
1'].parts['twoD'].SectionAssignment(offset=0.0,offsetField='',offsetType=MIDDLE_SURFACE,regio
n=Region(faces=mdb.models['Model-1'].parts['twoD'].faces.findAt(((7.678811,5.226024,0.),),) ), 
sectionName='Cohesive') 

 

myEdge=mdb.models['Model-
1'].parts['twoD'].edges.getClosest(coordinates=((9.947922,4.082036 ,0.),)) 

myRegion=mdb.models['Model-1'].parts['twoD'].faces.findAt(((9.965281,4.092030,0.),),) 

mdb.models['Model-1'].parts['twoD'].setMeshControls(regions=myRegion, technique=SWEEP, 
elemShape=QUAD) 

mdb.models['Model-1'].parts['twoD'].setSweepPath(edge=myEdge[0][0], 
region=myRegion[0],sense=REVERSE) 

mdb.models['Model-
1'].parts['twoD'].setElementType(elemTypes=(ElemType(elemCode=COH2D4,elemLibrary=EXPLIC
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IT), ElemType(elemCode=UNKNOWN_TRI,elemLibrary=EXPLICIT)),regions=(mdb.models['Model-
1'].parts['twoD'].faces.findAt(((9.965281,4.092030,0.),),) ,)) 

mdb.models['Model-
1'].parts['twoD'].SectionAssignment(offset=0.0,offsetField='',offsetType=MIDDLE_SURFACE,regio
n=Region(faces=mdb.models['Model-1'].parts['twoD'].faces.findAt(((9.965281,4.092030,0.),),) ), 
sectionName='Cohesive') 

 

myEdge=mdb.models['Model-
1'].parts['twoD'].edges.getClosest(coordinates=((6.443453,5.848415 ,0.),)) 

myRegion=mdb.models['Model-1'].parts['twoD'].faces.findAt(((6.418254,5.852282,0.),),) 

mdb.models['Model-1'].parts['twoD'].setMeshControls(regions=myRegion, technique=SWEEP, 
elemShape=QUAD) 

mdb.models['Model-1'].parts['twoD'].setSweepPath(edge=myEdge[0][0], 
region=myRegion[0],sense=REVERSE) 

mdb.models['Model-
1'].parts['twoD'].setElementType(elemTypes=(ElemType(elemCode=COH2D4,elemLibrary=EXPLIC
IT), ElemType(elemCode=UNKNOWN_TRI,elemLibrary=EXPLICIT)),regions=(mdb.models['Model-
1'].parts['twoD'].faces.findAt(((6.418254,5.852282,0.),),) ,)) 

mdb.models['Model-
1'].parts['twoD'].SectionAssignment(offset=0.0,offsetField='',offsetType=MIDDLE_SURFACE,regio
n=Region(faces=mdb.models['Model-1'].parts['twoD'].faces.findAt(((6.418254,5.852282,0.),),) ), 
sectionName='Cohesive') 

 

myEdge=mdb.models['Model-
1'].parts['twoD'].edges.getClosest(coordinates=((6.416516,5.878521 ,0.),)) 

myRegion=mdb.models['Model-1'].parts['twoD'].faces.findAt(((6.397709,5.904134,0.),),) 

mdb.models['Model-1'].parts['twoD'].setMeshControls(regions=myRegion, technique=SWEEP, 
elemShape=QUAD) 

mdb.models['Model-1'].parts['twoD'].setSweepPath(edge=myEdge[0][0], 
region=myRegion[0],sense=REVERSE) 

mdb.models['Model-
1'].parts['twoD'].setElementType(elemTypes=(ElemType(elemCode=COH2D4,elemLibrary=EXPLIC
IT), ElemType(elemCode=UNKNOWN_TRI,elemLibrary=EXPLICIT)),regions=(mdb.models['Model-
1'].parts['twoD'].faces.findAt(((6.397709,5.904134,0.),),) ,)) 

mdb.models['Model-
1'].parts['twoD'].SectionAssignment(offset=0.0,offsetField='',offsetType=MIDDLE_SURFACE,regio
n=Region(faces=mdb.models['Model-1'].parts['twoD'].faces.findAt(((6.397709,5.904134,0.),),) ), 
sectionName='Cohesive') 

 

myEdge=mdb.models['Model-
1'].parts['twoD'].edges.getClosest(coordinates=((6.409931,5.959417 ,0.),)) 

myRegion=mdb.models['Model-1'].parts['twoD'].faces.findAt(((6.176089,8.626934,0.),),) 
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mdb.models['Model-1'].parts['twoD'].setMeshControls(regions=myRegion, technique=SWEEP, 
elemShape=QUAD) 

mdb.models['Model-1'].parts['twoD'].setSweepPath(edge=myEdge[0][0], 
region=myRegion[0],sense=REVERSE) 

mdb.models['Model-
1'].parts['twoD'].setElementType(elemTypes=(ElemType(elemCode=COH2D4,elemLibrary=EXPLIC
IT), ElemType(elemCode=UNKNOWN_TRI,elemLibrary=EXPLICIT)),regions=(mdb.models['Model-
1'].parts['twoD'].faces.findAt(((6.176089,8.626934,0.),),) ,)) 

mdb.models['Model-
1'].parts['twoD'].SectionAssignment(offset=0.0,offsetField='',offsetType=MIDDLE_SURFACE,regio
n=Region(faces=mdb.models['Model-1'].parts['twoD'].faces.findAt(((6.176089,8.626934,0.),),) ), 
sectionName='Cohesive') 

 

myEdge=mdb.models['Model-
1'].parts['twoD'].edges.getClosest(coordinates=((6.084085,9.962720 ,0.),)) 

myRegion=mdb.models['Model-1'].parts['twoD'].faces.findAt(((6.065451,9.986221,0.),),) 

mdb.models['Model-1'].parts['twoD'].setMeshControls(regions=myRegion, technique=SWEEP, 
elemShape=QUAD) 

mdb.models['Model-1'].parts['twoD'].setSweepPath(edge=myEdge[0][0], 
region=myRegion[0],sense=REVERSE) 

mdb.models['Model-
1'].parts['twoD'].setElementType(elemTypes=(ElemType(elemCode=COH2D4,elemLibrary=EXPLIC
IT), ElemType(elemCode=UNKNOWN_TRI,elemLibrary=EXPLICIT)),regions=(mdb.models['Model-
1'].parts['twoD'].faces.findAt(((6.065451,9.986221,0.),),) ,)) 

mdb.models['Model-
1'].parts['twoD'].SectionAssignment(offset=0.0,offsetField='',offsetType=MIDDLE_SURFACE,regio
n=Region(faces=mdb.models['Model-1'].parts['twoD'].faces.findAt(((6.065451,9.986221,0.),),) ), 
sectionName='Cohesive') 

 

myEdge=mdb.models['Model-
1'].parts['twoD'].edges.getClosest(coordinates=((4.359334,4.745831 ,0.),)) 

myRegion=mdb.models['Model-1'].parts['twoD'].faces.findAt(((4.339472,4.728319,0.),),) 

mdb.models['Model-1'].parts['twoD'].setMeshControls(regions=myRegion, technique=SWEEP, 
elemShape=QUAD) 

mdb.models['Model-1'].parts['twoD'].setSweepPath(edge=myEdge[0][0], 
region=myRegion[0],sense=REVERSE) 

mdb.models['Model-
1'].parts['twoD'].setElementType(elemTypes=(ElemType(elemCode=COH2D4,elemLibrary=EXPLIC
IT), ElemType(elemCode=UNKNOWN_TRI,elemLibrary=EXPLICIT)),regions=(mdb.models['Model-
1'].parts['twoD'].faces.findAt(((4.339472,4.728319,0.),),) ,)) 

mdb.models['Model-
1'].parts['twoD'].SectionAssignment(offset=0.0,offsetField='',offsetType=MIDDLE_SURFACE,regio
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n=Region(faces=mdb.models['Model-1'].parts['twoD'].faces.findAt(((4.339472,4.728319,0.),),) ), 
sectionName='Cohesive') 

 

myEdge=mdb.models['Model-
1'].parts['twoD'].edges.getClosest(coordinates=((4.316143,4.740723 ,0.),)) 

myRegion=mdb.models['Model-1'].parts['twoD'].faces.findAt(((4.287764,4.735097,0.),),) 

mdb.models['Model-1'].parts['twoD'].setMeshControls(regions=myRegion, technique=SWEEP, 
elemShape=QUAD) 

mdb.models['Model-1'].parts['twoD'].setSweepPath(edge=myEdge[0][0], 
region=myRegion[0],sense=REVERSE) 

mdb.models['Model-
1'].parts['twoD'].setElementType(elemTypes=(ElemType(elemCode=COH2D4,elemLibrary=EXPLIC
IT), ElemType(elemCode=UNKNOWN_TRI,elemLibrary=EXPLICIT)),regions=(mdb.models['Model-
1'].parts['twoD'].faces.findAt(((4.287764,4.735097,0.),),) ,)) 

mdb.models['Model-
1'].parts['twoD'].SectionAssignment(offset=0.0,offsetField='',offsetType=MIDDLE_SURFACE,regio
n=Region(faces=mdb.models['Model-1'].parts['twoD'].faces.findAt(((4.287764,4.735097,0.),),) ), 
sectionName='Cohesive') 

 

myEdge=mdb.models['Model-
1'].parts['twoD'].edges.getClosest(coordinates=((4.251312,4.769536 ,0.),)) 

myRegion=mdb.models['Model-1'].parts['twoD'].faces.findAt(((2.844362,5.376586,0.),),) 

mdb.models['Model-1'].parts['twoD'].setMeshControls(regions=myRegion, technique=SWEEP, 
elemShape=QUAD) 

mdb.models['Model-1'].parts['twoD'].setSweepPath(edge=myEdge[0][0], 
region=myRegion[0],sense=REVERSE) 

mdb.models['Model-
1'].parts['twoD'].setElementType(elemTypes=(ElemType(elemCode=COH2D4,elemLibrary=EXPLIC
IT), ElemType(elemCode=UNKNOWN_TRI,elemLibrary=EXPLICIT)),regions=(mdb.models['Model-
1'].parts['twoD'].faces.findAt(((2.844362,5.376586,0.),),) ,)) 

mdb.models['Model-
1'].parts['twoD'].SectionAssignment(offset=0.0,offsetField='',offsetType=MIDDLE_SURFACE,regio
n=Region(faces=mdb.models['Model-1'].parts['twoD'].faces.findAt(((2.844362,5.376586,0.),),) ), 
sectionName='Cohesive') 

 

myEdge=mdb.models['Model-
1'].parts['twoD'].edges.getClosest(coordinates=((0.050767,6.636377 ,0.),)) 

myRegion=mdb.models['Model-1'].parts['twoD'].faces.findAt(((0.033845,6.625659,0.),),) 

mdb.models['Model-1'].parts['twoD'].setMeshControls(regions=myRegion, technique=SWEEP, 
elemShape=QUAD) 
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mdb.models['Model-1'].parts['twoD'].setSweepPath(edge=myEdge[0][0], 
region=myRegion[0],sense=REVERSE) 

mdb.models['Model-
1'].parts['twoD'].setElementType(elemTypes=(ElemType(elemCode=COH2D4,elemLibrary=EXPLIC
IT), ElemType(elemCode=UNKNOWN_TRI,elemLibrary=EXPLICIT)),regions=(mdb.models['Model-
1'].parts['twoD'].faces.findAt(((0.033845,6.625659,0.),),) ,)) 

mdb.models['Model-
1'].parts['twoD'].SectionAssignment(offset=0.0,offsetField='',offsetType=MIDDLE_SURFACE,regio
n=Region(faces=mdb.models['Model-1'].parts['twoD'].faces.findAt(((0.033845,6.625659,0.),),) ), 
sectionName='Cohesive') 

 

myEdge=mdb.models['Model-
1'].parts['twoD'].edges.getClosest(coordinates=((4.379963,4.700142 ,0.),)) 

myRegion=mdb.models['Model-1'].parts['twoD'].faces.findAt(((4.353225,4.697859,0.),),) 

mdb.models['Model-1'].parts['twoD'].setMeshControls(regions=myRegion, technique=SWEEP, 
elemShape=QUAD) 

mdb.models['Model-1'].parts['twoD'].setSweepPath(edge=myEdge[0][0], 
region=myRegion[0],sense=REVERSE) 

mdb.models['Model-
1'].parts['twoD'].setElementType(elemTypes=(ElemType(elemCode=COH2D4,elemLibrary=EXPLIC
IT), ElemType(elemCode=UNKNOWN_TRI,elemLibrary=EXPLICIT)),regions=(mdb.models['Model-
1'].parts['twoD'].faces.findAt(((4.353225,4.697859,0.),),) ,)) 

mdb.models['Model-
1'].parts['twoD'].SectionAssignment(offset=0.0,offsetField='',offsetType=MIDDLE_SURFACE,regio
n=Region(faces=mdb.models['Model-1'].parts['twoD'].faces.findAt(((4.353225,4.697859,0.),),) ), 
sectionName='Cohesive') 

 

myEdge=mdb.models['Model-
1'].parts['twoD'].edges.getClosest(coordinates=((4.345426,4.672951 ,0.),)) 

myRegion=mdb.models['Model-1'].parts['twoD'].faces.findAt(((4.321255,4.658904,0.),),) 

mdb.models['Model-1'].parts['twoD'].setMeshControls(regions=myRegion, technique=SWEEP, 
elemShape=QUAD) 

mdb.models['Model-1'].parts['twoD'].setSweepPath(edge=myEdge[0][0], 
region=myRegion[0],sense=REVERSE) 

mdb.models['Model-
1'].parts['twoD'].setElementType(elemTypes=(ElemType(elemCode=COH2D4,elemLibrary=EXPLIC
IT), ElemType(elemCode=UNKNOWN_TRI,elemLibrary=EXPLICIT)),regions=(mdb.models['Model-
1'].parts['twoD'].faces.findAt(((4.321255,4.658904,0.),),) ,)) 

mdb.models['Model-
1'].parts['twoD'].SectionAssignment(offset=0.0,offsetField='',offsetType=MIDDLE_SURFACE,regio
n=Region(faces=mdb.models['Model-1'].parts['twoD'].faces.findAt(((4.321255,4.658904,0.),),) ), 
sectionName='Cohesive') 
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myEdge=mdb.models['Model-
1'].parts['twoD'].edges.getClosest(coordinates=((4.318856,4.611080 ,0.),)) 

myRegion=mdb.models['Model-1'].parts['twoD'].faces.findAt(((3.650685,3.097416,0.),),) 

mdb.models['Model-1'].parts['twoD'].setMeshControls(regions=myRegion, technique=SWEEP, 
elemShape=QUAD) 

mdb.models['Model-1'].parts['twoD'].setSweepPath(edge=myEdge[0][0], 
region=myRegion[0],sense=REVERSE) 

mdb.models['Model-
1'].parts['twoD'].setElementType(elemTypes=(ElemType(elemCode=COH2D4,elemLibrary=EXPLIC
IT), ElemType(elemCode=UNKNOWN_TRI,elemLibrary=EXPLICIT)),regions=(mdb.models['Model-
1'].parts['twoD'].faces.findAt(((3.650685,3.097416,0.),),) ,)) 

mdb.models['Model-
1'].parts['twoD'].SectionAssignment(offset=0.0,offsetField='',offsetType=MIDDLE_SURFACE,regio
n=Region(faces=mdb.models['Model-1'].parts['twoD'].faces.findAt(((3.650685,3.097416,0.),),) ), 
sectionName='Cohesive') 

 

myEdge=mdb.models['Model-
1'].parts['twoD'].edges.getClosest(coordinates=((2.360286,0.050358 ,0.),)) 

myRegion=mdb.models['Model-1'].parts['twoD'].faces.findAt(((2.330554,0.023363,0.),),) 

mdb.models['Model-1'].parts['twoD'].setMeshControls(regions=myRegion, technique=SWEEP, 
elemShape=QUAD) 

mdb.models['Model-1'].parts['twoD'].setSweepPath(edge=myEdge[0][0], 
region=myRegion[0],sense=REVERSE) 

mdb.models['Model-
1'].parts['twoD'].setElementType(elemTypes=(ElemType(elemCode=COH2D4,elemLibrary=EXPLIC
IT), ElemType(elemCode=UNKNOWN_TRI,elemLibrary=EXPLICIT)),regions=(mdb.models['Model-
1'].parts['twoD'].faces.findAt(((2.330554,0.023363,0.),),) ,)) 

mdb.models['Model-
1'].parts['twoD'].SectionAssignment(offset=0.0,offsetField='',offsetType=MIDDLE_SURFACE,regio
n=Region(faces=mdb.models['Model-1'].parts['twoD'].faces.findAt(((2.330554,0.023363,0.),),) ), 
sectionName='Cohesive') 

 

myEdge=mdb.models['Model-
1'].parts['twoD'].edges.getClosest(coordinates=((6.420186,5.804142 ,0.),)) 

myRegion=mdb.models['Model-1'].parts['twoD'].faces.findAt(((6.402743,5.822767,0.),),) 

mdb.models['Model-1'].parts['twoD'].setMeshControls(regions=myRegion, technique=SWEEP, 
elemShape=QUAD) 

mdb.models['Model-1'].parts['twoD'].setSweepPath(edge=myEdge[0][0], 
region=myRegion[0],sense=REVERSE) 
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mdb.models['Model-
1'].parts['twoD'].setElementType(elemTypes=(ElemType(elemCode=COH2D4,elemLibrary=EXPLIC
IT), ElemType(elemCode=UNKNOWN_TRI,elemLibrary=EXPLICIT)),regions=(mdb.models['Model-
1'].parts['twoD'].faces.findAt(((6.402743,5.822767,0.),),) ,)) 

mdb.models['Model-
1'].parts['twoD'].SectionAssignment(offset=0.0,offsetField='',offsetType=MIDDLE_SURFACE,regio
n=Region(faces=mdb.models['Model-1'].parts['twoD'].faces.findAt(((6.402743,5.822767,0.),),) ), 
sectionName='Cohesive') 

 

myEdge=mdb.models['Model-
1'].parts['twoD'].edges.getClosest(coordinates=((6.379944,5.809702 ,0.),)) 

myRegion=mdb.models['Model-1'].parts['twoD'].faces.findAt(((6.348562,5.811665,0.),),) 

mdb.models['Model-1'].parts['twoD'].setMeshControls(regions=myRegion, technique=SWEEP, 
elemShape=QUAD) 

mdb.models['Model-1'].parts['twoD'].setSweepPath(edge=myEdge[0][0], 
region=myRegion[0],sense=REVERSE) 

mdb.models['Model-
1'].parts['twoD'].setElementType(elemTypes=(ElemType(elemCode=COH2D4,elemLibrary=EXPLIC
IT), ElemType(elemCode=UNKNOWN_TRI,elemLibrary=EXPLICIT)),regions=(mdb.models['Model-
1'].parts['twoD'].faces.findAt(((6.348562,5.811665,0.),),) ,)) 

mdb.models['Model-
1'].parts['twoD'].SectionAssignment(offset=0.0,offsetField='',offsetType=MIDDLE_SURFACE,regio
n=Region(faces=mdb.models['Model-1'].parts['twoD'].faces.findAt(((6.348562,5.811665,0.),),) ), 
sectionName='Cohesive') 

 

myEdge=mdb.models['Model-
1'].parts['twoD'].edges.getClosest(coordinates=((6.309601,5.771619 ,0.),)) 

myRegion=mdb.models['Model-1'].parts['twoD'].faces.findAt(((5.078428,5.124032,0.),),) 

mdb.models['Model-1'].parts['twoD'].setMeshControls(regions=myRegion, technique=SWEEP, 
elemShape=QUAD) 

mdb.models['Model-1'].parts['twoD'].setSweepPath(edge=myEdge[0][0], 
region=myRegion[0],sense=REVERSE) 

mdb.models['Model-
1'].parts['twoD'].setElementType(elemTypes=(ElemType(elemCode=COH2D4,elemLibrary=EXPLIC
IT), ElemType(elemCode=UNKNOWN_TRI,elemLibrary=EXPLICIT)),regions=(mdb.models['Model-
1'].parts['twoD'].faces.findAt(((5.078428,5.124032,0.),),) ,)) 

mdb.models['Model-
1'].parts['twoD'].SectionAssignment(offset=0.0,offsetField='',offsetType=MIDDLE_SURFACE,regio
n=Region(faces=mdb.models['Model-1'].parts['twoD'].faces.findAt(((5.078428,5.124032,0.),),) ), 
sectionName='Cohesive') 
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myEdge=mdb.models['Model-
1'].parts['twoD'].edges.getClosest(coordinates=((4.474744,4.778253 ,0.),)) 

myRegion=mdb.models['Model-1'].parts['twoD'].faces.findAt(((4.447267,4.782330,0.),),) 

mdb.models['Model-1'].parts['twoD'].setMeshControls(regions=myRegion, technique=SWEEP, 
elemShape=QUAD) 

mdb.models['Model-1'].parts['twoD'].setSweepPath(edge=myEdge[0][0], 
region=myRegion[0],sense=REVERSE) 

mdb.models['Model-
1'].parts['twoD'].setElementType(elemTypes=(ElemType(elemCode=COH2D4,elemLibrary=EXPLIC
IT), ElemType(elemCode=UNKNOWN_TRI,elemLibrary=EXPLICIT)),regions=(mdb.models['Model-
1'].parts['twoD'].faces.findAt(((4.447267,4.782330,0.),),) ,)) 

mdb.models['Model-
1'].parts['twoD'].SectionAssignment(offset=0.0,offsetField='',offsetType=MIDDLE_SURFACE,regio
n=Region(faces=mdb.models['Model-1'].parts['twoD'].faces.findAt(((4.447267,4.782330,0.),),) ), 
sectionName='Cohesive') 

 

myEdge=mdb.models['Model-
1'].parts['twoD'].edges.getClosest(coordinates=((4.398286,4.736860 ,0.),)) 

myRegion=mdb.models['Model-1'].parts['twoD'].faces.findAt(((4.370327,4.760715,0.),),) 

mdb.models['Model-1'].parts['twoD'].setMeshControls(regions=myRegion, technique=SWEEP, 
elemShape=QUAD) 

mdb.models['Model-1'].parts['twoD'].setSweepPath(edge=myEdge[0][0], 
region=myRegion[0],sense=REVERSE) 

mdb.models['Model-
1'].parts['twoD'].setElementType(elemTypes=(ElemType(elemCode=COH2D4,elemLibrary=EXPLIC
IT), ElemType(elemCode=UNKNOWN_TRI,elemLibrary=EXPLICIT)),regions=(mdb.models['Model-
1'].parts['twoD'].faces.findAt(((4.370327,4.760715,0.),),) ,)) 

mdb.models['Model-
1'].parts['twoD'].SectionAssignment(offset=0.0,offsetField='',offsetType=MIDDLE_SURFACE,regio
n=Region(faces=mdb.models['Model-1'].parts['twoD'].faces.findAt(((4.370327,4.760715,0.),),) ), 
sectionName='Cohesive') 

 

 

 

 

 

A.2.2    Model in ABAQUS/CAE 
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Figure A.2. A 2D grain structure with cohesive zones consisting of four grains represented 

in ABAQUS, where details of the two junctions are highlighted. 

 

A.3 3D grain structure 

A.3.1    Script file 

from part import * 
from material import * 
from section import * 
from assembly import * 
from step import * 
from interaction import * 
from load import * 
from mesh import * 
from job import * 
from sketch import * 
from visualization import * 
from connectorBehavior import * 
mdb.models['Model-1'].ConstrainedSketch(name='__profile__', sheetSize=(100)+200) 
mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0,0), point2=(10,10)) 
mdb.models['Model-1'].Part(dimensionality=THREE_D, name='Part-1', type= 
DEFORMABLE_BODY) 
vP=mdb.models['Model-1'].parts['Part-1'] 
vP.BaseSolidExtrude(depth=10, sketch= mdb.models['Model-1'].sketches['__profile__']) 
del mdb.models['Model-1'].sketches['__profile__'] 
 
vP.DatumPointByCoordinate(coords=( 5.3808455011, 0.0000000000, 0.0000000000 )) 
vP.DatumPointByCoordinate(coords=( 10.0000000000, 8.1369960401, 0.0000000000 )) 



198 

 

vP.DatumPointByCoordinate(coords=( 10.0000000000, 10.0000000000, 0.0000000000 )) 
vP.DatumPlaneByThreePoints( point1=vP.datums[2], point2=vP.datums[3], point3=vP.datums[4]) 
vP.DatumAxisByTwoPoint(point1=vP.datums[2], point2=vP.datums[3]) 
mdb.models['Model-1'].ConstrainedSketch(gridSpacing=0.12, name='__profile__',sheetSize=5.02, 
    transform=vP.MakeSketchTransform(sketchPlane=vP.datums[5], sketchPlaneSide=SIDE1, 
    sketchUpEdge=vP.datums[6],sketchOrientation=RIGHT, origin=(0,0,0))) 
mdb.models['Model-1'].sketches['__profile__'].sketchOptions.setValues(sheetSize=100) 
vP.projectReferencesOntoSketch(filter=COPLANAR_EDGES, sketch=mdb.models['Model-
1'].sketches['__profile__']) 
mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-100, -100), point2=(100, 100)) 
 
vP.CutExtrude(depth=100, flipExtrudeDirection=OFF, 
      sketch=mdb.models['Model-1'].sketches['__profile__'], sketchOrientation=RIGHT, 
      sketchPlane=vP.datums[5], sketchPlaneSide=SIDE1,sketchUpEdge=vP.datums[6]) 
del mdb.models['Model-1'].sketches['__profile__'] 
 
vP.DatumPointByCoordinate(coords=( 0.0000000000, 0.0000000000, 7.6869293761 )) 
vP.DatumPointByCoordinate(coords=( 1.9628295258, 0.0000000000, 6.3950234437 )) 
vP.DatumPointByCoordinate(coords=( 5.3808455011, 0.0000000000, 0.0000000000 )) 
vP.DatumPlaneByThreePoints( point1=vP.datums[8], point2=vP.datums[9], 
point3=vP.datums[10]) 
vP.DatumAxisByTwoPoint(point1=vP.datums[8], point2=vP.datums[9]) 
mdb.models['Model-1'].ConstrainedSketch(gridSpacing=0.12, name='__profile__',sheetSize=5.02, 
    transform=vP.MakeSketchTransform(sketchPlane=vP.datums[11], sketchPlaneSide=SIDE1, 
    sketchUpEdge=vP.datums[12],sketchOrientation=RIGHT, origin=(0,0,0))) 
mdb.models['Model-1'].sketches['__profile__'].sketchOptions.setValues(sheetSize=100) 
vP.projectReferencesOntoSketch(filter=COPLANAR_EDGES, sketch=mdb.models['Model-
1'].sketches['__profile__']) 
mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-100, -100), point2=(100, 100)) 
 
vP.CutExtrude(depth=100, flipExtrudeDirection=OFF, 
      sketch=mdb.models['Model-1'].sketches['__profile__'], sketchOrientation=RIGHT, 
      sketchPlane=vP.datums[11], sketchPlaneSide=SIDE1,sketchUpEdge=vP.datums[12]) 
del mdb.models['Model-1'].sketches['__profile__'] 
 
vP.DatumPointByCoordinate(coords=( 0.0000000000, 10.0000000000, 0.0000000000 )) 
vP.DatumPointByCoordinate(coords=( 0.0000000000, 10.0000000000, 6.8788336041 )) 
vP.DatumPointByCoordinate(coords=( 0.0000000000, 0.0000000000, 7.6869293761 )) 
vP.DatumPlaneByThreePoints( point1=vP.datums[14], point2=vP.datums[15], 
point3=vP.datums[16]) 
vP.DatumAxisByTwoPoint(point1=vP.datums[14], point2=vP.datums[15]) 
mdb.models['Model-1'].ConstrainedSketch(gridSpacing=0.12, name='__profile__',sheetSize=5.02, 
    transform=vP.MakeSketchTransform(sketchPlane=vP.datums[17], sketchPlaneSide=SIDE1, 
    sketchUpEdge=vP.datums[18],sketchOrientation=RIGHT, origin=(0,0,0))) 
mdb.models['Model-1'].sketches['__profile__'].sketchOptions.setValues(sheetSize=100) 
vP.projectReferencesOntoSketch(filter=COPLANAR_EDGES, sketch=mdb.models['Model-
1'].sketches['__profile__']) 
mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-100, -100), point2=(100, 100)) 
 
vP.CutExtrude(depth=100, flipExtrudeDirection=OFF, 



199 

 

      sketch=mdb.models['Model-1'].sketches['__profile__'], sketchOrientation=RIGHT, 
      sketchPlane=vP.datums[17], sketchPlaneSide=SIDE1,sketchUpEdge=vP.datums[18]) 
del mdb.models['Model-1'].sketches['__profile__'] 
 
vP.DatumPointByCoordinate(coords=( 10.0000000000, 8.5285634866, 0.4158847691 )) 
vP.DatumPointByCoordinate(coords=( 10.0000000000, 8.1369960401, 0.0000000000 )) 
vP.DatumPointByCoordinate(coords=( 5.3808455011, 0.0000000000, 0.0000000000 )) 
vP.DatumPlaneByThreePoints( point1=vP.datums[20], point2=vP.datums[21], 
point3=vP.datums[22]) 
vP.DatumAxisByTwoPoint(point1=vP.datums[20], point2=vP.datums[21]) 
mdb.models['Model-1'].ConstrainedSketch(gridSpacing=0.12, name='__profile__',sheetSize=5.02, 
    transform=vP.MakeSketchTransform(sketchPlane=vP.datums[23], sketchPlaneSide=SIDE1, 
    sketchUpEdge=vP.datums[24],sketchOrientation=RIGHT, origin=(0,0,0))) 
mdb.models['Model-1'].sketches['__profile__'].sketchOptions.setValues(sheetSize=100) 
vP.projectReferencesOntoSketch(filter=COPLANAR_EDGES, sketch=mdb.models['Model-
1'].sketches['__profile__']) 
mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-100, -100), point2=(100, 100)) 
 
vP.CutExtrude(depth=100, flipExtrudeDirection=OFF, 
      sketch=mdb.models['Model-1'].sketches['__profile__'], sketchOrientation=RIGHT, 
      sketchPlane=vP.datums[23], sketchPlaneSide=SIDE1,sketchUpEdge=vP.datums[24]) 
del mdb.models['Model-1'].sketches['__profile__'] 
 
vP.DatumPointByCoordinate(coords=( 0.0000000000, 0.0000000000, 7.6869293761 )) 
vP.DatumPointByCoordinate(coords=( 0.0000000000, 10.0000000000, 6.8788336041 )) 
vP.DatumPointByCoordinate(coords=( 10.0000000000, 10.0000000000, 0.2969786065 )) 
vP.DatumPlaneByThreePoints( point1=vP.datums[26], point2=vP.datums[27], 
point3=vP.datums[28]) 
vP.DatumAxisByTwoPoint(point1=vP.datums[26], point2=vP.datums[27]) 
mdb.models['Model-1'].ConstrainedSketch(gridSpacing=0.12, name='__profile__',sheetSize=5.02, 
    transform=vP.MakeSketchTransform(sketchPlane=vP.datums[29], sketchPlaneSide=SIDE1, 
    sketchUpEdge=vP.datums[30],sketchOrientation=RIGHT, origin=(0,0,0))) 
mdb.models['Model-1'].sketches['__profile__'].sketchOptions.setValues(sheetSize=100) 
vP.projectReferencesOntoSketch(filter=COPLANAR_EDGES, sketch=mdb.models['Model-
1'].sketches['__profile__']) 
mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-100, -100), point2=(100, 100)) 
 
vP.CutExtrude(depth=100, flipExtrudeDirection=OFF, 
      sketch=mdb.models['Model-1'].sketches['__profile__'], sketchOrientation=RIGHT, 
      sketchPlane=vP.datums[29], sketchPlaneSide=SIDE1,sketchUpEdge=vP.datums[30]) 
del mdb.models['Model-1'].sketches['__profile__'] 
 
vP.DatumPointByCoordinate(coords=( 10.0000000000, 10.0000000000, 0.0000000000 )) 
vP.DatumPointByCoordinate(coords=( 10.0000000000, 10.0000000000, 0.2969786065 )) 
vP.DatumPointByCoordinate(coords=( 0.0000000000, 10.0000000000, 6.8788336041 )) 
vP.DatumPlaneByThreePoints( point1=vP.datums[32], point2=vP.datums[33], 
point3=vP.datums[34]) 
vP.DatumAxisByTwoPoint(point1=vP.datums[32], point2=vP.datums[33]) 
mdb.models['Model-1'].ConstrainedSketch(gridSpacing=0.12, name='__profile__',sheetSize=5.02, 
    transform=vP.MakeSketchTransform(sketchPlane=vP.datums[35], sketchPlaneSide=SIDE1, 
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    sketchUpEdge=vP.datums[36],sketchOrientation=RIGHT, origin=(0,0,0))) 
mdb.models['Model-1'].sketches['__profile__'].sketchOptions.setValues(sheetSize=100) 
vP.projectReferencesOntoSketch(filter=COPLANAR_EDGES, sketch=mdb.models['Model-
1'].sketches['__profile__']) 
mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-100, -100), point2=(100, 100)) 
 
vP.CutExtrude(depth=100, flipExtrudeDirection=OFF, 
      sketch=mdb.models['Model-1'].sketches['__profile__'], sketchOrientation=RIGHT, 
      sketchPlane=vP.datums[35], sketchPlaneSide=SIDE1,sketchUpEdge=vP.datums[36]) 
del mdb.models['Model-1'].sketches['__profile__'] 
 
vP.DatumPointByCoordinate(coords=( 10.0000000000, 8.1369960401, 0.0000000000 )) 
vP.DatumPointByCoordinate(coords=( 10.0000000000, 8.5285634866, 0.4158847691 )) 
vP.DatumPointByCoordinate(coords=( 10.0000000000, 10.0000000000, 0.2969786065 )) 
vP.DatumPlaneByThreePoints( point1=vP.datums[38], point2=vP.datums[39], 
point3=vP.datums[40]) 
vP.DatumAxisByTwoPoint(point1=vP.datums[38], point2=vP.datums[39]) 
mdb.models['Model-1'].ConstrainedSketch(gridSpacing=0.12, name='__profile__',sheetSize=5.02, 
    transform=vP.MakeSketchTransform(sketchPlane=vP.datums[41], sketchPlaneSide=SIDE1, 
    sketchUpEdge=vP.datums[42],sketchOrientation=RIGHT, origin=(0,0,0))) 
mdb.models['Model-1'].sketches['__profile__'].sketchOptions.setValues(sheetSize=100) 
vP.projectReferencesOntoSketch(filter=COPLANAR_EDGES, sketch=mdb.models['Model-
1'].sketches['__profile__']) 
mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-100, -100), point2=(100, 100)) 
 
vP.CutExtrude(depth=100, flipExtrudeDirection=OFF, 
      sketch=mdb.models['Model-1'].sketches['__profile__'], sketchOrientation=RIGHT, 
      sketchPlane=vP.datums[41], sketchPlaneSide=SIDE1,sketchUpEdge=vP.datums[42]) 
del mdb.models['Model-1'].sketches['__profile__'] 
 
mdb.models['Model-1'].ConstrainedSketch(name='__profile__', sheetSize=(100)+200) 
mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0,0), point2=(10,10)) 
mdb.models['Model-1'].Part(dimensionality=THREE_D, name='Part-2', type= 
DEFORMABLE_BODY) 
vP=mdb.models['Model-1'].parts['Part-2'] 
vP.BaseSolidExtrude(depth=10, sketch= mdb.models['Model-1'].sketches['__profile__']) 
del mdb.models['Model-1'].sketches['__profile__'] 
 
vP.DatumPointByCoordinate(coords=( 10.0000000000, 8.1369960401, 0.0000000000 )) 
vP.DatumPointByCoordinate(coords=( 10.0000000000, 8.5285634866, 0.4158847691 )) 
vP.DatumPointByCoordinate(coords=( 1.9628295258, 0.0000000000, 6.3950234437 )) 
vP.DatumPlaneByThreePoints( point1=vP.datums[2], point2=vP.datums[3], point3=vP.datums[4]) 
vP.DatumAxisByTwoPoint(point1=vP.datums[2], point2=vP.datums[3]) 
mdb.models['Model-1'].ConstrainedSketch(gridSpacing=0.12, name='__profile__',sheetSize=5.02, 
    transform=vP.MakeSketchTransform(sketchPlane=vP.datums[5], sketchPlaneSide=SIDE1, 
    sketchUpEdge=vP.datums[6],sketchOrientation=RIGHT, origin=(0,0,0))) 
mdb.models['Model-1'].sketches['__profile__'].sketchOptions.setValues(sheetSize=100) 
vP.projectReferencesOntoSketch(filter=COPLANAR_EDGES, sketch=mdb.models['Model-
1'].sketches['__profile__']) 
mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-100, -100), point2=(100, 100)) 
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vP.CutExtrude(depth=100, flipExtrudeDirection=OFF, 
      sketch=mdb.models['Model-1'].sketches['__profile__'], sketchOrientation=RIGHT, 
      sketchPlane=vP.datums[5], sketchPlaneSide=SIDE1,sketchUpEdge=vP.datums[6]) 
del mdb.models['Model-1'].sketches['__profile__'] 
 
vP.DatumPointByCoordinate(coords=( 10.0000000000, 0.0000000000, 0.0000000000 )) 
vP.DatumPointByCoordinate(coords=( 10.0000000000, 8.1369960401, 0.0000000000 )) 
vP.DatumPointByCoordinate(coords=( 5.3808455011, 0.0000000000, 0.0000000000 )) 
vP.DatumPlaneByThreePoints( point1=vP.datums[8], point2=vP.datums[9], 
point3=vP.datums[10]) 
vP.DatumAxisByTwoPoint(point1=vP.datums[8], point2=vP.datums[9]) 
mdb.models['Model-1'].ConstrainedSketch(gridSpacing=0.12, name='__profile__',sheetSize=5.02, 
    transform=vP.MakeSketchTransform(sketchPlane=vP.datums[11], sketchPlaneSide=SIDE1, 
    sketchUpEdge=vP.datums[12],sketchOrientation=RIGHT, origin=(0,0,0))) 
mdb.models['Model-1'].sketches['__profile__'].sketchOptions.setValues(sheetSize=100) 
vP.projectReferencesOntoSketch(filter=COPLANAR_EDGES, sketch=mdb.models['Model-
1'].sketches['__profile__']) 
mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-100, -100), point2=(100, 100)) 
 
vP.CutExtrude(depth=100, flipExtrudeDirection=OFF, 
      sketch=mdb.models['Model-1'].sketches['__profile__'], sketchOrientation=RIGHT, 
      sketchPlane=vP.datums[11], sketchPlaneSide=SIDE1,sketchUpEdge=vP.datums[12]) 
del mdb.models['Model-1'].sketches['__profile__'] 
 
vP.DatumPointByCoordinate(coords=( 1.9628295258, 0.0000000000, 6.3950234437 )) 
vP.DatumPointByCoordinate(coords=( 6.9858961735, 0.0000000000, 10.0000000000 )) 
vP.DatumPointByCoordinate(coords=( 10.0000000000, 0.0000000000, 10.0000000000 )) 
vP.DatumPlaneByThreePoints( point1=vP.datums[14], point2=vP.datums[15], 
point3=vP.datums[16]) 
vP.DatumAxisByTwoPoint(point1=vP.datums[14], point2=vP.datums[15]) 
mdb.models['Model-1'].ConstrainedSketch(gridSpacing=0.12, name='__profile__',sheetSize=5.02, 
    transform=vP.MakeSketchTransform(sketchPlane=vP.datums[17], sketchPlaneSide=SIDE1, 
    sketchUpEdge=vP.datums[18],sketchOrientation=RIGHT, origin=(0,0,0))) 
mdb.models['Model-1'].sketches['__profile__'].sketchOptions.setValues(sheetSize=100) 
vP.projectReferencesOntoSketch(filter=COPLANAR_EDGES, sketch=mdb.models['Model-
1'].sketches['__profile__']) 
mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-100, -100), point2=(100, 100)) 
 
vP.CutExtrude(depth=100, flipExtrudeDirection=OFF, 
      sketch=mdb.models['Model-1'].sketches['__profile__'], sketchOrientation=RIGHT, 
      sketchPlane=vP.datums[17], sketchPlaneSide=SIDE1,sketchUpEdge=vP.datums[18]) 
del mdb.models['Model-1'].sketches['__profile__'] 
 
vP.DatumPointByCoordinate(coords=( 10.0000000000, 0.0000000000, 10.0000000000 )) 
vP.DatumPointByCoordinate(coords=( 10.0000000000, 1.5704708872, 10.0000000000 )) 
vP.DatumPointByCoordinate(coords=( 10.0000000000, 8.5285634866, 0.4158847691 )) 
vP.DatumPlaneByThreePoints( point1=vP.datums[20], point2=vP.datums[21], 
point3=vP.datums[22]) 
vP.DatumAxisByTwoPoint(point1=vP.datums[20], point2=vP.datums[21]) 
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mdb.models['Model-1'].ConstrainedSketch(gridSpacing=0.12, name='__profile__',sheetSize=5.02, 
    transform=vP.MakeSketchTransform(sketchPlane=vP.datums[23], sketchPlaneSide=SIDE1, 
    sketchUpEdge=vP.datums[24],sketchOrientation=RIGHT, origin=(0,0,0))) 
mdb.models['Model-1'].sketches['__profile__'].sketchOptions.setValues(sheetSize=100) 
vP.projectReferencesOntoSketch(filter=COPLANAR_EDGES, sketch=mdb.models['Model-
1'].sketches['__profile__']) 
mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-100, -100), point2=(100, 100)) 
 
vP.CutExtrude(depth=100, flipExtrudeDirection=OFF, 
      sketch=mdb.models['Model-1'].sketches['__profile__'], sketchOrientation=RIGHT, 
      sketchPlane=vP.datums[23], sketchPlaneSide=SIDE1,sketchUpEdge=vP.datums[24]) 
del mdb.models['Model-1'].sketches['__profile__'] 
 
vP.DatumPointByCoordinate(coords=( 10.0000000000, 1.5704708872, 10.0000000000 )) 
vP.DatumPointByCoordinate(coords=( 6.9858961735, 0.0000000000, 10.0000000000 )) 
vP.DatumPointByCoordinate(coords=( 1.9628295258, 0.0000000000, 6.3950234437 )) 
vP.DatumPlaneByThreePoints( point1=vP.datums[26], point2=vP.datums[27], 
point3=vP.datums[28]) 
vP.DatumAxisByTwoPoint(point1=vP.datums[26], point2=vP.datums[27]) 
mdb.models['Model-1'].ConstrainedSketch(gridSpacing=0.12, name='__profile__',sheetSize=5.02, 
    transform=vP.MakeSketchTransform(sketchPlane=vP.datums[29], sketchPlaneSide=SIDE1, 
    sketchUpEdge=vP.datums[30],sketchOrientation=RIGHT, origin=(0,0,0))) 
mdb.models['Model-1'].sketches['__profile__'].sketchOptions.setValues(sheetSize=100) 
vP.projectReferencesOntoSketch(filter=COPLANAR_EDGES, sketch=mdb.models['Model-
1'].sketches['__profile__']) 
mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-100, -100), point2=(100, 100)) 
 
vP.CutExtrude(depth=100, flipExtrudeDirection=OFF, 
      sketch=mdb.models['Model-1'].sketches['__profile__'], sketchOrientation=RIGHT, 
      sketchPlane=vP.datums[29], sketchPlaneSide=SIDE1,sketchUpEdge=vP.datums[30]) 
del mdb.models['Model-1'].sketches['__profile__'] 
 
vP.DatumPointByCoordinate(coords=( 6.9858961735, 0.0000000000, 10.0000000000 )) 
vP.DatumPointByCoordinate(coords=( 10.0000000000, 1.5704708872, 10.0000000000 )) 
vP.DatumPointByCoordinate(coords=( 10.0000000000, 0.0000000000, 10.0000000000 )) 
vP.DatumPlaneByThreePoints( point1=vP.datums[32], point2=vP.datums[33], 
point3=vP.datums[34]) 
vP.DatumAxisByTwoPoint(point1=vP.datums[32], point2=vP.datums[33]) 
mdb.models['Model-1'].ConstrainedSketch(gridSpacing=0.12, name='__profile__',sheetSize=5.02, 
    transform=vP.MakeSketchTransform(sketchPlane=vP.datums[35], sketchPlaneSide=SIDE1, 
    sketchUpEdge=vP.datums[36],sketchOrientation=RIGHT, origin=(0,0,0))) 
mdb.models['Model-1'].sketches['__profile__'].sketchOptions.setValues(sheetSize=100) 
vP.projectReferencesOntoSketch(filter=COPLANAR_EDGES, sketch=mdb.models['Model-
1'].sketches['__profile__']) 
mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-100, -100), point2=(100, 100)) 
 
vP.CutExtrude(depth=100, flipExtrudeDirection=OFF, 
      sketch=mdb.models['Model-1'].sketches['__profile__'], sketchOrientation=RIGHT, 
      sketchPlane=vP.datums[35], sketchPlaneSide=SIDE1,sketchUpEdge=vP.datums[36]) 
del mdb.models['Model-1'].sketches['__profile__'] 
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mdb.models['Model-1'].ConstrainedSketch(name='__profile__', sheetSize=(100)+200) 
mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(0,0), point2=(10,10)) 
mdb.models['Model-1'].Part(dimensionality=THREE_D, name='Part-3', type= 
DEFORMABLE_BODY) 
vP=mdb.models['Model-1'].parts['Part-3'] 
vP.BaseSolidExtrude(depth=10, sketch= mdb.models['Model-1'].sketches['__profile__']) 
del mdb.models['Model-1'].sketches['__profile__'] 
 
vP.DatumPointByCoordinate(coords=( 10.0000000000, 10.0000000000, 0.2969786065 )) 
vP.DatumPointByCoordinate(coords=( 0.0000000000, 10.0000000000, 6.8788336041 )) 
vP.DatumPointByCoordinate(coords=( -0.0000000000, -0.0000000000, 7.6869293761 )) 
vP.DatumPlaneByThreePoints( point1=vP.datums[2], point2=vP.datums[3], point3=vP.datums[4]) 
vP.DatumAxisByTwoPoint(point1=vP.datums[2], point2=vP.datums[3]) 
mdb.models['Model-1'].ConstrainedSketch(gridSpacing=0.12, name='__profile__',sheetSize=5.02, 
    transform=vP.MakeSketchTransform(sketchPlane=vP.datums[5], sketchPlaneSide=SIDE1, 
    sketchUpEdge=vP.datums[6],sketchOrientation=RIGHT, origin=(0,0,0))) 
mdb.models['Model-1'].sketches['__profile__'].sketchOptions.setValues(sheetSize=100) 
vP.projectReferencesOntoSketch(filter=COPLANAR_EDGES, sketch=mdb.models['Model-
1'].sketches['__profile__']) 
mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-100, -100), point2=(100, 100)) 
 
vP.CutExtrude(depth=100, flipExtrudeDirection=OFF, 
      sketch=mdb.models['Model-1'].sketches['__profile__'], sketchOrientation=RIGHT, 
      sketchPlane=vP.datums[5], sketchPlaneSide=SIDE1,sketchUpEdge=vP.datums[6]) 
del mdb.models['Model-1'].sketches['__profile__'] 
 
vP.DatumPointByCoordinate(coords=( 10.0000000000, 1.5704708872, 10.0000000000 )) 
vP.DatumPointByCoordinate(coords=( 10.0000000000, 10.0000000000, 10.0000000000 )) 
vP.DatumPointByCoordinate(coords=( 10.0000000000, 10.0000000000, 0.2969786065 )) 
vP.DatumPlaneByThreePoints( point1=vP.datums[8], point2=vP.datums[9], 
point3=vP.datums[10]) 
vP.DatumAxisByTwoPoint(point1=vP.datums[8], point2=vP.datums[9]) 
mdb.models['Model-1'].ConstrainedSketch(gridSpacing=0.12, name='__profile__',sheetSize=5.02, 
    transform=vP.MakeSketchTransform(sketchPlane=vP.datums[11], sketchPlaneSide=SIDE1, 
    sketchUpEdge=vP.datums[12],sketchOrientation=RIGHT, origin=(0,0,0))) 
mdb.models['Model-1'].sketches['__profile__'].sketchOptions.setValues(sheetSize=100) 
vP.projectReferencesOntoSketch(filter=COPLANAR_EDGES, sketch=mdb.models['Model-
1'].sketches['__profile__']) 
mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-100, -100), point2=(100, 100)) 
 
vP.CutExtrude(depth=100, flipExtrudeDirection=OFF, 
      sketch=mdb.models['Model-1'].sketches['__profile__'], sketchOrientation=RIGHT, 
      sketchPlane=vP.datums[11], sketchPlaneSide=SIDE1,sketchUpEdge=vP.datums[12]) 
del mdb.models['Model-1'].sketches['__profile__'] 
 
vP.DatumPointByCoordinate(coords=( 1.9628295258, 0.0000000000, 6.3950234437 )) 
vP.DatumPointByCoordinate(coords=( 6.9858961735, 0.0000000000, 10.0000000000 )) 
vP.DatumPointByCoordinate(coords=( 10.0000000000, 1.5704708872, 10.0000000000 )) 
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vP.DatumPlaneByThreePoints( point1=vP.datums[14], point2=vP.datums[15], 
point3=vP.datums[16]) 
vP.DatumAxisByTwoPoint(point1=vP.datums[14], point2=vP.datums[15]) 
mdb.models['Model-1'].ConstrainedSketch(gridSpacing=0.12, name='__profile__',sheetSize=5.02, 
    transform=vP.MakeSketchTransform(sketchPlane=vP.datums[17], sketchPlaneSide=SIDE1, 
    sketchUpEdge=vP.datums[18],sketchOrientation=RIGHT, origin=(0,0,0))) 
mdb.models['Model-1'].sketches['__profile__'].sketchOptions.setValues(sheetSize=100) 
vP.projectReferencesOntoSketch(filter=COPLANAR_EDGES, sketch=mdb.models['Model-
1'].sketches['__profile__']) 
mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-100, -100), point2=(100, 100)) 
 
vP.CutExtrude(depth=100, flipExtrudeDirection=OFF, 
      sketch=mdb.models['Model-1'].sketches['__profile__'], sketchOrientation=RIGHT, 
      sketchPlane=vP.datums[17], sketchPlaneSide=SIDE1,sketchUpEdge=vP.datums[18]) 
del mdb.models['Model-1'].sketches['__profile__'] 
 
vP.DatumPointByCoordinate(coords=( 6.9858961735, 0.0000000000, 10.0000000000 )) 
vP.DatumPointByCoordinate(coords=( 0.0000000000, 0.0000000000, 10.0000000000 )) 
vP.DatumPointByCoordinate(coords=( 0.0000000000, 10.0000000000, 10.0000000000 )) 
vP.DatumPlaneByThreePoints( point1=vP.datums[20], point2=vP.datums[21], 
point3=vP.datums[22]) 
vP.DatumAxisByTwoPoint(point1=vP.datums[20], point2=vP.datums[21]) 
mdb.models['Model-1'].ConstrainedSketch(gridSpacing=0.12, name='__profile__',sheetSize=5.02, 
    transform=vP.MakeSketchTransform(sketchPlane=vP.datums[23], sketchPlaneSide=SIDE1, 
    sketchUpEdge=vP.datums[24],sketchOrientation=RIGHT, origin=(0,0,0))) 
mdb.models['Model-1'].sketches['__profile__'].sketchOptions.setValues(sheetSize=100) 
vP.projectReferencesOntoSketch(filter=COPLANAR_EDGES, sketch=mdb.models['Model-
1'].sketches['__profile__']) 
mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-100, -100), point2=(100, 100)) 
 
vP.CutExtrude(depth=100, flipExtrudeDirection=OFF, 
      sketch=mdb.models['Model-1'].sketches['__profile__'], sketchOrientation=RIGHT, 
      sketchPlane=vP.datums[23], sketchPlaneSide=SIDE1,sketchUpEdge=vP.datums[24]) 
del mdb.models['Model-1'].sketches['__profile__'] 
 
vP.DatumPointByCoordinate(coords=( 0.0000000000, 10.0000000000, 10.0000000000 )) 
vP.DatumPointByCoordinate(coords=( 0.0000000000, 0.0000000000, 10.0000000000 )) 
vP.DatumPointByCoordinate(coords=( -0.0000000000, -0.0000000000, 7.6869293761 )) 
vP.DatumPlaneByThreePoints( point1=vP.datums[26], point2=vP.datums[27], 
point3=vP.datums[28]) 
vP.DatumAxisByTwoPoint(point1=vP.datums[26], point2=vP.datums[27]) 
mdb.models['Model-1'].ConstrainedSketch(gridSpacing=0.12, name='__profile__',sheetSize=5.02, 
    transform=vP.MakeSketchTransform(sketchPlane=vP.datums[29], sketchPlaneSide=SIDE1, 
    sketchUpEdge=vP.datums[30],sketchOrientation=RIGHT, origin=(0,0,0))) 
mdb.models['Model-1'].sketches['__profile__'].sketchOptions.setValues(sheetSize=100) 
vP.projectReferencesOntoSketch(filter=COPLANAR_EDGES, sketch=mdb.models['Model-
1'].sketches['__profile__']) 
mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-100, -100), point2=(100, 100)) 
 
vP.CutExtrude(depth=100, flipExtrudeDirection=OFF, 



205 

 

      sketch=mdb.models['Model-1'].sketches['__profile__'], sketchOrientation=RIGHT, 
      sketchPlane=vP.datums[29], sketchPlaneSide=SIDE1,sketchUpEdge=vP.datums[30]) 
del mdb.models['Model-1'].sketches['__profile__'] 
 
vP.DatumPointByCoordinate(coords=( 10.0000000000, 10.0000000000, 0.2969786065 )) 
vP.DatumPointByCoordinate(coords=( 10.0000000000, 10.0000000000, 10.0000000000 )) 
vP.DatumPointByCoordinate(coords=( 0.0000000000, 10.0000000000, 10.0000000000 )) 
vP.DatumPlaneByThreePoints( point1=vP.datums[32], point2=vP.datums[33], 
point3=vP.datums[34]) 
vP.DatumAxisByTwoPoint(point1=vP.datums[32], point2=vP.datums[33]) 
mdb.models['Model-1'].ConstrainedSketch(gridSpacing=0.12, name='__profile__',sheetSize=5.02, 
    transform=vP.MakeSketchTransform(sketchPlane=vP.datums[35], sketchPlaneSide=SIDE1, 
    sketchUpEdge=vP.datums[36],sketchOrientation=RIGHT, origin=(0,0,0))) 
mdb.models['Model-1'].sketches['__profile__'].sketchOptions.setValues(sheetSize=100) 
vP.projectReferencesOntoSketch(filter=COPLANAR_EDGES, sketch=mdb.models['Model-
1'].sketches['__profile__']) 
mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-100, -100), point2=(100, 100)) 
 
vP.CutExtrude(depth=100, flipExtrudeDirection=OFF, 
      sketch=mdb.models['Model-1'].sketches['__profile__'], sketchOrientation=RIGHT, 
      sketchPlane=vP.datums[35], sketchPlaneSide=SIDE1,sketchUpEdge=vP.datums[36]) 
del mdb.models['Model-1'].sketches['__profile__'] 
 
vP.DatumPointByCoordinate(coords=( 6.9858961735, 0.0000000000, 10.0000000000 )) 
vP.DatumPointByCoordinate(coords=( 1.9628295258, 0.0000000000, 6.3950234437 )) 
vP.DatumPointByCoordinate(coords=( -0.0000000000, -0.0000000000, 7.6869293761 )) 
vP.DatumPlaneByThreePoints( point1=vP.datums[38], point2=vP.datums[39], 
point3=vP.datums[40]) 
vP.DatumAxisByTwoPoint(point1=vP.datums[38], point2=vP.datums[39]) 
mdb.models['Model-1'].ConstrainedSketch(gridSpacing=0.12, name='__profile__',sheetSize=5.02, 
    transform=vP.MakeSketchTransform(sketchPlane=vP.datums[41], sketchPlaneSide=SIDE1, 
    sketchUpEdge=vP.datums[42],sketchOrientation=RIGHT, origin=(0,0,0))) 
mdb.models['Model-1'].sketches['__profile__'].sketchOptions.setValues(sheetSize=100) 
vP.projectReferencesOntoSketch(filter=COPLANAR_EDGES, sketch=mdb.models['Model-
1'].sketches['__profile__']) 
mdb.models['Model-1'].sketches['__profile__'].rectangle(point1=(-100, -100), point2=(100, 100)) 
 
vP.CutExtrude(depth=100, flipExtrudeDirection=OFF, 
      sketch=mdb.models['Model-1'].sketches['__profile__'], sketchOrientation=RIGHT, 
      sketchPlane=vP.datums[41], sketchPlaneSide=SIDE1,sketchUpEdge=vP.datums[42]) 
del mdb.models['Model-1'].sketches['__profile__'] 
 
mdb.models['Model-1'].rootAssembly.DatumCsysByDefault(CARTESIAN) 
mdb.models['Model-1'].rootAssembly.Instance(dependent=ON, name='Part-1-1',  
    part=mdb.models['Model-1'].parts['Part-1']) 
mdb.models['Model-1'].rootAssembly.Instance(dependent=ON, name='Part-2-1',  
    part=mdb.models['Model-1'].parts['Part-2']) 
mdb.models['Model-1'].rootAssembly.Instance(dependent=ON, name='Part-3-1',  
    part=mdb.models['Model-1'].parts['Part-3']) 
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mdb.models['Model-1'].rootAssembly.InstanceFromBooleanMerge(domain=GEOMETRY, 
instances=( 
    mdb.models['Model-1'].rootAssembly.instances['Part-1-1'],  
    mdb.models['Model-1'].rootAssembly.instances['Part-2-1'],  
    mdb.models['Model-1'].rootAssembly.instances['Part-3-1']),  
    keepIntersections=ON, name='Part-total', originalInstances=DELETE) 
mdb.models['Model-1'].Material(name='M5-095deg') 
mdb.models['Model-1'].materials['M5-095deg'].Depvar(n=135) 
mdb.models['Model-1'].materials['M5-095deg'].Density(table=((8.000000e-015,),)) 
mdb.models['Model-1'].materials['M5-095deg'].UserMaterial(unsymm=ON, 
mechanicalConstants=( 
193000.000, 0.300, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  
    0.0,   0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  
    0.0,   0.0,  0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,  
    0.0,   0.0,  1.0,  1.0,  1.0,  1.0,  1.0,  0.0,  0.0, 0.0, 
    0.0,   0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  
    0.0,   0.0,  0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.707, 
    0.483,  0.517, 0.0, 0.0, 0.0, 1.0, 0.0, -0.630,0.097,0.770, 
    0.0,   0.0, 20.000, 0.001,0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  
    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  
    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 225.000,330.000,50.000,0.0,  
    0.0,   0.0, 0.0,  0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0,  
    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  
    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  
    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  
    0.0,   0.0, 0.0,  0.0, 0.5, 1.0, 0.0, 0.0, 0.0, 0.0,  
    0.0,   0.0, 1.0, 10.0,1.0e-5,0.0,0.0, 0.0, 0.0, 0.0)) 
 
mdb.models['Model-1'].HomogeneousSolidSection(material='M5-095deg', name='Section-M5-
095', thickness=1.0) 
mdb.models['Model-1'].parts['Part-
total'].SectionAssignment(region=Region(cells=mdb.models['Model-1'].parts['Part-
total'].cells.findAt(((3.841816, 6.082466, 0.331495),),)), sectionName='Section-M5-095') 
 
mdb.models['Model-1'].Material(name='M5-138deg') 
mdb.models['Model-1'].materials['M5-138deg'].Depvar(n=135) 
mdb.models['Model-1'].materials['M5-138deg'].Density(table=((8.000000e-015,),)) 
mdb.models['Model-1'].materials['M5-138deg'].UserMaterial(unsymm=ON, 
mechanicalConstants=( 
193000.000, 0.300, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  
    0.0,   0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  
    0.0,   0.0,  0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,  
    0.0,   0.0,  1.0,  1.0,  1.0,  1.0,  1.0,  0.0,  0.0, 0.0, 
    0.0,   0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  
    0.0,   0.0,  0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.832, 
    0.528,  0.171, 0.0, 0.0, 0.0, 1.0, 0.0, -0.094,0.437,-0.895, 
    0.0,   0.0, 20.000, 0.001,0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  
    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  
    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 225.000,330.000,50.000,0.0,  
    0.0,   0.0, 0.0,  0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0,  
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    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  
    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  
    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  
    0.0,   0.0, 0.0,  0.0, 0.5, 1.0, 0.0, 0.0, 0.0, 0.0,  
    0.0,   0.0, 1.0, 10.0,1.0e-5,0.0,0.0, 0.0, 0.0, 0.0)) 
 
mdb.models['Model-1'].HomogeneousSolidSection(material='M5-138deg', name='Section-M5-
138', thickness=1.0) 
mdb.models['Model-1'].parts['Part-
total'].SectionAssignment(region=Region(cells=mdb.models['Model-1'].parts['Part-
total'].cells.findAt(((9.830544, 2.682826, 3.532354),),)), sectionName='Section-M5-138') 
 
mdb.models['Model-1'].Material(name='M1-529deg') 
mdb.models['Model-1'].materials['M1-529deg'].Depvar(n=135) 
mdb.models['Model-1'].materials['M1-529deg'].Density(table=((8.000000e-015,),)) 
mdb.models['Model-1'].materials['M1-529deg'].UserMaterial(unsymm=ON, 
mechanicalConstants=( 
193000.000, 0.300, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  
    0.0,   0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  
    0.0,   0.0,  0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0,  
    0.0,   0.0,  1.0,  1.0,  1.0,  1.0,  1.0,  0.0,  0.0, 0.0, 
    0.0,   0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  
    0.0,   0.0,  0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, -0.247, 
    -0.175,  -0.953, 0.0, 0.0, 0.0, 1.0, 0.0, 0.850,0.433,-0.299, 
    0.0,   0.0, 20.000, 0.001,0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  
    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  
    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 225.000,330.000,50.000,0.0,  
    0.0,   0.0, 0.0,  0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0,  
    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  
    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  
    0.0,   0.0, 0.0,  0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,  
    0.0,   0.0, 0.0,  0.0, 0.5, 1.0, 0.0, 0.0, 0.0, 0.0,  
    0.0,   0.0, 1.0, 10.0,1.0e-5,0.0,0.0, 0.0, 0.0, 0.0)) 
 
mdb.models['Model-1'].HomogeneousSolidSection(material='M1-529deg', name='Section-M1-
529', thickness=1.0) 
mdb.models['Model-1'].parts['Part-
total'].SectionAssignment(region=Region(cells=mdb.models['Model-1'].parts['Part-
total'].cells.findAt(((7.805622, 6.569127, 6.353819),),)), sectionName='Section-M1-529') 

 

A.3.2    Model in ABAQUS/CAE 
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Figure A.3. A 3D grain structure consisting of three grains represented in ABAQUS. 
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