6,650 research outputs found

    Polynomial cubic splines with tension properties

    Get PDF
    In this paper we present a new class of spline functions with tension properties. These splines are composed by polynomial cubic pieces and therefore are conformal to the standard, NURBS based CAD/CAM systems

    A tension approach to controlling the shape of cubic spline surfaces on FVS triangulations

    Get PDF
    We propose a parametric tensioned version of the FVS macro-element to control the shape of the composite surface and remove artificial oscillations, bumps and other undesired behaviour. In particular, this approach is applied to C1 cubic spline surfaces over a four-directional mesh produced by two-stage scattered data fitting methods

    Smoothing: Local Regression Techniques

    Get PDF
    Smoothing methods attempt to find functional relationships between different measurements. As in the standard regression setting, the data is assumed to consist of measurements of a response variable, and one or more predictor variables. Standard regression techniques (Chapter ??) specify a functional form (such as a straight line) to describe the relation between the predictor and response variables. Smoothing methods take a more flexible approach, allowing the data points themselves to determine the form of the fitted curve. This article begins by describing several different approaches to smoothing, including kernel methods, local regression, spline methods and orthogonal series. A general theory of linear smoothing is presented, which allows us to develop methods for statistical inference, model diagnostics and choice of smoothing parameters. The theory is then extended to more general settings, including multivariate smoothing and likelihood models. --
    corecore