58 research outputs found

    Automatic colonic polyp detection using curvature analysis for standard and low dose CT data

    Get PDF
    Colon cancer is the second leading cause of cancer related deaths in the developed nations. Early detection and removal of colorectal polyps via screening is the most effective way to reduce colorectal cancer (CRC) mortality. Computed Tomography Colonography (CTC) or Virtual Colonoscopy (VC) is a rapidly evolving non-invasive technique and the medical community view this medical procedure as an alternative to the standard colonoscopy for the detection of colonic polyps. In CTC the first step for automatic polyp detection for 3D visualization of the colon structure and automatic polyp detection addresses the segmentation of the colon lumen. The segmentation of colon lumen is far from a trivial task as in practice many datasets are collapsed due to incorrect patient preparation or blockages caused by residual water/materials left in the colon. In this thesis a robust multi-stage technique for automatic segmentation of the colon is proposed tha t maximally uses the anatomical model of a generic colon. In this regard, the colon is reconstructed using volume by length analysis, orientation, length, end points, geometrical position in the volumetric data, and gradient of the centreline of each candidate air region detected in the CT data. The proposed method was validated using a total of 151 standard dose (lOOmAs) and 13 low-dose (13mAs-40mAs) datasets and the collapsed colon surface detection was always higher than 95% with an average of 1.58% extra colonic surface inclusion. The second major step of automated CTC attempts the identification of colorectal polyps. In this thesis a robust method for polyp detection based on surface curvature analysis has been developed and evaluated. The convexity of the segmented colon surface is sampled using the surface normal intersection, Hough transform, 3D histogram, Gaussian distribution, convexity constraint and 3D region growing. For each polyp candidate surface the morphological and statistical features are extracted and the candidate surface is classified as a polyp/fold structure using a Feature Normalized Nearest Neighbourhood classifier. The devised polyp detection scheme entails a low computational overhead (typically takes 3.60 minute per dataset) and shows 100% sensitivity for polyps larger than 10mm, 92% sensitivity for polyps in the range 5 to 10mm and 64.28% sensitivity for polyp smaller than 5mm. The developed technique returns in average 4.01 false positives per dataset. The patient exposure to ionising radiation is the major concern in using CTC as a mass screening technique for colonic polyp detection. A reduction of the radiation dose will increase the level of noise during the acquisition process and as a result the quality of the CT d a ta is degraded. To fully investigate the effect of the low-dose radiation on the performance of automated polyp detection, a phantom has been developed and scanned using different radiation doses. The phantom polyps have realistic shapes (sessile, pedunculated, and flat) and sizes (3 to 20mm) and were designed to closely approximate the real polyps encountered in clinical CT data. Automatic polyp detection shows 100% sensitivity for polyps larger than 10mm and shows 95% sensitivity for polyps in the range 5 to 10mm. The developed method was applied to CT data acquired at radiation doses between 13 to 40mAs and the experimental results indicate th a t robust polyp detection can be obtained even at radiation doses as low as 13mAs

    Enhancement of virtual colonoscopy system.

    Get PDF
    Colorectal cancer is the fourth most common cancer, and the fourth leading cause of cancer related death in the United States. It also happens to be one of the most preventable cancers provided an individual performs a regular screening. For years colonoscopy via colonoscope was the only method for colorectal cancer screening. In the past decade, colonography or virtual colonoscopy (VC) has become an alternative (or supplement) to the traditional colonoscopy. VC has become a much researched topic since its introduction in the mid-nineties. Various visualization methods have been introduced including: traditional flythrough, colon flattening, and unfolded-cube projection. In recent years, the CVIP Lab has introduced a patented visualization method for VC called flyover. This novel visualization method provides complete visualization of the large intestine without significant modification to the rendered three-dimensional model. In this thesis, a CVIP Lab VC interface was developed using Lab software to segment, extract the centerline, split (for flyover), and visualize the large intestine. This system includes adaptive level sets software to perform large intestine segmentation, and CVIP Lab patented curve skeletons software to extract the large intestine centerline. This software suite has not been combined in this manner before so the system stands as a unique contribution to the CVIP Lab colon project. The system is also a novel VC pipeline when compared to other academic and commercial VC methods. The complete system is capable of segmenting, finding the centerline, splitting, and visualizing a large intestine with a limited number of slices (~350 slices) for VC in approximately four and a half minutes. Complete CT scans were also validated with the centerline extraction external to the system (since the curve skeletons code used for centerline extraction cause memory exceptions because of high memory utilization)

    Искусственный интеллект при колоректальном раке: обзор

    Get PDF
    The study objective: the study objective is to examine the use of artificial intelligence (AI) in the diagnosis, treatment, and prognosis of Colorectal Cancer (CRC) and discuss the future potential of AI in CRC. Material and Methods. The Web of Science, Scopus, PubMed, Medline, and eLIBRARY databases were used to search for the publications. A study on the application of Artificial Intelligence (AI) to the diagnosis, treatment, and prognosis of Colorectal Cancer (CRC) was discovered in more than 100 sources. In the review, data from 83 articles were incorporated. Results. The review article explores the use of artificial intelligence (AI) in medicine, specifically focusing on its applications in colorectal cancer (CRC). It discusses the stages of AI development for CRC, including molecular understanding, image-based diagnosis, drug design, and individualized treatment. The benefits of AI in medical image analysis are highlighted, improving diagnosis accuracy and inspection quality. Challenges in AI development are addressed, such as data standardization and the interpretability of machine learning algorithms. The potential of AI in treatment decision support, precision medicine, and prognosis prediction is discussed, emphasizing the role of AI in selecting optimal treatments and improving surgical precision. Ethical and regulatory considerations in integrating AI are mentioned, including patient trust, data security, and liability in AI-assisted surgeries. The review emphasizes the importance of an AI standard system, dataset standardization, and integrating clinical knowledge into AI algorithms. Overall, the article provides an overview of the current research on AI in CRC diagnosis, treatment, and prognosis, discussing its benefits, challenges, and future prospects in improving medical outcomes.Цель исследования - оценка возможностей использования искусственного интеллекта (ИИ) в диагностике, лечении и прогнозировании колоректального рака (КРР), а также обсуждение потенциала ИИ в лечении КРР. Материал и методы. Проведен поиск научных публикаций в поисковых системах Web of Science, Scopus, PubMed, Medline и eLIBRARY. Было просмотрено более 100 источников по применению ИИ для диагностики, лечения и прогнозирования КРР. В обзор включены данные из 83 статей. Результаты. Проведен анализ литературы, посвященной применению искусственного интеллекта в медицине, особое внимание уделено его использованию при колоректальном раке. Обсуждаются этапы развития ИИ при КРР, включая молекулярную верификацию, лучевую диагностику, разработку лекарств и индивидуальное лечение. Подчеркнуты преимущества ИИ в анализе медицинских изображений, таких как КТ, МРТ и ПЭТ, что повышает точность диагностики. Рассматриваются такие проблемы развития ИИ, как стандартизация данных и интерпретируемость алгоритмов машинного обучения. Подчеркивается роль ИИ в выборе оптимальной тактики лечения и повышении эффективности хирургического вмешательства. Учитываются этические и нормативные аспекты ИИ, включая доверие пациентов, безопасность данных и ответственность в проведении операций с использованием ИИ. Обсуждаются преимущества ИИ в диагностике, лечении и прогнозировании колоректального рака, проблемы и перспективы улучшения результатов лечения

    Segmentation and polyp detection in virtual colonoscopy : a complete system for computer aided diagnosis

    Get PDF
    El cancer colorectal es una de las mayores causas de muerte por cancer en el mundo. La deteccion temprana de polipos es fundamental para su tratamiento, permitiendo alcanzar tasas del 90% de curabilidad. La tecnica habitual para la deteccion de polipos, debido a su elevada performance, es la colonoscopia optica (tecnica invasiva y extremadamente cara). A mediados de los '90 surge la tecnica denominada colonoscopia virtual. Esta tecnica consiste en la reconstruccion 3D del colon a partir de cortes de tomografia computada. Es por ende una tecnica no invasiva, y relativamente barata, pero la cantidad de falsos positivos y falsos negativos producida por estos metodos esta muy por encima de los maximos aceptados en la practica medica. Los avances recientes en las tecnicas de imagenologia parecerian hacer posible la reduccion de estas tasas. Como consecuencia de esto, estamos asistiendo a un nuevo interes por la colonoscopia virtual. En este trabajo se presenta un sistema completo de diagnostico asistido por computadora. La primera etapa del sistema es la segmentacion, que consiste en la reconstruccion 3D de la superficie del colon a partir del volumen tomografico. El aporte principal en este paso es el suavizado de la imagen. A partir de la superficie, se detectan aquellas zonas candidatas de ser polipos mediante una estrategia multi-escala que permite delinear con precision la zona. Luego para cada candidato se extraen caracteristicas geometricas y de textura, que son calculadas tambien en el tejido que rodea la zona a efectos de compararlas. Finalmente las zonas candidatas se clasifican utilizando SVM. Los resultados obtenidos son prometedores, permitiendo detectar un 100% de los polipos mayoresColorectal cancer is the second leading cause of cancer-related death in the United States, and the third cause worldwide. The early detection of polyps is fundamental, allowing to reduce mortality rates up to 90%. Nowadays, optical colonoscopy is the most used detection method due in part to its relative high performance. Virtual Colonoscopy is a promising alternative technique that emerged in the 90's. It uses volumetric Computed Tomographic data of the cleansed and air-distended colon, and the examination is made by a specialist from the images in a computer. Therefore, this technique is less invasive and less expensive than optical colonoscopy, but up to now the false positive and false negative rates are above the accepted medical limits. Recent advances in imaging techniques have the potential to reduce these rates; consequently, we are currently re-experiencing an increasing interest in Virtual Colonoscopy. In this work we propose a complete pipeline for a Computer-Aided Detection algorithm. The system starts with a novel and simple segmentation step. We then introduce geometrical and textural features that take into account not only the candidate polyp region, but the surrounding area at multiple scales as well. This way, our proposed CAD algorithm is able to accurately detect candidate polyps by measuring local variations of these features. Candidate patches are then classi ed using SVM. The whole algorithm is completely automatic and produces state-of-the-art results, achieving 100% sensitivity for polyps greater than 6mm in size with less than one false positive per case, and 100% sensitivity for polyps greater than 3mm in size with 2:2 false positives per case

    Geodesic tractography segmentation for directional medical image analysis

    Get PDF
    Acknowledgements page removed per author's request, 01/06/2014.Geodesic Tractography Segmentation is the two component approach presented in this thesis for the analysis of imagery in oriented domains, with emphasis on the application to diffusion-weighted magnetic resonance imagery (DW-MRI). The computeraided analysis of DW-MRI data presents a new set of problems and opportunities for the application of mathematical and computer vision techniques. The goal is to develop a set of tools that enable clinicians to better understand DW-MRI data and ultimately shed new light on biological processes. This thesis presents a few techniques and tools which may be used to automatically find and segment major neural fiber bundles from DW-MRI data. For each technique, we provide a brief overview of the advantages and limitations of our approach relative to other available approaches.Ph.D.Committee Chair: Tannenbaum, Allen; Committee Member: Barnes, Christopher F.; Committee Member: Niethammer, Marc; Committee Member: Shamma, Jeff; Committee Member: Vela, Patrici

    Registration of prone and supine CT colonography images and its clinical application

    Get PDF
    Computed tomographic (CT) colonography is a technique for detecting bowel cancer and potentially precancerous polyps. CT imaging is performed on the cleansed and insufflated bowel in order to produce a virtual endoluminal representation similar to optical colonoscopy. Because fluids and stool can mimic pathology, images are acquired with the patient in both prone and supine positions. Radiologists then match endoluminal locations visually between the two acquisitions in order to determine whether pathology is real or not. This process is hindered by the fact that the colon can undergo considerable deformation between acquisitions. Robust and accurate automated registration between prone and supine data acquisitions is therefore pivotal for medical interpretation, but a challenging problem. The method proposed in this thesis reduces the complexity of the registration task of aligning the prone and supine CT colonography acquisitions. This is done by utilising cylindrical representations of the colonic surface which reflect the colon's specific anatomy. Automated alignment in the cylindrical domain is achieved by non-rigid image registration using surface curvatures, applicable even when cases exhibit local luminal collapses. It is furthermore shown that landmark matches for initialisation improve the registration's accuracy and robustness. Additional performance improvements are achieved by symmetric and inverse-consistent registration and iteratively deforming the surface in order to compensate for differences in distension and bowel preparation. Manually identified reference points in human data and fiducial markers in a porcine phantom are used to validate the registration accuracy. The potential clinical impact of the method has been evaluated using data that reflects clinical practise. Furthermore, correspondence between follow-up CT colonography acquisitions is established in order to facilitate the clinical need to investigate polyp growth over time. Accurate registration has the potential to both improve the diagnostic process and decrease the radiologist's interpretation time. Furthermore, its result could be integrated into algorithms for improved computer-aided detection of colonic polyps

    Virtual colon unfolding for polyp detection

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Feature extraction to aid disease detection and assessment of disease progression in CT and MR colonography

    Get PDF
    Computed tomographic colonography (CTC) is a technique employed to examine the whole colon for cancers and premalignant adenomas (polyps). Oral preparation is taken to fully cleanse the colon, and gas insufflation maximises the attenuation contrast between the enoluminal colon surface and the lumen. The procedure is performed routinely with the patient both prone and supine to redistribute gas and residue. This helps to differentiate fixed colonic pathology from mobile faecal residue and also helps discover pathology occluded by retained fluid or luminal collapse. Matching corresponding endoluminal surface locations with the patient in the prone and supine positions is therefore an essential aspect of interpretation by radiologists; however, interpretation can be difficult and time consuming due to the considerable colonic deformations that occur during repositioning. Hence, a method for automated registration has the potential to improve efficiency and diagnostic accuracy. I propose a novel method to establish correspondence between prone and supine CT colonography acquisitions automatically. The problem is first simplified by detecting haustral folds which are elongated ridgelike endoluminal structures and can be identified by curvature based measurements. These are subsequently matched using appearance based features, and their relative geometric relationships. It is shown that these matches can be used to find correspondence along the full length of the colon, but may also be used in conjunction with other registration methods to achieve a more robust and accurate result, explicitly addressing the problem of colonic collapse. The potential clinical value of this method has been assessed in an external clinical validation, and the application to follow-up CTC surveillance has been investigated. MRI has recently been applied as a tool to quantitatively evaluate the therapeutic response to therapy in patients with Crohn's disease, and is the preferred choice for repeated imaging. A primary biomarker for this evaluation is the measurement of variations of bowel wall thickness on changing from the active phase of the disease to remission; however, a poor level of interobserver agreement of measured thickness is reported and therefore a system for accurate, robust and reproducible measurements is desirable. I propose a novel method which will automatically track sections of colon, by estimating the positions of elliptical cross sections. Subsequently, estimation of the positions of the inner and outer bowel walls are made based on image gradient information and therefore a thickness measurement value can be extracted
    corecore