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Abstract

The study objective: the study objective is to examine the use of artificial intelligence (AI) in the diagnosis, 
treatment, and prognosis of Colorectal Cancer (CRC) and discuss the future potential of AI in CRC. Material 
and Methods. The Web of Science, Scopus, PubMed, Medline, and eLIBRARY databases were used to 
search for the publications. A study on the application of Artificial Intelligence (AI) to the diagnosis, treatment, 
and prognosis of Colorectal Cancer (CRC) was discovered in more than 100 sources. In the review, data 
from 83 articles were incorporated. Results. The review article explores the use of artificial intelligence (AI) 
in medicine, specifically focusing on its applications in colorectal cancer (CRC). It discusses the stages of 
AI development for CRC, including molecular understanding, image-based diagnosis, drug design, and 
individualized treatment. The benefits of AI in medical image analysis are highlighted, improving diagnosis 
accuracy and inspection quality. Challenges in AI development are addressed, such as data standardization and 
the interpretability of machine learning algorithms. The potential of AI in treatment decision support, precision 
medicine, and prognosis prediction is discussed, emphasizing the role of AI in selecting optimal treatments and 
improving surgical precision. Ethical and regulatory considerations in integrating AI are mentioned, including 
patient trust, data security, and liability in AI-assisted surgeries. The review emphasizes the importance of an 
AI standard system, dataset standardization, and integrating clinical knowledge into AI algorithms. Overall, 
the article provides an overview of the current research on AI in CRC diagnosis, treatment, and prognosis, 
discussing its benefits, challenges, and future prospects in improving medical outcomes.
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Àííîòàöèÿ 

Öåëü èññëåäîâàíèÿ – оценка возможностей использования искусственного интеллекта (ИИ) в диа-
гностике, лечении и прогнозировании колоректального рака (КРР), а также обсуждение потенциала ИИ 
в лечении КРР. Ìàòåðèàë è ìåòîäû. Проведен поиск научных публикаций в поисковых системах Web 
of Science, Scopus, PubMed, Medline и eLIBRARY. Было просмотрено более 100 источников по приме-
нению ИИ для диагностики, лечения и прогнозирования КРР. В обзор включены данные из 83 статей.
Ðåçóëüòàòû. Проведен анализ литературы, посвященной применению искусственного интеллекта 
в медицине, особое внимание уделено его использованию при колоректальном раке. Обсуждаются 
этапы развития ИИ при КРР, включая молекулярную верификацию, лучевую диагностику, разработку 
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лекарств и индивидуальное лечение. Подчеркнуты преимущества ИИ в анализе медицинских изо-
бражений, таких как КТ, МРТ и ПЭТ, что повышает точность диагностики. Рассматриваются такие 
проблемы развития ИИ, как стандартизация данных и интерпретируемость алгоритмов машинного 
обучения. Подчеркивается роль ИИ в выборе оптимальной тактики лечения и повышении эффектив-
ности хирургического вмешательства. Учитываются этические и нормативные аспекты ИИ, включая 
доверие пациентов, безопасность данных и ответственность в проведении операций с использованием 
ИИ. Обсуждаются  преимущества ИИ в диагностике, лечении и прогнозировании колоректального рака, 
проблемы и перспективы улучшения результатов лечения. 

Êëþ÷åâûå ñëîâà: èñêóññòâåííûé èíòåëëåêò, ãëóáîêîå îáó÷åíèå, ìàøèííîå îáó÷åíèå, äèàãíîñòèêà, 
ëå÷åíèå, êîëîðåêòàëüíûé ðàê.

Introduction
Heavy scientific and engineering calculations have 

transitioned from being done primarily by the human 
brain to being done more rapidly and precisely by 
computers since the invention of the computer. With 
the advancement of computer science and technology, 
artificial intelligence (AI) has progressed quickly. 
AI is a broad phrase that refers to computer simula-
tion, decision-making, language comprehension, 
problem-solving, voice and image recognition, and 
other «intelligent» functions that people accomplish 
[1–2]. Machine learning (ML), deep learning (DL), 
anti-learning, quasi-supervised learning (QSL), and 
active learning (AL) are the several types of AI 
[3–6]. ML is a type of AI algorithm that adjusts and 
improves itself using statistical approaches [2]. ML 
generates algorithms for assessing data and learning to 
anticipate models, implying that the decision-making 
process is data-driven with as minimal human interac-
tion as feasible [3, 7]. The model developed by ML 
can be utilized to predict the clinical phenotype as an 
independent executable system [8]. Support vector 
machine (SVM), neural network (NN), random forest 
(RF), decision tree, and regression analysis are all es-
sential technologies in machine learning [9–13]. ML 
is split into supervised learning, unsupervised learn-
ing, and semi-supervised learning (SSL) based on the 
association of class labels [7, 8]. The most common 
applications of supervised learning are classification 
and regression issues. For a cluster, density estima-
tion, and dimensionality reduction, unsupervised 
learning is used [8]. When unlabeled data is coupled 
with a small quantity of labeled data, SSL can greatly 
increase learning accuracy [14]. At the moment, super-
vised learning is a key component of AI and machine 
learning in the medical industry [1]. Because it takes 
into account the patients' features, supervised learning 
produces more accurate outcomes than other AI tech-
niques [9]. DL is a type of advanced machine learning 
(ML) based on an artificial neural network (ANN) [1], 
which is inspired by the biological properties of the 
human brain, particularly the connections between 
neurons [1, 3]. DL can not only locate lesions, provide 
differential diagnostic recommendations, and create 
basic medical reports automatically, but it can also 
learn on its own, i.e., crucial characters and amounts 
can be extracted without a manual indication if training 

data is provided [3]. DL also aspires to replicate the 
brain's learning process and process massive amounts 
of high-dimensional data [15]. QSL is a statistical 
learning technique that eliminates the need for human 
tagging of normal and malignant tissue samples in 
classical supervised learning and significantly lowers 
expert intervention [4]. In most cases, machine learn-
ing requires a huge number of annotated training sets, 
which are costly to produce. AI helps to reduce the 
amount of the needed annotation set and creates a more 
accurate categorization model [6]. In certain studies, 
the anti-learning strategy outperformed a set of ML 
algorithms in predicting the stage of colorectal cancer 
(CRC) from immunological characteristics [5]. CRC 
is the second most common cause of cancer death in 
men and the third most common cause of cancer death 
in women [16]. Colonic polyps, which can cause 80 
percent to 95 percent of CRC [17], can be discovered 
and rejected in the precancerous stage by the screening 
technique, which can help prevent CRC development 
[18]. Despite the fact that early and thorough screening 
can reduce cancer incidence and mortality, patients 
avoid CRC screening because of the difficulty and cost 
[18–20]. Imaging diagnosis, endoscopy, and pathology 
diagnosis are the three main approaches for diagnos-
ing CRC. Endoscopic treatment, surgical treatment, 
and pharmacological treatment are the three types 
of treatment available. Lymph node dissection is not 
necessary intra-operatively if lymph node metastases 
are not established preoperatively [21]. Because AI 
can learn from a vast data collection, it has a lot of 
diagnostic potential. AI outperforms medical expertise 
and known biomarkers in the clinical setting [9]. The 
use of AI in the diagnosis, treatment, and prognosis 
of CRC will be discussed in this paper.

Use of artificial intelligence 
in diagnosis of CRC 
Deep Learning in Imaging Diagnosis 
Clinical diagnosis and treatment of CRC can be 

aided by the DL intelligent assistance diagnosis system 
[22]. The nature of the selected area (cancerous or non-
cancerous) is usually determined by the informative 
aspects of the known prospective (cancerous) structure 
in a computer-aided diagnosis (CAD) system [23]. 
Visual signals (CAD markings) related with possible 
pathology can aid radiologists in diagnosing CRC. 



101СИБИРСКИЙ ОНКОЛОГИЧЕСКИЙ ЖУРНАЛ. 2023; 22(3): 99–107

ÎÁÇÎÐÛ

In addition, computer-assisted detection (CADe) can 
help pinpoint the site of the disease and whether the 
aberration is benign or malignant. Doctors must finally 
determine whether or not to “trust” the CAD mark, 
regardless of the outcome [24]. High detection sensi-
tivity and a low false-positive rate (FP) are essential 
for radiologists to approve the clinical use of CAD 
systems [23]. Other colorectal pathological morpholo-
gies, aside from polyps and cancer, are uncommon, 
which may explain why CAD solutions for computed 
tomography colonography (CTC) have emerged so 
quickly [25]. Although CTC CAD enhanced sensitivity 
in detecting polyps without reducing specificity, the 
lesions mistaken for false-negatives were substantially 
larger and irregular [24–26]. According to Regge et al. 
[24], the difficulty of characterisation (irregular and flat 
shape) was the main factor of radiologists’ rejection 
of true positive CAD results. Despite the fact that the 
consequences of CRC misdiagnosis are more worse 
than those of polyp misdiagnosis, research into CADe 
for CRC in CTC is currently limited [27].The absence 
of research on the detection characteristics of early 
CRC [28] and the fact that efficiently distinguishing 
masses from normal colonic anatomy based on the de-
sign aspects of mathematical pictures [27] may be the 
reasons for this. Taylor et al. [28] gathered morphologi-
cal data of flat tumours by finding tumours in order to 
distinguish tumours from normal tissue structure, and 
discovered that the CAD method paired with CTC was 
relatively successful for diagnosing flat (non-polypoid) 
cancer. CAD can increase picture interpretation speed, 
locate polyps missed by specialists, reduce variability 
between observers, and improve polyp detection sensi-
tivity [29, 30]. The increase in FP created by CAD, on 
the other hand, may diminish efficiency [25]. In CTC, 
deep transfer learning can considerably improve polyp 
detection accuracy [31]. Because the CADe system 
may employ virtual intra-cavity images of polyps to 
change the deep convolutional NN (DCNN) trained on 
millions of non-medical images, the DCNN can detect 
polyps [31]. Using a visualization method in CTC, it 
can considerably increase the diagnosis of polyps for 
unskilled clinicians. The visualization approach, when 
used in conjunction with the CAD system, can reduce 
radiologists’ interpretation time and improve the de-
tection of colon cancers in CTC [32]. Van Wijk et al. 
[33] proposed a method for evaluating polyps larger 
than or equal to 6 mm by measuring the protrusion of 
candidate objects in a scale adaptive approach, with 
a sensitivity of 95 %. It was thought that determining 
the size of polyps, rather than the shape, could lower 
the likelihood of missed identification of big polyps 
[33]. The CTC dataset analyzed by the CAD method 
was obtained from polyp patients by Kim et al [34]. 
The CTC dataset was created to describe the lumpy 
structure that extends into the lumen, and it was able 
to detect large polyps (>6 mm) with high sensitivity 
and acceptable FP. Nappi et al. [35] created a CADe 
approach to detect the location of colonic polyps based 

on volume and form features, and utilized this method 
to evaluate serrated polyps confirmed by colonoscopy 
and biopsy. The method’s detection accuracy was 
substantially higher than that of the old CADe system, 
according to the results [35]. As a result, the use of 
CAD diagnostics has a bright future. However, more 
data sets and effective annotations are still required to 
improve AI diagnosis accuracy [24]. For classifying 
the contrast enhancement time, the best portal venous 
phase timing recognition scan was chosen, which may 
assist assess the radiologic properties of the tumour 
and evaluate the efficacy of patients with advanced 
CRC [36]. Soomro et al. [37] discovered that three-
dimensional (3D) fully convolutional NNs combined 
with 3D level-set had a higher sensitivity in the seg-
mentation of CRC on magnetic resonance imaging 
(MRI) than 3D fully convolutional NNs alone, which 
aided in the diagnosis of CRC. The 3D full collabora-
tive network architecture based on DL may segment 
CRC more accurately and effectively than other ap-
proaches in 3D-T2 weighted MRI [38].The use of a 
faster region-based convolution NN (Faster R-CNN) 
in a high-resolution MRI picture of rectal cancer has 
a high accuracy in evaluating tumour borders [39, 40]. 
One of the most important elements influencing CRC 
patients’ treatment decisions is the circumferential re-
section margin. In MRI images of CRC, Joshi et al [41] 
developed an automatic computation and visualization 
method of circumferential resection margin distance 
to partition the middle rectal fascia, corresponding 
tumour, and lymph node into various sections. The 
shortest cut edge was automatically analyzed using 
segmentation, and the findings were nearly equal to 
the experts’ assessment [41].

DL in Pathological Diagnosis
CRC is virtually completely treatable if caught 

early. However, because a double evaluation of the 
biopsy and the colonoscopy picture is necessary to 
obtain an accurate diagnosis, the cost of diagnosis 
has doubled [42]. As a result, the usage of DL and 
automatic image analysis in pathology is expanding, 
which is referred to as the pathology's third revolution 
[43]. Although automated coding in DL is useful for 
extracting multi-layer picture characteristics and deep 
NNs can categorize them, training artificial neurons 
takes a long time [44]. In pathological image analy-
sis, convolutional NN (CNN) is a common method. 
CNN provides the advantages of convenience for 
end-to-end learning (CNN learning parameters and 
representations are designed manually), flexibility, and 
high capacity when compared to other approaches [1]. 
The colour space used for recognizing cancer tissue 
is critical since it has a significant impact on the clas-
sification model's effectiveness. The tissue classifica-
tion of distinct colour spaces is analyzed using CNN. 
S. Tiwari demonstrated that the hue, saturation, and 
value (HSV) colour space was more suitable for cancer 
tissue classification than any other colour model [45]. 
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It's difficult to detect and classify nuclei in pathological 
pictures of cancer tissues stained with hematoxylin 
and eosin (H&E) because of cell heterogeneity, tex-
ture, and cell contact complexity [46, 47]. For nuclear 
detection, a space-constrained CNN based on DL was 
developed, which could allow for quantitative study 
of tissue components and clarification of the tumour 
microenvironment. Furthermore, when paired with 
CNN, the neighbour ensemble predictor was able to 
effectively forecast the discovered nuclear markers and 
classify the nuclei [46]. Despite the fact that qualitative 
and quantitative study of histopathological pictures 
can clarify the tumour and explore alternative cancer 
treatment choices, cell heterogeneity makes it difficult. 
When Faster R-CNN was applied in feature extraction, 
Zhang et al. [48] demonstrated that it had good accu-
racy and a lower cost of time, giving a valuable quan-
titative analysis group for pathological practice. CNN, 
which is frequently used to analyze histopathology 
pictures, solely works on the histological images itself, 
ignoring the stain degradation. In colon cancer, Xu et 
al. [49] developed a new model based on DCNN for 
classifying H&E and immunohistochemical images of 
epithelial and stromal cells. The DCNN-based model 
consistently outperformed the old hand-made model 
in discriminating stromal from epithelial cells. The 
malignant degree of adenocarcinoma is determined 
by the appearance of glands and nuclei. The correct 
identification and segmentation of the histological 
picture, which is required for quantitative diagnosis, 
is difficult due to appearance fluctuation, high resem-
blance, and tissue degradation. Chen et al. [50] aimed 
to improve identification and segmentation accuracy 
by using a depth profile awareness network that could 
output an accurate probability map of histology items 
and draw clean contour lines. The field of digital 
pathology is relatively new. Pathologists may benefit 
from the growth of digital pathology by improving 
the quality of routine pathological operations [51]. 
The CAD system, which is founded on the premise 
of extracting histopathological traits that pathologists 
think relevant, is critical to the advancement of dig-
ital pathology. The existence of these characteristics 
was then quantified using computer calculations [52, 
53]. There are two major phases to obtaining a CAD: 
The automatic segmentation of tumours in the H&E 
staining histological image and tumour segmentation 
of the complete section image in the histological sec-
tion [54]. Qaiser et al. [54] discovered that tumour and 
non-tumor plaques exhibited unique homology, and 
used connectivity between nucleuses to demonstrate 
the strength and relevance of persistent homology. 
Persistent homology maps (PHPs) were presented as 
a tool for distinguishing tumour from normal areas 
by imitating the unusual properties of tumour cell 
nucleus [54]. Other approaches, including classic CNN 
[54], are outperformed by PHPs. Two distinct tumour 
segmentation strategies are proposed: faster targeting 
without sacrificing accuracy and improved targeting 

accuracy. Competition algorithms were demonstrated 
to be inferior to the combination of PHPs and CNN 
features [54].

DL in Endoscopic Diagnosis 
Colonoscopy is a standard procedure for detect-

ing polyps in the colon. CRC incidence and mortality 
rates can be reduced by detecting and eliminating 
adenomatous polyps [16]. AI is required to improve 
machine performance and diagnosis accuracy, as 
well as to reduce operator variability and aid rapid 
treatment decision-making [2]. Furthermore, AI has 
the potential to enhance adenoma detection rates and 
lower polypectomy costs [55]. The effectiveness of 
colonoscopy inspection is influenced by the quality of 
intestinal preparation [56]. When faecal leftovers are 
present in the colon, the rate of polyps being ignored 
increases. Although the endoscopic image diagnosis 
programme based on CNN has produced positive re-
sults, the quality and quantity of training data is critical 
for its diagnostic ability [3, 57]. The use of CNN in 
conjunction with a colonoscopy technique is predicted 
to increase polyp identification rates and accuracy 
[58]. Zhou et al. [56] created a CNN-based system 
that was trained using images from colonoscopies. The 
system was proven to be more reliable than endoscopic 
physicians in diagnosing CRC in a human-machine 
competition. Taha et al. [59] proposed a DL solution 
for polyps from colonoscopy, which included a feature 
extraction pre-training architecture and the traditional 
SVM classifier.The method beats previous models in 
the early screening of CRC [59] because it avoids the 
high computational complexity and resource needs of 
CNN. Yao et al. [60] demonstrated that the RGB and 
HSV colour spaces could accurately characterize the 
frames in colonoscopy recordings. By incorporating 
prior knowledge based on vision into the data collected 
by DL, the model's efficiency could be improved. As 
a result, a feature extraction technique in HSV colour 
space was developed to increase diagnosis accuracy 
while lowering costs [60]. By wiping the mucosal wall 
and reexamining the hurried segment, McNeil et al. 
[61] suggested an automatic quality control system 
based on DCNN for increasing colonoscopy qual-
ity. The technology has the potential to boost polyp 
identification rates, which is important for early CRC 
diagnosis and prevention. Traditional colonoscopy has 
a missed diagnosis rate of up to 25 % [62, 63], owing 
to a lack of depth information, inter-observer vari-
ance, and contrast on the colon's surface [63, 64]. In 
endoscopic video, computer-aided technology is criti-
cal for polyp diagnosis. In the evolution of algorithm 
performance, the method based on DL takes the lead 
[65]. Minimizing the FP of colonic polyps is a diffi-
cult objective for CAD [66]. To estimate depth from 
endoscopic pictures, Mahmood et al. [64] developed 
a hybrid depth learning and graphics model based 
approach. Simultaneously, they generated training 
photos with the texture-free colon model and trained 
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the model with those images [64]. With a relative error 
of 0.164, the system was able to estimate the depth of 
virtual data, which helped to improve the CAD system 
and locate lesions [64]. Komeda et al. [67] thought 
CNN had the advantage of learning from vast data and 
resulting in high precision and quick processing time, 
therefore they created a CNN-CAD system to analyze 
endoscopic images retrieved from colonoscopy [67]. 
The CNNCAD method was found to be useful for 
the quick diagnosis of colonic polyps and to facilitate 
the decision-making process for colorectal polypec-
tomy after analysis and cross-validation of 1200 
colonoscopy cases [67]. The CAD method (dubbed 
RYCO) offered the promise for speedy and accurate 
computer-aided polyp detection in colonoscopy when 
compared to existing algorithms. The colonoscopy im-
age was fine-tuned using the quick target identification 
algorithm ResYOLO, which was pre-trained using a 
huge non-medical image database. Simultaneously, 
the temporal data was integrated by a tracker called 
Efficient Convolution Operator to boost ResYOLO's 
detection performance. RYCO might directly clarify 
the geographical characteristics of colorectal polyps 
and improve colorectal polyp detection effectiveness 
[68]. The optical diagnostic technique established by 
CNN [69] was proposed to distinguish stage T1b and 
Tis/T1a CRC. The early CRC digital images without 
magnification and under a pure white light endoscope 
were chosen as the training dataset by Zhu et al. [69]. 
122 early CRC pictures were utilized to evaluate di-
agnostic performance at the end of the training phase. 
The findings revealed that optical diagnoses using 
CNN had a high sensitivity but a low specificity, which 
was not the case with humans [69]. Polyp diagnosis in 
colonoscopy video was difficult due to variations in 
polyp size and form [70]. The Faster R-CNN, on the 
other hand, may lower the risk of polyp loss during 
colonoscopy [65]. Akbari et al. [70] also presented 
a CNN-based fully convolutional network (FCN) 
method for polyp segmentation. They executed suc-
cessful post processing for the probability map created 
by the network during the test phase. The approach was 
tested using the CVC-ColonDB database. As a result, 
FCN was able to obtain more accurate segmentation 
findings [70]. 3D-FCN exhibited a better recognition 
ability and could learn more representative spatiotem-
poral elements from colonoscopy footage than FCN 
[71]. Felfoul et al. [83] created a nanorobot capable 
of delivering medications to cancer cells. The robot 
detected hypoxia and the time endoscopic image diag-
nosis support system is to apply AI during colonoscopy 
without interfering with any doctor's work [72]. White 
light endoscopy alone can be used to perform real-time 
optical detection and analysis of polyps using the DL 
approach [73]. Endoscopists can use a real-time au-
tomatic polyp identification technology to swiftly and 
accurately diagnose lesions that could be adenomas 
[16]. Small-scale colorectal polyps can be resected 
and discarded thanks to the precision of endoscopic 

differential diagnosis [74]. Lund Henriksen et al. [74] 
investigated a system for automatic polyp detection to 
aid and automate the inspection procedures in order 
to alleviate the high cost, long time consuming, and 
patients' pain. When stochastic gradient descent was 
utilized as the training optimizer, the detection rate 
increased but the number of FP remained relatively 
consistent [74], as compared to root mean square 
propagation, stochastic gradient descent, and adaptive 
moment estimation. Tissue biopsy remains the gold 
standard, despite the fact that visual biopsy is a promis-
ing field. Optical biopsy results will be influenced by 
whether the surface microstructure accurately repre-
sents the histological properties of lesions [2, 16, 75, 
76]. The widespread use of microscopic technologies 
in clinical practice, particularly the combination of 
virtual chromoendoscopy and microscopic imaging, 
has heightened interest in the field of optical biopsy 
[77]. Using established optical evaluation criteria, 
endoscopists may consistently detect and differentiate 
microadenomatous and hyperplastic polyps [78]. The 
development of CAD and AI algorithms may be able 
to overcome the major drawbacks of ocular biopsy 
and modify the way colorectal lesions are treated [77, 
79]. Because of its great resolution, endocytoscopy 
is a useful approach for thorough diagnosis of CRC 
[76]. By evaluating the nucleus, crypt structure, and 
microvasculature in an endoscopic picture, Kudo et al. 
[80] created an AI-based system called EndoBRAIN 
that could identify the colon tumour. EndoBRAIN's 
initial training was accomplished out using endoscopic 
pictures. Endoscopists' diagnostic efficiency and Endo-
BRAIN's diagnostic performance were evaluated ret-
rospectively. The results suggested that EndoBRAIN 
could improve diagnosis accuracy [80].

Discussion
In the domains of computer, internet, and auto-

mobile engineering, artificial intelligence (AI) plays 
a critical role. “Personalization, accuracy, minimal 
incursion, and remoteness” [81] are the four primary 
paths of future medical growth. In medical, AI is first 
demonstrating its benefits in disease diagnosis, therapy, 
and prognosis. CRC is one of the most common hu-
man malignancies, and early detection and treatment 
have a significant impact on prognosis. The stages of 
AI development for CRC include: (1) understanding 
cancer at the molecular and cellular levels through DL; 
(2) assisting in the diagnosis of CRC based on images 
and pathological specimens; (3) clinical drug design 
and screening; and (4) promoting individualization of 
CRC diagnosis and treatment [81]. Imaging diagnosis 
and pathological diagnosis are the two main types of 
CRC diagnosis. The majority of the imaging datasets 
is objective and has a high level of information stand-
ardization. By extracting characteristics from experts, 
comprehensive picture training, generating classifica-
tion rules, and establishing mathematical models, the 
CAD system based on DL enables the automatic analy-
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sis and optimization of a variety of images. Second, AI 
aids in the examination of medical images. Auxiliary 
judgement results can be swiftly generated because to 
fast picture processing and analysis. The rate of missed 
diagnoses can be reduced with high sensitivity. The 
quality of the basic inspection can be improved by 
using expert knowledge and quantitative data analy-
sis. Third, many digital sections of CRC have been 
amassed in clinical pathology, and some have been 
preliminarily created using image recognition and DL 
technologies. However, AI cannot be divorced from 
its auxiliary role at this time. At the functional level, 
AI applications mostly comprise disease diagnosis and 
treatment decision assistance. In treatment decision 
support, the development of illness diagnosis support 
is active. Advanced technologies are becoming more 
integrated with medicine, and they are gradually be-
coming more important in aiding diagnosis and early 
detection of serious diseases. Although AI is quickly 
evolving, it is still in its infancy and faces numerous 
development roadblocks. For starters, AI development 
overemphasizes “probability association,” because 
diseases always exist in uncharted territory. Image AI 
progress hinges on the ability to mix data and medical 
knowledge. Second, training AI-based DL necessitates 
a large amount of label data. Although labelled data has 
a greater impact on training results than algorithms, 
obtaining high-quality data for training is a major chal-
lenge. Third, there is a lack of image data standardiza-
tion. In different hospitals, the level of imaging system 
interaction functioning is low. Furthermore, each imag-
ing system’s datasets are dispersed across the country 
with little interaction. Fourth, data annotation is quite 
challenging. AI training necessitates a big amount of 
labelled picture data, and annotation necessitates a 
significant amount of manual labour, both of which 
have a direct impact on the training results. Meanwhile, 
the “black box” issue with ML poses a number of 
clinical problems. ML can aid in the interpretation of 
imaging and pathology images, as well as the recom-
mendation of diagnostic and treatment options and the 
prediction of prognosis. The clinical implementation 
of AI technologies, however, has been delayed due 
to the “black box” problem. It is vital to improve the 
interpretability of machine learning algorithms in order 
to advance AI medicine. The “black box” problem 
can be solved gradually by including modest steps of 
biological interpretation and clinical knowledge into 
the ML algorithm. Data preparation is required to com-
plete the standardization process, which necessitates 
the integration and fusion of disparate data sets such 
as photographs, physiological data, and information 
texts. Simultaneously, automatic software analyses 
and extracts a vast number of elements from medical 
imaging data, including texture analysis, form de-
scription, and other quantitative indicators. Surgery 
and chemotherapy are the most common therapies 
for CRC. Individual precision medicine is enabled by 
AI, which selects optimal treatment methods based 
on big data analysis and comparison. At the same 

time, the advancement of robot technology ensures 
that surgery will be performed with high precision 
and that chemotherapy medications will be targeted 
precisely. However, the quality of data collected is 
insufficient to allow AI to make treatment decisions on 
its own. The complexity of the human body also slows 
down AI’s operational analysis and decision-making. 
Furthermore, due to their high cost, robots cannot be 
widely deployed. Patients are frequently concerned 
about the unknown survival period following surgery, 
so providing a defined survival term might alleviate 
this psychological burden. Through patient informa-
tion, surgery, and pathology, AI can forecast survival 
time and recurrence risk, as well as advice patients’ 
prognosis and nursing. As a result, high-quality, pre-
cise data as well as standard operational criteria are 
necessary. To put it another way, the accuracy of risk 
prediction is determined by the quality of prognosis 
data, which is determined by the quality of data created 
by diagnosis and therapy. The information available to 
clinicians is growing increasingly complex as diagnos-
tic technology advances. In terms of treatment, new 
medications are being created all the time, as well as 
novel treatment schemes and approaches. It is difficult 
for busy professionals to find the time and energy to 
gather, filter, and apply data. With the advancement of 
AI technology and image recognition, as well as other 
areas, AI will play an increasingly crucial role in CRC 
diagnosis and therapy. As a result, the development of 
an AI standard system will be a high priority in the 
future. The standardization of pictures, characteris-
tics, medical record data, and other datasets will help 
doctors diagnose and treat patients more accurately. 
DL and ML will be fully integrated to allow robots 
to perform surgery on their own. Medical services 
involve not just medical technology but also mental 
health counselling. Robots will provide nursing and 
change the psychological condition of patients in 
the future. However, in order to properly deploy AI 
robots in today’s medical context, moral and ethical 
considerations must be carefully explored. Various 
governments have attempted to set AI development 
ethical, legal, and regulatory compliance criteria. 
However, there are other obstacles to overcome before 
AI robots are totally accepted. To begin, patients’ trust 
and acceptance will be crucial in the development of 
AI robotic surgery. In many non-surgical applications, 
the “black box” has minimal theoretical transparency. 
Lack of openness in the medical area undermines doc-
tors’ and patients’ trust in and adoption of AI. Second, 
the safety of AI-assisted robotic surgery remains a 
major worry. Patient information security, network 
security, robot autonomy, and machine failure are all 
issues that must be addressed in the development of 
AI robot surgery. The incalculable loss will occur if 
the AI robot’s control is lost owing to external reasons 
such as network transmission delay and hacker assault. 
Third, determining who is to blame for medical negli-
gence is still a challenge. Given the limitations of AI 
robots, the problem of medical malpractice liability 
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will spark a discussion about the legal grey area. The 
answer to this issue will have a positive impact on AI 
progress [82].

Conclusion 
AI is currently at a period of weak AI, with no com-

munication skills. As a result, present AI technology is 

primarily employed for image identification and aux-
iliary analysis, rather than in-depth patient dialogue. 
With the advancement of AI technology, AI’s role in 
the diagnosis and treatment of CRC will continue to 
grow until the robot is capable of doing surgery on its 
own. AI will revolutionize medical technologies and 
even the medical model at that time.
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