2,853 research outputs found

    Insights into dynamic tuning of magnetic-resonant wireless power transfer receivers based on switch-mode gyrators

    Get PDF
    Magnetic-resonant wireless power transfer (WPT) has become a reliable contactless source of power for a wide range of applications. WPT spans different power levels ranging from low-power implantable devices up to high-power electric vehicles (EV) battery charging. The transmission range and efficiency of WPT have been reasonably enhanced by resonating the transmitter and receiver coils at a common frequency. Nevertheless, matching between resonance in the transmitter and receiver is quite cumbersome, particularly in single-transmitter multi-receiver systems. The resonance frequency in transmitter and receiver tank circuits has to be perfectly matched, otherwise power transfer capability is greatly degraded. This paper discusses the mistuning effect of parallel-compensated receivers, and thereof a novel dynamic frequency tuning method and related circuit topology and control is proposed and characterized in the system application. The proposed method is based on the concept of switch-mode gyrator emulating variable lossless inductors oriented to enable self-tunability in WPT receiversPeer ReviewedPostprint (published version

    A solid state Marx generator with a novel configuration

    Get PDF
    The new configuration proposed in this paper for Marx Generator (MG.) aims to generate high voltage for pulsed power applications through reduced number of semiconductor components with a more efficient load supplying process. The main idea is to charge two groups of capacitors in parallel through an inductor and take the advantage of resonant phenomenon in charging each capacitor up to a double input voltage level. In each resonant half a cycle, one of those capacitor groups are charged, and eventually the charged capacitors will be connected in series and the summation of the capacitor voltages can be appeared at the output of the topology. This topology can be considered as a modified Marx generator which works based on the resonant concept. Simulated models of this converter have been investigated in Matlab/SIMULINK platform and the acquired results fully satisfy the anticipations in proper operation of the converter

    Optimization of 8-Plate Multi-Resonant Coupling Structure Using Class-E\u3csup\u3e2\u3c/sup\u3e Based Capacitive-Wireless Power Transfer System

    Get PDF
    Capacitive-wireless power transfer (CPT) effectively charges battery-powered devices without a physical contact. It is an alternative to inductive-wireless power transfer (IPT) which is available in the present market. Compared with IPT, CPT offers flexibility in designing the coupling section. Because of its flexibility, CPT utilizes various coupling methods to enhance the coupling capacitance. Misalignment is a common issue in any WPT system. Among IPT and CPT, IPT has better performance for misalignments, but it requires bulk and expensive ferrite core to attain a high coupling coefficient. This work focuses on designing a CPT system to minimize the impact of misalignments. In this research, a novel 8-plate multi-resonant Class-E2 CPT system is developed to improve the performance of the CPT system for misalignments. The proposed CPT model expands the resonant frequency band, which results in better performance for misalignments compared with the regular 4-plate CPT system. The 8-plate coupling structure is designed to charge a 100 Ah drone battery. For this application, the coupling is formed when the drone lands on the capacitive- wireless charging pad. This work also presents the analysis of several dielectric materials with different dielectric constants. A well-designed capacitive coupler can effectively limit harmonics during the interaction between transmitter and receiver. Also, the effect of coupling plate shape is identified on the CPT system. The hardware tests indicate the round-shaped plates have better stability in coupling capacitance with the variation in frequency. The effect of misalignments is studied through the impedance tracking of the Class-E2 power converter. Impedance plots for 50 μH, and 100 μH resonant inductors are used to determine input current peak for each case. Additionally, hardware tests are performed to study the variation of input current and output voltage for a range of frequencies. The test results indicate the efficiency at optimal impedance point for a resonant inductor with 50 μH is 8% higher compared to the CPT with a 100 μH resonant inductor which highlights the effects of the resonant inductor on efficiency. The zero-voltage-switching (ZVS) limits are also identified for varying frequencies and duty cycles. Later in this research, the optimal design of the Class-E rectifier is identified to enhance the power transfer. Several cases were considered to investigate the impact of the secondary inductor on the output voltage and the ZVS property. Hardware tests validate that under optimal conditions the efficiency of the Class-E2 based CPT system improves by 18% compared with Ar \u3e\u3c 1. Further work presents the advantages of 8-plate multi-resonant coupling for misalignments. The proposed model has a simple design procedure which enhances the power flow from the inverter to the rectifier section. The hardware results of the proposed 8-plate multi-resonant coupling show an increase in efficiency to 88.5% for the 20.8 W test, which is 18% higher than regular 4-plate coupling. Because of the wider resonant frequency band [455- 485 kHz], compared with regular 4-plate coupling, the proposed design minimized the output voltage drop by 15% for 10% misalignment. Even for large misalignments, 8-plate improves the CPT performance by 40% compared with 4-plate coupling

    On-chip adaptive power management for WPT-Enabled IoT

    Get PDF
    Internet of Things (IoT), as broadband network connecting every physical objects, is becoming more widely available in various industrial, medical, home and automotive applications. In such network, the physical devices, vehicles, medical assistance, and home appliances among others are supposed to be embedded by sensors, actuators, radio frequency (RF) antennas, memory, and microprocessors, such that these devices are able to exchange data and connect with other devices in the network. Among other IoT’s pillars, wireless sensor network (WSN) is one of the main parts comprising massive clusters of spatially distributed sensor nodes dedicated for sensing and monitoring environmental conditions. The lifetime of a WSN is greatly dependent on the lifetime of the small sensor nodes, which, in turn, is primarily dependent on energy availability within every sensor node. Predominantly, the main energy source for a sensor node is supplied by a small battery attached to it. In a large WSN with massive number of deployed sensor nodes, it becomes a challenge to replace the batteries of every single sensor node especially for sensor nodes deployed in harsh environments. Consequently, powering the sensor nodes becomes a key limiting issue, which poses important challenges for their practicality and cost. Therefore, in this thesis we propose enabling WSN, as the main pillar of IoT, by means of resonant inductive coupling (RIC) wireless power transfer (WPT). In order to enable efficient energy delivery at higher range, high quality factor RIC-WPT system is required in order to boost the magnetic flux generated at the transmitting coil. However, an adaptive front-end is essential for self-tuning the resonant tank against any mismatch in the components values, distance variation, and interference from close metallic objects. Consequently, the purpose of the thesis is to develop and design an adaptive efficient switch-mode front-end for self-tuning in WPT receivers in multiple receiver system. The thesis start by giving background about the IoT system and the technical bottleneck followed by the problem statement and thesis scope. Then, Chapter 2 provides detailed backgrounds about the RIC-WPT system. Specifically, Chapter 2 analyzes the characteristics of different compensation topologies in RIC-WPT followed by the implications of mistuning on efficiency and power transfer capability. Chapter 3 discusses the concept of switch-mode gyrators as a potential candidate for generic variable reactive element synthesis while different potential applications and design cases are provided. Chapter 4 proposes two different self-tuning control for WPT receivers that utilize switch-mode gyrators as variable reactive element synthesis. The performance aspects of control approaches are discussed and evaluated as well in Chapter 4. The development and exploration of more compact front-end for self-tuned WPT receiver is investigated in Chapter 5 by proposing a phase-controlled switched inductor converter. The operation and design details of different switch-mode phase-controlled topologies are given and evaluated in the same chapter. Finally, Chapter 6 provides the conclusions and highlight the contribution of the thesis, in addition to suggesting the related future research topics.Internet de las cosas (IoT), como red de banda ancha que interconecta cualquier cosa, se está estableciendo como una tecnología valiosa en varias aplicaciones industriales, médicas, domóticas y en el sector del automóvil. En dicha red, los dispositivos físicos, los vehículos, los sistemas de asistencia médica y los electrodomésticos, entre otros, incluyen sensores, actuadores, subsistemas de comunicación, memoria y microprocesadores, de modo que son capaces de intercambiar datos e interconectarse con otros elementos de la red. Entre otros pilares que posibilitan IoT, la red de sensores inalámbricos (WSN), que es una de las partes cruciales del sistema, está formada por un conjunto masivo de nodos de sensado distribuidos espacialmente, y dedicados a sensar y monitorizar las condiciones del contexto de las cosas interconectadas. El tiempo de vida útil de una red WSN depende estrechamente del tiempo de vida de los pequeños nodos sensores, los cuales, a su vez, dependen primordialmente de la disponibilidad de energía en cada nodo sensor. La fuente principal de energía para un nodo sensor suele ser una pequeña batería integrada en él. En una red WSN con muchos nodos y con una alta densidad, es un desafío el reemplazar las baterías de cada nodo sensor, especialmente en entornos hostiles, como puedan ser en escenarios de Industria 4.0. En consecuencia, la alimentación de los nodos sensores constituye uno de los cuellos de botella que limitan un despliegue masivo práctico y de bajo coste. A tenor de estas circunstancias, en esta tesis doctoral se propone habilitar las redes WSN, como pilar principal de sistemas IoT, mediante sistemas de transferencia inalámbrica de energía (WPT) basados en acoplamiento inductivo resonante (RIC). Con objeto de posibilitar el suministro eficiente de energía a mayores distancias, deben aumentarse los factores de calidad de los elementos inductivos resonantes del sistema RIC-WPT, especialmente con el propósito de aumentar el flujo magnético generado por el inductor transmisor de energía y su acoplamiento resonante en recepción. Sin embargo, dotar al cabezal electrónico que gestiona y condicionada el flujo de energía de capacidad adaptativa es esencial para conseguir la autosintonía automática del sistema acoplado y resonante RIC-WPT, que es muy propenso a la desintonía ante desajustes en los parámetros nominales de los componentes, variaciones de distancia entre transmisor y receptores, así como debido a la interferencia de objetos metálicos. Es por tanto el objetivo central de esta tesis doctoral el concebir, proponer, diseñar y validar un sistema de WPT para múltiples receptores que incluya funciones adaptativas de autosintonía mediante circuitos conmutados de alto rendimiento energético, y susceptible de ser integrado en un chip para el condicionamiento de energía en cada receptor de forma miniaturizada y desplegable de forma masiva. La tesis empieza proporcionando una revisión del estado del arte en sistemas de IoT destacando el reto tecnológico de la alimentación energética de los nodos sensores distribuidos y planteando así el foco de la tesis doctoral. El capítulo 2 sigue con una revisión crítica del statu quo de los sistemas de transferencia inalámbrica de energía RIC-WPT. Específicamente, el capítulo 2 analiza las características de diferentes estructuras circuitales de compensación en RIC-WPT seguido de una descripción crítica de las implicaciones de la desintonía en la eficiencia y la capacidad de transferencia energética del sistema. El capítulo 3 propone y explora el concepto de utilizar circuitos conmutados con función de girador como potenciales candidatos para la síntesis de propósito general de elementos reactivos variables sintonizables electrónicamente, incluyendo varias aplicaciones y casos de uso. El capítulo 4 propone dos alternativas para métodos y circuitos de control para la autosintonía de receptores de energíaPostprint (published version

    Hybrid and modular multilevel converter designs for isolated HVDC–DC converters

    Get PDF
    Efficient medium and high-voltage dc-dc conversion is critical for future dc grids. This paper proposes a hybrid multilevel dc-ac converter structure that is used as the kernel of dc-dc conversion systems. Operation of the proposed dc-ac converter is suited to trapezoidal ac-voltage waveforms. Quantitative and qualitative analyses show that said trapezoidal operation reduces converter footprint, active and passive components' size, and on-state losses relative to conventional modular multilevel converters. The proposed converter is scalable to high voltages with controllable ac-voltage slope; implying tolerable dv/dt stresses on the converter transformer. Structural variations of the proposed converter with enhanced modularity and improved efficiency will be presented and discussed with regards to application in front-to-front isolated dc-dc conversion stages, and in light of said trapezoidal operation. Numerical results provide deeper insight of the presented converter designs with emphasis on system design aspects. Results obtained from a proof-of-concept 1-kW experimental test rig confirm the validity of simulation results, theoretical analyses, and simplified design equations presented in this paper. - 2013 IEEE.Scopu

    Vanadium redox flow batteries: Potentials and challenges of an emerging storage technology

    Get PDF
    open4noIn this paper an overview of Vanadium Redox Flow Battery technologies, architectures, applications and power electronic interfaces is given. These systems show promising features for energy storage in smart grid applications, where the intermittent power produced by renewable sources must meet strict load requests and economical opportunities. This paper reviews the vanadium-based technology for redox flow batteries and highlights its strengths and weaknesses, outlining the research lines that aim at taking it to full commercial success.openSpagnuolo, Giovanni, Guarnieri, Massimo; Mattavelli, Paolo; Petrone, Giovanni;Guarnieri, Massimo; Mattavelli, Paolo; Petrone, Giovanni; Spagnuolo, Giovann

    A GaN-Based Synchronous Rectifier with Reduced Voltage Distortion for 6.78 MHz Wireless Power Applications

    Get PDF
    The call for a larger degree of engineering innovation grows as wireless power transfer increases in popularity. In this thesis, 6.78 MHz resonant wireless power transfer is explained. Challenges in WPT such as dynamic load variation and electromagnetic interference due to harmonic distortion are discussed, and a literature review is conducted to convey how the current state of the art is addressing these challenges.A GaN-based synchronous rectifier is proposed as a viable solution, and a model of the circuit is constructed. The precisely derived model is compared to a linearized model to illustrate the importance of exactness within the model derivation. The model is then used to quantify the design space of circuit parameters Lr and Cr with regard to harmonic distortion, input phase control, and efficiency. Practical design decisions concerning the 6.78 MHz system are explained. These include gate driver choice and mitigation of PCB parasitics. The model is verified with open loop experimentation using a linear power amplifier, FPGA, electronic load, and two function generators. Current zero-crossing sensing is then introduced in order to achieve self-regulation of both the switching frequency and input phase. The details of the FPGA code and sensing scheme used to obtain this closed loop functionality are described in detail. Finally, conclusions are drawn, and future work is identified

    A Case Study: Influence of Circuit Impedance on the Performance of Class-E² Resonant Power Converter for Capacitive Wireless Power Transfer

    Get PDF
    The evolution of power electronics led to rapid development in wireless charging technology; as a result, a single active switch topology was introduced. The present market utilizes inductive wireless power transfer (IPT); because of the disadvantages of cost, size, and safety concerns, research on wireless power transfer was diverted towards capacitive wireless power transfer (CPT). This paper studies the optimal impedance tracking of the capacitive wireless power transfer system for maximum power transfer. Compared to prior methods developed for maximum power point tracking in power control, this paper proposes a new approach by means of finding impedance characteristics of the CPT system for a certain range of frequencies. Considering the drone battery as an application, a single active switch Class-E2 resonant converter with circular coupling plates is utilized. Impedance characteristics are identified with the help of equations related to the input and resonant impedance. The impedance tracking is laid out for various resonant inductors, and the difference in current peak is observed for each case. Simulations verify and provide additional information on the reactive type. Additionally, hardware tests provide the variation of input current and output voltage for a range of frequencies from 70 kHz to 300 kHz. Efficiency at the optimal impedance points for a resonant inductor with 50 μH and 100 μH are tested and analyzed. It is noted that the efficiency for a resonant inductor with 50 μH is 8% higher compared to the CPT with a 100 μH resonant inductor. Further hardware tests were performed to investigate the impact of frequency and duty cycle variation. Zero-voltage-switching (ZVS) limits have been discussed with respect to both frequency and duty cycle

    Design and Control of Power Converters for High Power-Quality Interface with Utility and Aviation Grids

    Get PDF
    Power electronics as a subject integrating power devices, electric and electronic circuits, control, and thermal and mechanic design, requires not only knowledge and engineering insight for each subarea, but also understanding of interface issues when incorporating these different areas into high performance converter design.Addressing these fundamental questions, the dissertation studies design and control issues in three types of power converters applied in low-frequency high-power transmission, medium-frequency converter emulated grid, and high-frequency high-density aviation grid, respectively, with the focus on discovering, understanding, and mitigating interface issues to improve power quality and converter performance, and to reduce the noise emission.For hybrid ac/dc power transmission,• Analyze the interface transformer saturation issue between ac and dc power flow under line unbalances.• Proposed both passive transformer design and active hybrid-line-impedance-conditioner to suppress this issue.For transmission line emulator,• Propose general transmission line emulation schemes with extension capability.• Analyze and actively suppress the effects of sensing/sampling bias and PWM ripple on emulation considering interfaced grid impedance.• Analyze the stability issue caused by interaction of the emulator and its interfaced impedance. A criterion that determines the stability and impedance boundary of the emulator is proposed.For aircraft battery charger,• Investigate architectures for dual-input and dual-output battery charger, and a three-level integrated topology using GaN devices is proposed to achieve high density.• Identify and analyze the mechanisms and impacts of high switching frequency, di/dt, dv/dt on sensing and power quality control; mitigate solutions are proposed.• Model and compensate the distortion due to charging transition of device junction capacitances in three-level converters.• Find the previously overlooked device junction capacitance of the nonactive devices in three-level converters, and analyze the impacts on switching loss, device stress, and current distortion. A loss calculation method is proposed using the data from the conventional double pulse tester.• Establish fundamental knowledge on performance degradation of EMI filters. The impacts and mechanisms of both inductive and capacitive coupling on different filter structures are understood. Characterization methodology including measuring, modeling, and prediction of filter insertion loss is proposed. Mitigation solutions are proposed to reduce inter-component coupling and self-parasitics

    A Three – tier bio-implantable sensor monitoring and communications platform

    Get PDF
    One major hindrance to the advent of novel bio-implantable sensor technologies is the need for a reliable power source and data communications platform capable of continuously, remotely, and wirelessly monitoring deeply implantable biomedical devices. This research proposes the feasibility and potential of combining well established, ‘human-friendly' inductive and ultrasonic technologies to produce a proof-of-concept, generic, multi-tier power transfer and data communication platform suitable for low-power, periodically-activated implantable analogue bio-sensors. In the inductive sub-system presented, 5 W of power is transferred across a 10 mm gap between a single pair of 39 mm (primary) and 33 mm (secondary) circular printed spiral coils (PSCs). These are printed using an 8000 dpi resolution photoplotter and fabricated on PCB by wet-etching, to the maximum permissible density. Our ultrasonic sub-system, consisting of a single pair of Pz21 (transmitter) and Pz26 (receiver) piezoelectric PZT ceramic discs driven by low-frequency, radial/planar excitation (-31 mode), without acoustic matching layers, is also reported here for the first time. The discs are characterised by propagation tank test and directly driven by the inductively coupled power to deliver 29 μW to a receiver (implant) employing a low voltage start-up IC positioned 70 mm deep within a homogeneous liquid phantom. No batteries are used. The deep implant is thus intermittently powered every 800 ms to charge a capacitor which enables its microcontroller, operating with a 500 kHz clock, to transmit a single nibble (4 bits) of digitized sensed data over a period of ~18 ms from deep within the phantom, to the outside world. A power transfer efficiency of 83% using our prototype CMOS logic-gate IC driver is reported for the inductively coupled part of the system. Overall prototype system power consumption is 2.3 W with a total power transfer efficiency of 1% achieved across the tiers
    • …
    corecore