309 research outputs found

    Variation of Korotkoff stethoscope sounds during blood pressure measurement: Analysis using a convolutional neural network

    Get PDF
    Korotkoff sounds are known to change their characteristics during blood pressure (BP) measurement, resulting in some uncertainties for systolic and diastolic pressure (SBP and DBP) determinations. The aim of this study was to assess the variation of Korotkoff sounds during BP measurement by examining all stethoscope sounds associated with each heartbeat from above systole to below diastole during linear cuff deflation. Three repeat BP measurements were taken from 140 healthy subjects (age 21 to 73 years; 62 female and 78 male) by a trained observer, giving 420 measurements. During the BP measurements, the cuff pressure and stethoscope signals were simultaneously recorded digitally to a computer for subsequent analysis. Heart beats were identified from the oscillometric cuff pressure pulses. The presence of each beat was used to create a time window (1s, 2000 samples) centered on the oscillometric pulse peak for extracting beat-by-beat stethoscope sounds. A time-frequency two-dimensional matrix was obtained for the stethoscope sounds associated with each beat, and all beats between the manually determined SBPs and DBPs were labeled as โ€˜Korotkoffโ€™. A convolutional neural network was then used to analyze consistency in sound patterns that were associated with Korotkoff sounds. A 10-fold cross-validation strategy was applied to the stethoscope sounds from all 140 subjects, with the data from ten groups of 14 subjects being analysed separately, allowing consistency to be evaluated between groups. Next, within-subject variation of the Korotkoff sounds analysed from the three repeats was quantified, separately for each stethoscope sound beat. There was consistency between folds with no significant differences between groups of 14 subjects (P = 0.09 to P = 0.62). Our results showed that 80.7% beats at SBP and 69.5% at DBP were analysed as Korotkoff sounds, with significant differences between adjacent beats at systole (13.1%, P = 0.001) and diastole (17.4%, P < 0.001). Results reached stability for SBP (97.8%, at 6th beats below SBP) and DBP (98.1%, at 6th beat above DBP) with no significant differences between adjacent beats (SBP P = 0.74; DBP P = 0.88). There were no significant differences at high cuff pressures, but at low pressures close to diastole there was a small difference (3.3%, P = 0.02). In addition, greater within subject variability was observed at SBP (21.4%) and DBP (28.9%), with a significant difference between both (P < 0.02). In conclusion, this study has demonstrated that Korotkoff sounds can be consistently identified during the period below SBP and above DBP, but that at systole and diastole there can be substantial variations that are associated with high variation in the three repeat measurements in each subject

    Blood Pressure Estimation from Electrocardiogram and Photoplethysmography Signals Using Continuous Wavelet Transform and Convolutional Neural Network

    Get PDF
    Cuff-less and continuous blood pressure (BP) measurement has recently become an active research area in the field of remote healthcare monitoring. There is a growing demand for automated BP estimation and monitoring for various long-term and chronic conditions. Automated BP monitoring can produce a good amount of rich health data, which increases the chance of early diagnosis and treatments that are critical for a long-term condition such as hypertension and Cardiovascular diseases (CVDs). However, mining and processing this vast amount of data is challenging, which is aimed to address in this research. We employed a continuous wavelet transform (CWT) and a deep convolutional neural network (CNN) to estimate the BP. The electrocardiogram (ECG), photoplethysmography (PPG) and arterial blood pressure (ABP) signals were extracted from the online Medical Information Mart for Intensive Care (MIMIC III) database. The scalogram of each signal was created and used for training and testing our proposed CNN model that can implicitly learn to extract the descriptive features from the training data. This study achieved a promising BP estimation approach has been achieved without employing engineered feature extraction that is comparable with previous works. Experimental results demonstrated a low root mean squere error (RMSE) rate of 3.36 mmHg and a high accuracy of 86.3% for BP estimations. The proposed CNN-based model can be considered as a reliable and feasible approach to estimate BP for continuous remote healthcare monitoring

    ๋”ฅ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ํ˜ˆ์•• ์˜ˆ์ธก ๊ธฐ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2020. 8. ์œค์„ฑ๋กœ.While COVID-19 is changing the world's social profile, it is expected that the telemedicine sector, which has not been activated due to low regulation and reliability, will also undergo a major change. As COVID-19 spreads in the United States, the US Department of Health \& Human Services temporarily loosens the standards for telemedicine, while enabling telemedicine using Facebook, Facebook Messenger-based video chat, Hangouts, and Skype. The expansion of the telemedicine market is expected to quickly transform the existing treatment-oriented hospital-led medical market into a digital healthcare service market focused on prevention and management through wearables, big data, and health records analysis. In this prevention and management-oriented digital healthcare service, it is very important to develop a technology that can easily monitor a person's health status. One of the vital signs that can be used for personal health monitoring is blood pressure. High BP is a common and dangerous condition. About 1 out of 3 adults in the U.S. (about 75 million people) have high BP. This common condition increases the risk of heart disease and stroke, two of the leading causes of death for Americans. High BP is called the silent killer because it often has no warning signs or symptoms, and many people are not aware they have it. For these reasons, it is important to develop a technology that can easily and conveniently check BP regularly. In biomedical data analysis, various studies are being attempted to effectively analyze by applying machine learning to biomedical big data accumulated in large quantities. However, collecting blood pressure-related data at the level of big data is very difficult and very expensive because it takes a lot of manpower and time. So in this dissertation, we proposed a three-step strategy to overcome these issues. First, we describe a BP prediction model with extraction and concentration CNN architecture, to process publicly disclosed sequential ECG and PPG dataset. Second, we evaluate the performance of the developed model by applying the developed model to privately measured data. To address the third issue, we propose the knowledge distillation method and input pre-processing method to improve the accuracy of the blood pressure prediction model. All the methods proposed in this dissertation are based on a deep convolutional neural network (CNN). Unlike other studies based on manual recognition of the features, by utilizing the advantage of deep learning which automatically extracts features, raw biomedical signals are used intact to reflect the inherent characteristics of the signals themselves.์ฝ”๋กœ๋‚˜ 19์— ์˜ํ•œ ์ „ ์„ธ๊ณ„์˜ ์‚ฌํšŒ์  ํ”„๋กœํ•„ ๋ณ€ํ™”๋กœ, ๊ทœ์ œ์™€ ์‹ ๋ขฐ์„ฑ์ด ๋‚ฎ๊ธฐ ๋•Œ๋ฌธ์— ํ™œ์„ฑํ™” ๋˜์ง€ ์•Š์€ ์›๊ฒฉ ์˜๋ฃŒ ๋ถ„์•ผ๋„ ํฐ ๋ณ€ํ™”๋ฅผ ๊ฒช์„ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋ฉ๋‹ˆ๋‹ค. ์ฝ”๋กœ๋‚˜ 19๊ฐ€ ๋ฏธ๊ตญ์— ํผ์ง์— ๋”ฐ๋ผ ๋ฏธ๊ตญ ๋ณด๊ฑด๋ณต์ง€๋ถ€๋Š” ์›๊ฒฉ ์ง„๋ฃŒ์˜ ํ‘œ์ค€์„ ์ผ์‹œ์ ์œผ๋กœ ์™„ํ™”ํ•˜๋ฉด์„œ ํŽ˜์ด์Šค๋ถ, ํŽ˜์ด์Šค๋ถ ๋ฉ”์‹ ์ € ๊ธฐ๋ฐ˜ ํ™”์ƒ ์ฑ„ํŒ…, ํ–‰์•„์›ƒ, ์Šค์นด์ดํ”„๋ฅผ ์‚ฌ์šฉํ•œ ์›๊ฒฉ ์ง„๋ฃŒ๋ฅผ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ–ˆ์Šต๋‹ˆ๋‹ค. ์›๊ฒฉ์˜๋ฃŒ ์‹œ์žฅ์˜ ํ™•์žฅ์€ ๊ธฐ์กด์˜ ์น˜๋ฃŒ์ค‘์‹ฌ ๋ณ‘์›์ฃผ๋„์˜ ์˜๋ฃŒ์‹œ์žฅ์„ ์›จ์–ด๋Ÿฌ๋ธ”, ๋น… ๋ฐ์ดํ„ฐ ๋ฐ ๊ฑด๊ฐ•๊ธฐ๋ก ๋ถ„์„์„ ํ†ตํ•œ ์˜ˆ๋ฐฉ ๋ฐ ๊ด€๋ฆฌ์— ์ค‘์ ์„ ๋‘” ๋””์ง€ํ„ธ ์˜๋ฃŒ ์„œ๋น„์Šค ์‹œ์žฅ์œผ๋กœ ๋น ๋ฅด๊ฒŒ ๋ณ€ํ™”์‹œํ‚ฌ ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋ฉ๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์˜ˆ๋ฐฉ ๋ฐ ๊ด€๋ฆฌ ์ค‘์‹ฌ์˜ ๋””์ง€ํ„ธ ํ—ฌ์Šค์ผ€์–ด ์„œ๋น„์Šค์—์„œ๋Š” ์‚ฌ๋žŒ์˜ ๊ฑด๊ฐ• ์ƒํƒœ๋ฅผ ์‰ฝ๊ฒŒ ๋ชจ๋‹ˆํ„ฐ๋ง ํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ์ˆ  ๊ฐœ๋ฐœ์ด ๋งค์šฐ ์ค‘์š”ํ•œ๋ฐ ํ˜ˆ์••์€ ๊ฐœ์ธ ๊ฑด๊ฐ• ๋ชจ๋‹ˆํ„ฐ๋ง์— ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ๋Š” ํ•„์ˆ˜ ์ง•ํ›„ ์ค‘ ํ•˜๋‚˜ ์ž…๋‹ˆ๋‹ค. ๊ณ ํ˜ˆ์••์€ ์•„์ฃผ ํ”ํ•˜๊ณ  ์œ„ํ—˜ํ•œ ์งˆํ™˜์ž…๋‹ˆ๋‹ค. ๋ฏธ๊ตญ ์„ฑ์ธ 3๋ช…์ค‘ 1๋ช…(์•ฝ 7,500๋งŒ๋ช…)์ด ๊ณ ํ˜ˆ์••์„ ๊ฐ€์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ๋ฏธ๊ตญ์ธ์˜ ์ฃผ์š” ์‚ฌ๋ง ์›์ธ ์ค‘ ๋‘๊ฐ€์ง€์ธ ์‹ฌ์žฅ์งˆํ™˜๊ณผ ๋‡Œ์กธ์ค‘์˜ ์œ„ํ—˜์„ ์ฆ๊ฐ€ ์‹œํ‚ต๋‹ˆ๋‹ค. ๊ณ ํ˜ˆ์••์€ ์‹ ์ฒด์— ๊ฒฝ๊ณ  ์‹ ํ˜ธ๋‚˜ ์ž๊ฐ ์ฆ์ƒ์ด ์—†์–ด ๋งŽ์€ ์‚ฌ๋žŒ๋“ค์ด ์ž์‹ ์ด ๊ณ ํ˜ˆ์••์ธ ๊ฒƒ์„ ์ธ์ง€ํ•˜์ง€ ๋ชปํ•˜๊ธฐ ๋•Œ๋ฌธ์— "์‚ฌ์ผ๋ŸฐํŠธ ํ‚ฌ๋Ÿฌ"๋ผ ๋ถˆ๋ฆฌ์›๋‹ˆ๋‹ค. ์ด๋Ÿฌํ•œ ์ด์œ ๋กœ ์ •๊ธฐ์ ์œผ๋กœ ์‰ฝ๊ณ  ํŽธ๋ฆฌํ•˜๊ฒŒ ํ˜ˆ์••์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ์ˆ ์˜ ๊ฐœ๋ฐœ์ด ๋งค์šฐ ์ค‘์š”ํ•ฉ๋‹ˆ๋‹ค. ์ƒ์ฒด์˜ํ•™ ๋ฐ์ดํ„ฐ ๋ถ„์„ ๋ถ„์•ผ์—์„œ๋Š” ๋จธ์‹  ๋Ÿฌ๋‹์„ ๋Œ€๋Ÿ‰์œผ๋กœ ์ˆ˜์ง‘๋œ ์ƒ์ฒด์˜ํ•™ ๋น… ๋ฐ์ดํ„ฐ์— ์ ์šฉํ•˜๋Š” ๋‹ค์–‘ํ•œ ์—ฐ๊ตฌ๊ฐ€ ํšจ๊ณผ์ ์œผ๋กœ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋น… ๋ฐ์ดํ„ฐ ์ˆ˜์ค€์œผ๋กœ ๋‹ค๋Ÿ‰์˜ ํ˜ˆ์•• ๊ด€๋ จ ๋ฐ์ดํ„ฐ๋ฅผ ์ˆ˜์ง‘ํ•˜๋Š” ๊ฒƒ์€ ๋งŽ์€ ์ „๋ฌธ์ ์ธ ์ธ๋ ฅ๋“ค์ด ์˜ค๋žœ์‹œ๊ฐ„์„ ํ•„์š”๋กœ ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋งค์šฐ ์–ด๋ ต๊ณ  ๋น„์šฉ ๋˜ํ•œ ๋งŽ์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ํ•™์œ„๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•œ 3๋‹จ๊ณ„ ์ „๋žต์„ ์ œ์•ˆํ–ˆ์Šต๋‹ˆ๋‹ค. ๋จผ์ € ๋ˆ„๊ตฌ๋‚˜ ์‹œ์šฉํ•  ์ˆ˜ ์žˆ๋„๋ก ๊ณต๊ฐœ๋˜์–ด ์žˆ๋Š” ์‹ฌ์ „๋„, ๊ด‘์šฉ์ ๋งฅํŒŒ ๋ฐ์ดํ„ฐ์…‹์„ ์ด์šฉ, ์ˆœ์ฐจ์ ์ธ ์‹ฌ์ „๋„, ๊ด‘์šฉ์ ๋งฅํŒŒ ์‹ ํ˜ธ์—์„œ ํ˜ˆ์••์„ ์ž˜ ์˜ˆ์ธกํ•˜๋„๋ก ๊ณ ์•ˆ๋œ ์ถ”์ถœ ๋ฐ ๋†์ถ• ์ž‘์—…์„ ๋ฐ˜๋ณตํ•˜๋Š” ํ•จ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง ๊ตฌ์กฐ๋ฅผ ์ œ์•ˆํ–ˆ์Šต๋‹ˆ๋‹ค. ๋‘๋ฒˆ์งธ๋กœ ์ œ์•ˆ๋œ ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง ๋ชจ๋ธ์„ ๊ฐœ์ธ์—๊ฒŒ์„œ ์ธก์ •ํ•œ ๊ด‘์šฉ์ ๋งฅํŒŒ ์‹ ํ˜ธ๋ฅผ ์ด์šฉํ•ด ์ œ์•ˆ๋œ ํ•จ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ–ˆ์Šต๋‹ˆ๋‹ค. ์„ธ๋ฒˆ์งธ๋กœ ํ˜ˆ์••์˜ˆ์ธก ๋ชจ๋ธ์˜ ์ •ํ™•์„ฑ์„ ๋†’์ด๊ธฐ ์œ„ํ•ด ์ง€์‹ ์ฆ๋ฅ˜๋ฒ•๊ณผ ์ž…๋ ฅ์‹ ํ˜ธ ์ „์ฒ˜๋ฆฌ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ–ˆ์Šต๋‹ˆ๋‹ค. ์ด ๋…ผ๋ฌธ์—์„œ ์ œ์•ˆ๋œ ๋ชจ๋“  ํ˜ˆ์••์˜ˆ์ธก ๋ฐฉ๋ฒ•์€ ํ•ฉ์„ฑ๊ณฑ ์‹ ๊ฒฝ๋ง์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•ฉ๋‹ˆ๋‹ค. ํ˜ˆ์•• ์˜ˆ์ธก์— ํ•„์š”ํ•œ ํŠน์ง•๋“ค์„ ์ˆ˜๋™์œผ๋กœ ์ถ”์ถœํ•ด์•ผ ํ•˜๋Š” ๋‹ค๋ฅธ ์—ฐ๊ตฌ๋“ค๊ณผ ๋‹ค๋ฅด๊ฒŒ ํŠน์ง•์„ ์ž๋™์œผ๋กœ ์ถ”์ถœํ•˜๋Š” ๋”ฅ๋Ÿฌ๋‹์˜ ์žฅ์ ์„ ํ™œ์šฉ, ์•„๋ฌด๋Ÿฐ ์ฒ˜๋ฆฌ๋„ ํ•˜์ง€ ์•Š์€ ์›๋ž˜ ๊ทธ๋Œ€๋กœ์˜ ์ƒ์ฒด ์‹ ํ˜ธ์—์„œ ์‹ ํ˜ธ ์ž์ฒด์˜ ๊ณ ์œ ํ•œ ํŠน์ง•์„ ๋ฐ˜์˜ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.1 Introduction 1 2 Background 5 2.1 Cuff-based BP measurement methods 9 2.1.1 Auscultatory method 9 2.1.2 Oscillometric method 10 2.1.3 Tonometric method 11 2.2 Biomedical signals used in cuffless BP prediction methods 13 2.2.1 Electrocardiography (ECG) 13 2.2.2 Photoplethysmography (PPG) 20 2.3 Cuffless BP measurement methods 21 2.3.1 PWV based BP prediction methods 25 2.3.2 Machine learning based pulse wave analysis methods 26 2.4 Deep learning for sequential biomedical data 30 2.4.1 Convolutional neural networks 31 2.4.2 Recurrent neural networks 32 3 End-to-end blood pressure prediction via fully convolutional networks 33 3.1 Introduction 35 3.2 Method 38 3.2.1 Data preparation 38 3.2.2 CNN based prediction model 41 3.2.3 Detailed architecture 45 3.3 Experimental results 47 3.3.1 Setup 47 3.3.2 Model evaluation & selection 48 3.3.3 Calibration-based method 51 3.3.4 Performance comparison 52 3.3.5 Verification using international standards for BP measurement grading criteria 54 3.3.6 Performance comparison by the input signal combinations 56 3.3.7 An ablation study of each architectural component of extraction-concentration blocks 58 3.3.8 Preprocessing of input signal to improve blood pressure prediction performance 59 3.4 Discussion 61 3.5 Summary 63 4 Blood pressure prediction by a smartphone sensor using fully convolutional networks 64 4.1 Introduction 66 4.2 Method 69 4.2.1 Data acquisition 71 4.2.2 Preprocessing of the PPG signals 71 4.2.3 PPG signal selection 71 4.2.4 Data preparation for CNN model training 72 4.2.5 Network architectures 72 4.3 Experimental results 75 4.3.1 Implementation details 75 4.3.2 Effect of PPG combination on BP prediction 75 4.3.3 Performance comparison with other related works 76 4.3.4 Verification using international standards for BP measurement grading criteria 77 4.3.5 Preprocessing of input signal to improve blood pressure prediction performance 79 4.4 Discussion 81 4.5 Summary 83 5 Improving accuracy of blood pressure prediction by distilling the knowledge of neural networks 84 5.1 Introduction 85 5.2 Methods 87 5.3 Experimental results 88 5.4 Discussion & Summary 89 6 Conclusion 90 6.1 Future work 92 Bibliography 93 Abstract (In Korean) 106Docto

    A Comparison of Deep Learning Techniques for Arterial Blood Pressure Prediction

    Get PDF
    Continuous vital signal monitoring is becoming more relevant in preventing diseases that afflict a large part of the worldโ€™s population; for this reason, healthcare equipment should be easy to wear and simple to use. Non-intrusive and non-invasive detection methods are a basic requirement for wearable medical devices, especially when these are used in sports applications or by the elderly for self-monitoring. Arterial blood pressure (ABP) is an essential physiological parameter for health monitoring. Most blood pressure measurement devices determine the systolic and diastolic arterial blood pressure through the inflation and the deflation of a cuff. This technique is uncomfortable for the user and may result in anxiety, and consequently affect the blood pressure and its measurement. The purpose of this paper is the continuous measurement of the ABP through a cuffless, non-intrusive approach. The approach of this paper is based on deep learning techniques where several neural networks are used to infer ABP, starting from photoplethysmogram (PPG) and electrocardiogram (ECG) signals. The ABP was predicted first by utilizing only PPG and then by using both PPG and ECG. Convolutional neural networks (ResNet and WaveNet) and recurrent neural networks (LSTM) were compared and analyzed for the regression task. Results show that the use of the ECG has resulted in improved performance for every proposed configuration. The best performing configuration was obtained with a ResNet followed by three LSTM layers: this led to a mean absolute error (MAE) of 4.118ย mmHg on and 2.228ย mmHg on systolic and diastolic blood pressures, respectively. The results comply with the American National Standards of the Association for the Advancement of Medical Instrumentation. ECG, PPG, and ABP measurements were extracted from the MIMIC database, which contains clinical signal data reflecting real measurements. The results were validated on a custom dataset created at Neuronica Lab, Politecnico di Torino

    PPG2ABP: Translating Photoplethysmogram (PPG) Signals to Arterial Blood Pressure (ABP) Waveforms using Fully Convolutional Neural Networks

    Full text link
    Cardiovascular diseases are one of the most severe causes of mortality, taking a heavy toll of lives annually throughout the world. The continuous monitoring of blood pressure seems to be the most viable option, but this demands an invasive process, bringing about several layers of complexities. This motivates us to develop a method to predict the continuous arterial blood pressure (ABP) waveform through a non-invasive approach using photoplethysmogram (PPG) signals. In addition we explore the advantage of deep learning as it would free us from sticking to ideally shaped PPG signals only, by making handcrafted feature computation irrelevant, which is a shortcoming of the existing approaches. Thus, we present, PPG2ABP, a deep learning based method, that manages to predict the continuous ABP waveform from the input PPG signal, with a mean absolute error of 4.604 mmHg, preserving the shape, magnitude and phase in unison. However, the more astounding success of PPG2ABP turns out to be that the computed values of DBP, MAP and SBP from the predicted ABP waveform outperforms the existing works under several metrics, despite that PPG2ABP is not explicitly trained to do so

    A hybrid neural network for continuous and non-invasive estimation of blood pressure from raw electrocardiogram and photoplethysmogram waveforms

    Get PDF
    Background and objectives: Continuous and non-invasive blood pressure monitoring would revolutionize healthcare. Currently, blood pressure (BP) can only be accurately monitored using obtrusive cuff-based devices or invasive intra-arterial monitoring. In this work, we propose a novel hybrid neural network for the accurate estimation of blood pressure (BP) using only non-invasive electrocardiogram (ECG) and photoplethysmogram (PPG) waveforms as inputs. Methods: This work proposes a hybrid neural network combines the feature detection abilities of temporal convolutional layers with the strong performance on sequential data offered by long short-term memory layers. Raw electrocardiogram and photoplethysmogram waveforms are concatenated and used as network inputs. The network was developed using the TensorFlow framework. Our scheme is analysed and compared to the literature in terms of well known standards set by the British Hypertension Society (BHS) and the Association for the Advancement of Medical Instrumentation (AAMI). Results: Our scheme achieves extremely low mean absolute errors (MAEs) of 4.41 mmHg for SBP, 2.91 mmHg for DBP, and 2.77 mmHg for MAP. A strong level of agreement between our scheme and the gold-standard intra-arterial monitoring is shown through Bland Altman and regression plots. Additionally, the standard for BP devices established by AAMI is met by our scheme. We also achieve a grade of 'A' based on the criteria outlined by the BHS protocol for BP devices. Conclusions: Our CNN-LSTM network outperforms current state-of-the-art schemes for non-invasive BP measurement from PPG and ECG waveforms. These results provide an effective machine learning approach that could readily be implemented into non-invasive wearable devices for use in continuous clinical and at-home monitoring

    Assessment of Non-Invasive Blood Pressure Prediction from PPG and rPPG Signals Using Deep Learning

    Get PDF
    Exploiting photoplethysmography signals (PPG) for non-invasive blood pressure (BP) measurement is interesting for various reasons. First, PPG can easily be measured using fingerclip sensors. Second, camera based approaches allow to derive remote PPG (rPPG) signals similar to PPG and therefore provide the opportunity for non-invasive measurements of BP. Various methods relying on machine learning techniques have recently been published. Performances are often reported as the mean average error (MAE) on the data which is problematic. This work aims to analyze the PPG- and rPPG based BP prediction error with respect to the underlying data distribution. First, we train established neural network (NN) architectures and derive an appropriate parameterization of input segments drawn from continuous PPG signals. Second, we use this parameterization to train NNs with a larger PPG dataset and carry out a systematic evaluation of the predicted blood pressure. The analysis revealed a strong systematic increase of the prediction error towards less frequent BP values across NN architectures. Moreover, we tested different train/test set split configurations which underpin the importance of a careful subject-aware dataset assignment to prevent overly optimistic results. Third, we use transfer learning to train the NNs for rPPG based BP prediction. The resulting performances are similar to the PPG-only case. Finally, we apply different personalization techniques and retrain our NNs with subject-specific data for both the PPG-only and rPPG case. Whilst the particular technique is less important, personalization reduces the prediction errors significantly

    Application of Deep Neural Network Models for Blood Pressure Classification based on Photoplethysmograpic Recordings

    Full text link
    [EN] The measurement of blood pressure (BP) in an uninterrupted and comfortable way for the subject is essential for early diagnosis and monitoring of cardiovascular diseases (CVD). In fact, hypertension is the main risk factor for CVD because, being a hidden health problem with no symptoms until late stages of the disease are reached. This work investigates whether deep neural network models are able to discriminate between healthy and hypertensive subjects based on photoplethysmographic (PPG) recordings, without the need of electrocardiographic (ECG) recordings as well as avoiding manual morphological feature extraction, as has been popularly used in many previous studies. Recordings analyzed consisted of 635 simultaneous PPG and arterial blood pressure (ABP) signals from 50 different patients. The classification was performed with GoogLeNet, ResNet-18 and ResNet-50 pretrained convolutional neural networks (CNN) using as input images the scalogram of PPG segments obtained by continuous wavelet transformation (CWT). Additionally, Adam and SGDM training solvers were used to compare classification performance. After applying early stopping to avoid overfitting, training was performed with more than half of the epochs using Adam optimizer. ResNet-18 CNN provided the highest classification performance with sensitivity of 95.68%, specificity of 93.65%, F1-score of 95.61% an Area under the Roc area of 98.77%. Hence, the application of deep neural network classification models using time frequency transformation of PPG recordings has been able to provide outstanding results in blood pressure classification without requiring neither morphological feature extraction nor ECG features.Research supported by grants DPI2017-83952-C3 from MINECO/AEI/FEDER UE, SBPLY/17/180501/000411 from JCCLM and AICO/2021/286 from GVA.Cano, J.; Fรกcila, L.; Langley, P.; Zangrรณniz, R.; Alcaraz, R.; Rieta, JJ. (2021). Application of Deep Neural Network Models for Blood Pressure Classification based on Photoplethysmograpic Recordings. IEEE. 1-4. https://doi.org/10.1109/EHB52898.2021.96576581
    • โ€ฆ
    corecore