5 research outputs found

    Cue-dependent circuits for illusory contours in humans.

    Get PDF
    Objects' borders are readily perceived despite absent contrast gradients, e.g. due to poor lighting or occlusion. In humans, a visual evoked potential (VEP) correlate of illusory contour (IC) sensitivity, the "IC effect", has been identified with an onset at ~90ms and generators within bilateral lateral occipital cortices (LOC). The IC effect is observed across a wide range of stimulus parameters, though until now it always involved high-contrast achromatic stimuli. Whether IC perception and its brain mechanisms differ as a function of the type of stimulus cue remains unknown. Resolving such will provide insights on whether there is a unique or multiple solutions to how the brain binds together spatially fractionated information into a cohesive perception. Here, participants discriminated IC from no-contour (NC) control stimuli that were either comprised of low-contrast achromatic stimuli or instead isoluminant chromatic contrast stimuli (presumably biasing processing to the magnocellular and parvocellular pathways, respectively) on separate blocks of trials. Behavioural analyses revealed that ICs were readily perceived independently of the stimulus cue-i.e. when defined by either chromatic or luminance contrast. VEPs were analysed within an electrical neuroimaging framework and revealed a generally similar timing of IC effects across both stimulus contrasts (i.e. at ~90ms). Additionally, an overall phase shift of the VEP on the order of ~30ms was consistently observed in response to chromatic vs. luminance contrast independently of the presence/absence of ICs. Critically, topographic differences in the IC effect were observed over the ~110-160ms period; different configurations of intracranial sources contributed to IC sensitivity as a function of stimulus contrast. Distributed source estimations localized these differences to LOC as well as V1/V2. The present data expand current models by demonstrating the existence of multiple, cue-dependent circuits in the brain for generating perceptions of illusory contours

    Brain mechanisms for perceiving illusory lines in humans.

    Get PDF
    Illusory contours (ICs) are perceptions of visual borders despite absent contrast gradients. The psychophysical and neurobiological mechanisms of IC processes have been studied across species and diverse brain imaging/mapping techniques. Nonetheless, debate continues regarding whether IC sensitivity results from a (presumably) feedforward process within low-level visual cortices (V1/V2) or instead are processed first within higher-order brain regions, such as lateral occipital cortices (LOC). Studies in animal models, which generally favour a feedforward mechanism within V1/V2, have typically involved stimuli inducing IC lines. By contrast, studies in humans generally favour a mechanism where IC sensitivity is mediated by LOC and have typically involved stimuli inducing IC forms or shapes. Thus, the particular stimulus features used may strongly contribute to the model of IC sensitivity supported. To address this, we recorded visual evoked potentials (VEPs) while presenting human observers with an array of 10 inducers within the central 5°, two of which could be oriented to induce an IC line on a given trial. VEPs were analysed using an electrical neuroimaging framework. Sensitivity to the presence vs. absence of centrally-presented IC lines was first apparent at ∼200 ms post-stimulus onset and was evident as topographic differences across conditions. We also localized these differences to the LOC. The timing and localization of these effects are consistent with a model of IC sensitivity commencing within higher-level visual cortices. We propose that prior observations of effects within lower-tier cortices (V1/V2) are the result of feedback from IC sensitivity that originates instead within higher-tier cortices (LOC)

    Sounds enhance visual completion processes.

    Get PDF
    Everyday vision includes the detection of stimuli, figure-ground segregation, as well as object localization and recognition. Such processes must often surmount impoverished or noisy conditions; borders are perceived despite occlusion or absent contrast gradients. These illusory contours (ICs) are an example of so-called mid-level vision, with an event-related potential (ERP) correlate at ∼100-150 ms post-stimulus onset and originating within lateral-occipital cortices (the IC <sub>effect</sub> ). Presently, visual completion processes supporting IC perception are considered exclusively visual; any influence from other sensory modalities is currently unknown. It is now well-established that multisensory processes can influence both low-level vision (e.g. detection) as well as higher-level object recognition. By contrast, it is unknown if mid-level vision exhibits multisensory benefits and, if so, through what mechanisms. We hypothesized that sounds would impact the IC <sub>effect</sub> . We recorded 128-channel ERPs from 17 healthy, sighted participants who viewed ICs or no-contour (NC) counterparts either in the presence or absence of task-irrelevant sounds. The IC <sub>effect</sub> was enhanced by sounds and resulted in the recruitment of a distinct configuration of active brain areas over the 70-170 ms post-stimulus period. IC-related source-level activity within the lateral occipital cortex (LOC), inferior parietal lobe (IPL), as well as primary visual cortex (V1) were enhanced by sounds. Moreover, the activity in these regions was correlated when sounds were present, but not when absent. Results from a control experiment, which employed amodal variants of the stimuli, suggested that sounds impact the perceived brightness of the IC rather than shape formation per se. We provide the first demonstration that multisensory processes augment mid-level vision and everyday visual completion processes, and that one of the mechanisms is brightness enhancement. These results have important implications for the design of treatments and/or visual aids for low-vision patients

    Multisensory Approaches to Restore Visual Functions

    Get PDF
    corecore