8 research outputs found

    On the crossing numbers of certain generalized Petersen graphs

    Get PDF
    AbstractIn his paper on the crossing numbers of generalized Peterson graphs, Fiorini proves that P(8,3) has crossing number 4 and claims at the end that P(10, 3) also has crossing number 4. In this article, we give a short proof of the first claim and show that the second claim is false. The techniques are interesting in that they focus on disjoint cycles, which must cross each other an even number of times

    Graphs with at most one crossing

    Full text link
    The crossing number of a graph GG is the least number of crossings over all possible drawings of GG. We present a structural characterization of graphs with crossing number one

    Grafos com poucos cruzamentos e o número de cruzamentos do Kp,q em superfícies topológicas

    Get PDF
    Orientador: Orlando LeeTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: O número de cruzamentos de um grafo G em uma superfície ? é o menor número de cruzamentos de arestas dentre todos os possíveis desenhos de G em ?. Esta tese aborda dois problemas distintos envolvendo número de cruzamentos de grafos: caracterização de grafos com número de cruzamentos igual a um e determinação do número de cruzamentos do Kp,q em superfícies topológicas. Para grafos com número de cruzamentos um, apresentamos uma completa caracterização estrutural. Também desenvolvemos um algoritmo "prático" para reconhecer estes grafos. Em relação ao número de cruzamentos do Kp,q em superfícies, mostramos que para um inteiro positivo p e uma superfície ? fixos, existe um conjunto finito D(p,?) de desenhos "bons" de grafos bipartidos completos Kp,r (possivelmente variando o r) tal que, para todo inteiro q e todo desenho D de Kp,q, existe um desenho bom D' de Kp,q obtido através de duplicação de vértices de um desenho D'' em D(p,?) tal que o número de cruzamentos de D' é menor ou igual ao número de cruzamentos de D. Em particular, para todo q suficientemente grande, existe algum desenho do Kp,q com o menor número de cruzamentos possível que é obtido a partir de algum desenho de D(p,?) através da duplicação de vértices do mesmo. Esse resultado é uma extensão de outro obtido por Cristian et. al. para esferaAbstract: The crossing number of a graph G in a surface ? is the least amount of edge crossings among all possible drawings of G in ?. This thesis deals with two problems on crossing number of graphs: characterization of graphs with crossing number one and determining the crossing number of Kp,q in topological surfaces. For graphs with crossing number one, we present a complete structural characterization. We also show a "practical" algorithm for recognition of such graphs. For the crossing number of Kp,q in surfaces, we show that for a fixed positive integer p and a fixed surface ?, there is a finite set D(p,?) of good drawings of complete bipartite graphs Kp,r (with distinct values of r) such that, for every positive integer q and every good drawing D of Kp,q, there is a good drawing D' of Kp,q obtained from a drawing D'' of D(p,?) by duplicating vertices of D'' and such that the crossing number of D' is at most the crossing number of D. In particular, for any large enough q, there exists some drawing of Kp,q with fewest crossings which can be obtained from a drawing of D(p,?) by duplicating vertices. This extends a result of Christian et. al. for the sphereDoutoradoCiência da ComputaçãoDoutor em Ciência da Computação2014/14375-9FAPES

    Characterizing 2-crossing-critical graphs

    Full text link
    It is very well-known that there are precisely two minimal non-planar graphs: K5K_5 and K3,3K_{3,3} (degree 2 vertices being irrelevant in this context). In the language of crossing numbers, these are the only 1-crossing-critical graphs: they each have crossing number at least one, and every proper subgraph has crossing number less than one. In 1987, Kochol exhibited an infinite family of 3-connected, simple 2-crossing-critical graphs. In this work, we: (i) determine all the 3-connected 2-crossing-critical graphs that contain a subdivision of the M\"obius Ladder V10V_{10}; (ii) show how to obtain all the not 3-connected 2-crossing-critical graphs from the 3-connected ones; (iii) show that there are only finitely many 3-connected 2-crossing-critical graphs not containing a subdivision of V10V_{10}; and (iv) determine all the 3-connected 2-crossing-critical graphs that do not contain a subdivision of V8V_{8}.Comment: 176 pages, 28 figure

    2-crossing critical graphs with a V8 minor

    Get PDF
    The crossing number of a graph is the minimum number of pairwise crossings of edges among all planar drawings of the graph. A graph G is k-crossing critical if it has crossing number k and any proper subgraph of G has a crossing number less than k. The set of 1-crossing critical graphs is is determined by Kuratowski’s Theorem to be {K5, K3,3}. Work has been done to approach the problem of classifying all 2-crossing critical graphs. The graph V2n is a cycle on 2n vertices with n intersecting chords. The only remaining graphs to find in the classification of 2-crossing critical graphs are those that are 3-connected with a V8 minor but no V10 minor. This paper seeks to fill some of this gap by defining and completely describing a class of graphs called fully covered. In addition, we examine other ways in which graphs may be 2-crossing critical. This discussion classifies all known examples of 3-connected, 2-crossing critical graphs with a V8 minor but no V10 minor

    Characterizing 2-crossing-critical graphs

    Get PDF
    It is very well-known that there are precisely two minimal non-planar graphs: K5 and K3,3 (degree 2 vertices being irrelevant in this context). In the language of crossing numbers, these are the only 1-crossing-critical graphs: They each have crossing number at least one, and every proper subgraph has crossing number less than one. In 1987, Kochol exhibited an infinite family of 3-connected, simple, 2-crossing-critical graphs. In this work, we: (i) determine all the 3-connected 2-crossing-critical graphs that contain a subdivision of the Möbius Ladder V10; (ii) show how to obtain all the not 3-connected 2-crossing-critical graphs from the 3-connected ones; (iii) show that there are only finitely many 3-connected 2-crossing-critical graphs not containing a subdivision of V10; and (iv) determine all the 3-connected 2-crossing-critical graphs that do not contain a subdivision of V8

    On 2-crossing-critical graphs with a V8-minor

    Get PDF
    The crossing number of a graph is the minimum number of pairwise edge crossings in a drawing of a graph. A graph GG is kk-crossing-critical if it has crossing number at least kk, and any subgraph of GG has crossing number less than kk. A consequence of Kuratowski's theorem is that 1-critical graphs are subdivisions of K3,3K_{3,3} and K5K_{5}. The graph V2nV_{2n} is a 2n2n-cycle with nn diameters. Bokal, Oporowski, Richter and Salazar found in \cite{bigpaper} all the critical graphs except the ones that contain a V8V_{8} minor and no V10V_{10} minor. We show that a 4-connected graph GG has crossing number at least 2 if and only if for each pair of disjoint edges there are two disjoint cycles containing them. Using a generalization of this result we found limitations for the 2-crossing-critical graphs remaining to classify. We showed that peripherally 4-connected 2-crossing-critical graphs have at most 4001 vertices. Furthermore, most 3-connected 2-crossing-critical graphs are obtainable by small modifications of the peripherally 4-connected ones

    Cubic graphs with crossing number two

    No full text
    corecore