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Abstract 

McQuillan, D. and R.B. Richter, On the crossing numbers of certain generalized Petersen 

graphs, Discrete Mathematics 104 (1992) 311-320. 

In his paper on the crossing numbers of generalized Petersen graphs, Fiorini proves that P(8, 3) 

has crossing number 4 and claims at the end that P(10, 3) also has crossing number 4. In this 

article, we give a short proof of the first claim and show that the second claim is false. The 

techniques are interesting in that they focus on disjoint cycles, which must cross each other an 

even number of times. 

1. Introduction 

In his very interesting paper [3], Fiorini needs, as an inductive base, that the 

generalized Petersen graph P(8, 3) has crossing number 4. His proof [3, pp. 

234-2361 is a tedious case-by-case analysis, and ends with the remark, ‘The other 

cases are similarly dealt with’. One of the goals of this article is to provide a 

short, complete proof of this result. 

In the concluding section of the article, Fiorini states, ‘It follows from our 

conclusions that cr(3h + 1, 3) = - * - = h + 1, where cr(G) is the crossing number 

of the graph G [3, p. 2401. This implies that the graph P(10, 3) has crossing 

number 4. However, in the article, it is only proved that 4 s cr(P(10, 3)) < 6. The 

other goal of the present work is to show that the concluding statement is false, 

by providing a short proof that cr(P(10, 3)) 2 5. 
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The techniques we use are based on the rather obvious idea that if C and C’ 

are vertex-disjoint cycles, then, in any drawing @ in the plane, l@(C) fl @(Cl)] 

must be even. To prove the above results, then, it suffices to find appropriate 

cycles in the graphs. 

The particular graphs are symmetric in the sense that for any two vertices u and 

v and any two edges e andf, there are automorphisms 8 and q such that 0(u) = u 

and q(e) =F This symmetry is a big help in the analysis. (The graph P(8, 3) is 

number 16 in [l], while P( 10, 3) is 20B.) 

One further point should be made: the graph P(8, 3) is a counterexample to [5, 

Conjecture p. 3741. That is, P(8, 3) has crossing number k = 4, but no proper 

subgraph has crossing number 3. In [5], it is proved that every cubic graph with 

crossing number at least 3 has a subgraph with crossing number exactly 2. 

Moreover, the Cartesian product C3 x C3 has crossing number 3, but every proper 

subgraph has crossing number at most 1. Thus, the degree restriction in [5] is 

essential. 

In Sections 2 and 3, we prove that P(8, 3) has crossing number 4, while in 

Section 4, we prove that cr(P(10, 3)) 2 5. 

2. Technical results for P(8,3) 

We shall make repeated use of the following facts about P = P(8, 3). 

Fact 1. If p = (u, v, w) and q = (x, y, z) are any two paths of length 2 in P, then 
there is an automorphism 0 of P such that O(u), 8(v) and O(w) are, respectively, 
x, y and z. 

Reason. This is an easy consequence of [6, Theorem 7.541 0 

Fact 2. P is bipartite. 

For the labelling of P, refer to Fig. 1. 

Fact 3. The only paths of length at most 4 joining the vertices v3 and v8 are 

( vz3, Vl, v2, ~3) and (Q, ux, ul, ~3). 

Reason. Because P is bipartite, all paths have the same parity, so we need only 

concern ourselves with paths of length 3. Enumerate them. Cl 

Fact 4. The only paths of length at most 4 joining v2 and v8 are (v2, vl, vg), 

(vz, u6, us, 217, v,), (212, u69 u7, Us, us) and (v2, ‘u3, UI, %, us). 

Fact 5. The girth of P is 6. 
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Fig. 1. 

3. Crossing number of P&3) is four 

In this section, we shall prove the following result, which is the first goal of this 

article. 

Theorem 6. cr(P) = 4 and if G is any proper subgraph of P, then cr(G) s 2. 

Our initial attack is via the removal number of a graph. For a graph G, the 

removal number r(G) of G is the smallest nonnegative integer r such that the 

removal of some r edges from G results in a planar subgraph of G. For a drawing 

@ of G, let cr(@) denote the number of crossings in CD. By removing an edge 

from each crossing of a drawing of G in the plane we get a set of edges whose 

removal leaves a planar subgraph. Thus we have the following. 

Lemma 7. For any drawing @ of G, cr( @) > r(G). 

Lemma 8. r(P) 3 3. 

Proof. Let r = r(P) and let P’ be a planar subgraph of P having 24 - r edges. It is 

easy to see that P’ is a connected spanning subgraph of P. By Euler’s formula, in 

any planar drawing of P’, there are 10 - r faces. Since P’ has girth at least 

6,6(10 - r) s 2(24 - r), so r 2 3. 0 

We will encounter this type of argument several times. To save space, we shall 

simply say: ‘Use Euler’s formula’. 

Corollary 8.1. If cr(P) c 3, then, in an optimal drawing of P, no edge is crossed 
twice. 
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Lemma 9. Zf v is any vertex of P, then r(P - v) 2 2. 

This can be proved using Euler’s formula. 

Corollary 9.1. Zf @ is a drawing of P with cr(@) = 3, then the 6 edges involved 
form a matching in P. 

Proof of Theorem 6. Let Qi be a drawing of P such that cr( @) = cr(P). We 

assume cr(@) S 3 and derive a contradiction, which will prove that cr(P) 2 4. By 

Lemma 7, there must be at least 3 crossings in the drawing @. Hence, we can 

assume cr( @) = 3. 

Because P is edge-transitive, we can assume that e = vlvz crosses some edge f 
in the drawing @. Delete e and an edge from each of the other two crossings. This 

produces a planar subgraph P’, with an embedding in the plane inherited from Qi. 

By Euler’s formula, every face of this drawing of P’ is bounded by a 6-cycle. Let 

C and C’ be the face boundaries containing the edge J As no edge is crossed 

twice in @, vr and v2 each occur in one of C and C’, one in each. Without loss of 

generality, we can assume that the drawing of (C U C’) + e is that shown in Fig. 

2. (Any other possible addition of e either is equivalent or introduces a cycle of 

length less than 6 to P.) 
By considering all the possibilities (making good use of Facts 3 and 4), one 

finds that, up to isomorphism, there is only one possibility for the labelling of 

(C U C’) + e (this is shown in Fig. 3). Therefore, we can assume that one of the 

three crossings of Qi is v1v2 with u1u8. 

Let C1, C2 and C3 be the 6-cycles (v,, %, ~3, v4, u4, u3), (v,, Q, u6, u5, v7, %) 

and (Ul, 43, u7, 215, v6~ ZQ), respectively. We note that each of C, and C2 is 

vertex-disjoint from C3. Both of them cross C3 at the known crossing. Since 

disjoint cycles cannot cross only once, each Ci must cross C3 somewhere else, 

v2 

Fig. 2. 
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Fig. 3. 

i = 1, 2. Let this be at the edge ei of C,. By Corollary 8.1, and the fact that C, 
and C, have only the edge z1,2r2 in common, the edges ut ug, e, and e2 are all 
distinct. Moreover, every crossing of @ involves one of them. 

By Corollary 9.1, no two of the edges u 1 us, e, and e2 is incident with a common 
vertex. Therefore, {er, e2} = {u2u6, ~~2)~). A subdivision of K3,3 contained in 
P - {u,u,, u7u5, u2n6} is exhibited in Fig. 4. This contradiction completes the 
proof that cr(@) 2 4. 

We now provide the finishing touches to our analysis of P. We see in Fig. 5 that 
cr(P) =Z 4 and, moreover that the edge e = vsug is crossed twice in a drawing 
having only 4 crossings. It follows that cr(P) = 4 and that cr(P - e) = 2. Since P is 
edge-transitive, this last equation holds for any edge of P. Therefore, no proper 
subgraph of P has crossing number 3. 0 

“3 

“4 

Fig. 4. 
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Fig. 5. 

4. Crossing number of P(10,3) is at least five 

In this section, we shall prove the following. 

Theorem 10. cr(P(10, 3)) 3 5. 

The proof is based on the following facts. For brevity, let Q = P(10, 3). 

Fact 11. Zffp = (xl, ~2, ~3~4 and 4 = (Y,, y2, Y. 3, 4 are any two paths of length 3 Y ) 

in Q, then there is an automorphism 8 of Q such that 0(x,) =yj, for i = 1, 2, 3, 4. 

Fact 12. For any two edges e and f of Q, not both incident with the same vertex, 
there are 6-cycles C,, C2 and C3 such that C, U C2 is vertex-disjoint from 
C3, Cl II C2 consists of a path of length 2 containing e and f is in C3. 

Reason. We refer to the labelling in Fig. 6. Without loss of generality, we can 

assume e = ulvl. Let 8 be the automorphism of Q that reflects about the line 

through e and usv6. 

For any edge f not incident with either ur or v 1, either f or O(f) is in one of the 

6-cycles Cr = (~8, ~9, 4, ~8, 4, uin), C2 = (u6, v7, G, u9, u7, u6) and C3 = 

( v7r V8, v9, 2110, u4, u3). 

The 6-cycles containing e of interest are C, = (v,, v2, v3, v4, u2, u,), Cs = 

( Vl, Ul, u2, u3, u4, vlo) and G = (v,, v2, us, u9, uLo, u,). Observe that C4 U C, is 

disjoint from Cr and C2, while C4 n C, is disjoint from C3. 0 
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“6 
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Fig. 6. 

Fact W. Let e and f be edges of Q such that some 6-cycle has edge-sequence 
(e, e2, f, e4, e5, e6). Then there is an edge g of Q such that Q - {e, f, g} is a 
subdivision of P(7, 3). 

Reason. The deletion of the edges uiu,, v2u8, v3us yields a subdivision of 

P(7, 3). By Fact 11, there is an automorphism of Q that maps the path with 

edge-sequence (u 1 vl, v1v2, v2u8) onto the path with edge-sequence (e, e2, f), so 
u,vl maps to e and v2u8 maps to f. Then g is the image of v3us. 0 

The final fact we need is less immediate. 

Lemma 14. Zf u is any vertex of Q, then cr(Q - u) = 3. 

Proof. Without loss of generality, we can assume u = u4. See Fig. 7 for a drawing 

of Q - u with only three crossings. Partition E(Q - u) into the sets (suppressing 

the three degree-two vertices): 

Ai = {%u,, uZv4, v3v2, v9v8, v7v6> u6”7}; 

A2 = {UIU,, ~4~3, VZVI, ~8~7, ‘~6~6, ~7~91; 

A3 = (2117’9, uzv7, v3”6}; 

A4 = {UIUIO, UmVs> V4’u5, v5v6, Vi%, W7); 

AS = {U~UIO, ~9~5, u9ut-J. 

It is readily observed from Fig. 7 that if e,f eAi, then there is an 

automorphism 8 of Q - u such that O(e) = f. Every crossing in an optimal 

drawing of Q - u must involve an edge not in A,. Thus, it suffices to show that if 

e E l_lf=‘=, A;, then cr(Q - u - e) 2 2. 
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Fig. 7. 

Let Gr = Q - u - {IJ~u~, u7ug, vIv9}. Then G, is a subdivision of the graph Gs 
of [4, Fig. 11, which is an irreducible graph for the real projective plane. See Fig. 
8(a). As explained in [5], this graph has crossing number 2. This accounts for e in 
one of A,, A*, and A,. Similarly, the graph Gz = Q - u - {u,u,,, u4u3, v9v8} is a 
subdivision of the same Gs. See Fig. 8(b). This accounts for e in A4. 

Since the deletion of any edge of Q - u in U:=‘=, Ai produces a graph with 
crossing number at least two, we see that Q - u must have crossing number at 
least 3, as claimed. 0 

(a) 
Fig. 8. 

(b) 
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We are now prepared to prove Theorem 10. 

Proof of Theorem 10. Suppose there is a drawing Qi of Q such that cr( @) G 4. If 

u is any vertex of Q, then Qi induces a drawing of Q - U, which, by Lemma 14, 

must have at least three crossings. Therefore, among the edges of Q incident with 

u, there can be at most one crossing in total. 

Now suppose e and f cross in di. Then e and f are not incident with a common 

vertex, so, by Fact 12, there are 6-cycles Ci, CZ and C3 with C3 disjoint from 

C, U CZ, fin C3 and C, rl C2 consisting of a path of length 2 containing e. 

Since Ci and C3 cross (e crosses f), and C1 is disjoint from C3, there is another 

crossing involving other edges of C, and C3. Similarly, there is another crossing 

involving other edges of C2 and C3. These two other crossings must, in fact, be 

distinct, since not both the edges in their common path can be in crossings, by a 

remark in the first paragraph of the proof. Let C3 have the edge-sequence 

(f,f2rf3,AA&); th ere are at least three edges crossed in this cycle. Since no two 

of them are incident with a common vertex and one of them is f, they must be 

f,h andf,. 
Observe that f and f3 satisfy the hypotheses of Fact 13, so that Q’ = Q - {f, f3} 

contains a subdivision of P(7, 3). There is a drawing of Q’ induced by Qi that has 

cr( @) - 2 crossings-this number is at most 2. Therefore, cr(P(7, 3)) < 2. But this 

contradicts the known fact that cr(P(7, 3)) = 3 [2]. This shows no such drawing Qi 

exists and we conclude that cr(P(10, 3)) 3 5. 0 

5. Concluding remarks 

The question of finding a formula for cr(P(n, k)) was raised in [3]. In [2], 

cr(P(n, 2)) is evaluated and in [3], cr(P(n, 3)) is computed for n $1 (mod 3). In 

contrast to the claim at the end of [3], we make the following conjecture. 

Conjecture. For IZ > 2, cr(P(3n + 1, 3)) = n + 3. 

In particular, we believe that cr(P(10, 3)) = 6. In support of this, we have been 

able to prove, using an argument very similar to that used to prove Lemma 14, 

that if e is any edge of P(10, 3), then cr(P(10, 3) -e) = 4. Of course, this 

provides a different proof of Theorem 10, but, as we use Lemma 14 to prove this 

sharper result, this proof of Theorem 10 is a longer than the one given here. 

In general, Fiorini has shown that, for n > 2, cr(P(3n + 1, 3)) is either n + 1, 

n+2orn+3. 
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