353 research outputs found

    On the van der Waerden numbers w(2;3,t)

    Get PDF
    We present results and conjectures on the van der Waerden numbers w(2;3,t) and on the new palindromic van der Waerden numbers pdw(2;3,t). We have computed the new number w(2;3,19) = 349, and we provide lower bounds for 20 <= t <= 39, where for t <= 30 we conjecture these lower bounds to be exact. The lower bounds for 24 <= t <= 30 refute the conjecture that w(2;3,t) <= t^2, and we present an improved conjecture. We also investigate regularities in the good partitions (certificates) to better understand the lower bounds. Motivated by such reglarities, we introduce *palindromic van der Waerden numbers* pdw(k; t_0,...,t_{k-1}), defined as ordinary van der Waerden numbers w(k; t_0,...,t_{k-1}), however only allowing palindromic solutions (good partitions), defined as reading the same from both ends. Different from the situation for ordinary van der Waerden numbers, these "numbers" need actually to be pairs of numbers. We compute pdw(2;3,t) for 3 <= t <= 27, and we provide lower bounds, which we conjecture to be exact, for t <= 35. All computations are based on SAT solving, and we discuss the various relations between SAT solving and Ramsey theory. Especially we introduce a novel (open-source) SAT solver, the tawSolver, which performs best on the SAT instances studied here, and which is actually the original DLL-solver, but with an efficient implementation and a modern heuristic typical for look-ahead solvers (applying the theory developed in the SAT handbook article of the second author).Comment: Second version 25 pages, updates of numerical data, improved formulations, and extended discussions on SAT. Third version 42 pages, with SAT solver data (especially for new SAT solver) and improved representation. Fourth version 47 pages, with updates and added explanation

    A SAT+CAS Approach to Finding Good Matrices: New Examples and Counterexamples

    Full text link
    We enumerate all circulant good matrices with odd orders divisible by 3 up to order 70. As a consequence of this we find a previously overlooked set of good matrices of order 27 and a new set of good matrices of order 57. We also find that circulant good matrices do not exist in the orders 51, 63, and 69, thereby finding three new counterexamples to the conjecture that such matrices exist in all odd orders. Additionally, we prove a new relationship between the entries of good matrices and exploit this relationship in our enumeration algorithm. Our method applies the SAT+CAS paradigm of combining computer algebra functionality with modern SAT solvers to efficiently search large spaces which are specified by both algebraic and logical constraints

    Partitioning Strategies for Distributed SMT Solving

    Full text link
    For many users of Satisfiability Modulo Theories (SMT) solvers, the solver's performance is the main bottleneck in their application. One promising approach for improving performance is to leverage the increasing availability of parallel and cloud computing. However, despite many efforts, the best parallel approach to date consists of running a portfolio of solvers, meaning that performance is still limited by the best possible sequential performance. In this paper, we revisit divide-and-conquer approaches to parallel SMT, in which a challenging problem is partitioned into several subproblems. We introduce several new partitioning strategies and evaluate their performance, both alone as well as within portfolios, on a large set of difficult SMT benchmarks. We show that hybrid portfolios that include our new strategies can significantly outperform traditional portfolios for parallel SMT.Comment: Submitted to FMCAD 202

    Parallelizing a SAT-Based Product Configurator

    Get PDF
    This paper presents how state-of-the-art parallel algorithms designed to solve the Satisfiability (SAT) problem can be applied in the domain of product configuration. During an interactive configuration process, a user selects features step-by-step to find a suitable configuration that fulfills his desires and the set of product constraints. A configuration system can be used to guide the user through the process by validating the selections and providing feedback. Each validation of a user selection is formulated as a SAT problem. Furthermore, an optimization problem is identified to find solutions with the minimum amount of changes compared to the previous configuration. Another additional constraint is deterministic computation, which is not trivial to achieve in well performing parallel SAT solvers. In the paper we propose five new deterministic parallel algorithms and experimentally compare them. Experiments show that reasonable speedups are achieved by using multiple threads over the sequential counterpart

    Inverting Cryptographic Hash Functions via Cube-and-Conquer

    Full text link
    MD4 and MD5 are seminal cryptographic hash functions proposed in early 1990s. MD4 consists of 48 steps and produces a 128-bit hash given a message of arbitrary finite size. MD5 is a more secure 64-step extension of MD4. Both MD4 and MD5 are vulnerable to practical collision attacks, yet it is still not realistic to invert them, i.e. to find a message given a hash. In 2007, the 39-step version of MD4 was inverted via reducing to SAT and applying a CDCL solver along with the so-called Dobbertin's constraints. As for MD5, in 2012 its 28-step version was inverted via a CDCL solver for one specified hash without adding any additional constraints. In this study, Cube-and-Conquer (a combination of CDCL and lookahead) is applied to invert step-reduced versions of MD4 and MD5. For this purpose, two algorithms are proposed. The first one generates inversion problems for MD4 by gradually modifying the Dobbertin's constraints. The second algorithm tries the cubing phase of Cube-and-Conquer with different cutoff thresholds to find the one with minimal runtime estimation of the conquer phase. This algorithm operates in two modes: (i) estimating the hardness of a given propositional Boolean formula; (ii) incomplete SAT-solving of a given satisfiable propositional Boolean formula. While the first algorithm is focused on inverting step-reduced MD4, the second one is not area-specific and so is applicable to a variety of classes of hard SAT instances. In this study, 40-, 41-, 42-, and 43-step MD4 are inverted for the first time via the first algorithm and the estimating mode of the second algorithm. 28-step MD5 is inverted for four hashes via the incomplete SAT-solving mode of the second algorithm. For three hashes out of them this is done for the first time.Comment: 40 pages, 11 figures. A revised submission to JAI
    • …
    corecore