

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in :

Discrete Applied Mathematics

Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa18005

Paper:

Ahmed, T., Kullmann, O. & Snevily, H. (2014). On the van der Waerden numbers. Discrete Applied Mathematics, 174

, 27-51.

http://dx.doi.org/10.1016/j.dam.2014.05.007

This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the

terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions.

When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO

database to judge whether or not it is copyright safe to add this version of the paper to this repository.

http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/

http://cronfa.swan.ac.uk/Record/cronfa18005
http://dx.doi.org/10.1016/j.dam.2014.05.007
http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/

Discrete Applied Mathematics 174 (2014) 27–51

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

On the van der Waerden numbers w(2; 3, t)
Tanbir Ahmed a,∗, Oliver Kullmann b, Hunter Snevily c,1

a Department of Computer Science and Software Engineering, Concordia University, Montréal, Canada
b Computer Science Department, Swansea University, Swansea, UK
c Department of Mathematics, University of Idaho, Moscow, ID, USA

a r t i c l e i n f o

Article history:
Received 28 October 2011
Received in revised form 7 April 2014
Accepted 1 May 2014
Available online 16 May 2014

Keywords:
Arithmetic progression
Van der Waerden numbers
Ramsey theory
SAT solver

a b s t r a c t

In this paperwe present results and conjectures on the ordinary van derWaerden numbers
w(2; 3, t) and on the new palindromic van der Waerden numbers pdw(2; 3, t). We have
computed the exact value of the previously unknown number w(2; 3, 19) = 349, and we
provide new lower bounds for 20 ≤ t ≤ 39, where for 20 ≤ t ≤ 30 we conjecture these
bounds to be exact. The lower bounds forw(2; 3, t)with 24 ≤ t ≤ 30 refute the conjecture
that w(2; 3, t) ≤ t2 as suggested in Brown et al. (2008). Based on the known values of
w(2; 3, t), we investigate regularities to better understand the lower bounds of w(2; 3, t).
Motivated by such regularities, we introduce palindromic van der Waerden numbers
pdw(k; t0, . . . , tk−1), which are defined as the ordinary numbers w(k; t0, . . . , tk−1), but
where only palindromic solutions are considered, reading the same from both ends.
Different from the situation for ordinary van derWaerden numbers, these ‘‘numbers’’ need
actually to be pairs of numbers. We compute pdw(2; 3, t) for 3 ≤ t ≤ 27, and we provide
bounds for t ≤ 39, which we believe to be exact for t ≤ 35. All computations are based on
SAT solving, and we discuss the various relations between SAT solving and Ramsey theory.
Especiallywe introduce a novel (open-source) SAT solver, thetawSolver, which performs
best on the SAT instances studied here, and which is actually the original DLL-solver by
Davis et al. (1962), but with an efficient implementation and amodern heuristic typical for
look-ahead solvers, applying the theory developed by the second author (Kullmann, 2009).

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

We consider Ramsey theory and its connections to computer science (see [59] for a survey) by exploring a rather
recent link, especially to algorithms and formal methods, namely to SAT solving. SAT is the problem of finding a satisfying
assignment for a propositional formula. Since Ramsey problems can naturally be formulated as SAT problems, SAT solvers
can be used to compute numbers from Ramsey theory. In the present article, we consider van der Waerden numbers [70],
where SAT had its biggest success in Ramsey theory, namely the determination of w(2; 6, 6) = 1132 in [44], the first new
diagonal van der Waerden (short ‘‘vdW’’) number after almost 30 years.

Definition 1.1. We use N = {x ∈ Z : x ≥ 1}, N0 = N ∪ {0}. An arithmetic progression of length t ∈ N is a subset p ⊂ N of
length |p| = t and of the form p = {a + i · d : i ∈ {0, . . . , t − 1}} for some a, d ∈ N. A block partition of length k ∈ N of a

∗ Corresponding author.
E-mail addresses: ta_ahmed@cs.concordia.ca, tanbir@gmail.com (T. Ahmed), O.Kullmann@Swansea.ac.uk (O. Kullmann).

1 Hunter Snevily passed away on November 11, 2013 after his long struggle with Parkinson’s disease. He was an inspiring mathematician. We have lost
a great friend and colleague. He will be heavily missed and fondly remembered.

http://dx.doi.org/10.1016/j.dam.2014.05.007
0166-218X/© 2014 Elsevier B.V. All rights reserved.

28 T. Ahmed et al. / Discrete Applied Mathematics 174 (2014) 27–51

Table 1
Known values for w(2; 3, t).

t 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

w(2; 3, t) 9 18 22 32 46 58 77 97 114 135 160 186 218 238 279 312 349

set X is a tuple (P0, . . . , Pk−1) of length k of subsets of X (possibly empty) which are pairwise disjoint (Pi ∩ Pj = ∅ for i ≠ j)
and with P0 ∪ · · · ∪ Pk−1 = X . The van der Waerden number w(k; t0, t1, . . . , tk−1) ∈ N for k, t0, . . . , tk−1 ∈ N is the smallest
n ∈ N such that for any block partition (P0, . . . , Pk−1) of length k of {1, . . . , n} there exists a j ∈ {0, . . . , k − 1} such that Pj
contains an arithmetic progression of length tj.

That we have w(k; t0, t1, . . . , tk−1) > n can be certified by an appropriate block partition of {1, . . . , n}; such partitions
are the solutions of the SAT problems to be constructed, and we call them ‘‘good partitions’’:

Definition 1.2. A good partition of {1, . . . , n} (where n ∈ N0) w.r.t. parameters t0, t1, . . . , tk−1 is a block partition (P0, . . . ,
Pk−1) of {1, . . . , n} containing no block Pj with an arithmetic progression of length tj (for any j).

So there exists a good partition of {1, . . . , n} if and only if n < w(k; t0, t1, . . . , tk−1). For every k, t0, . . . , tk−1 ∈ N the only
block partition of {1, . . . , 0} = ∅ is (∅, . . . ,∅), and this is a good partition. In this paper, we are interested in the specific
van der Waerden numbers w(2; 3, t), t ≥ 3. Specialising the general definition we obtain:

w(2; 3, t) is the smallest n ∈ N, such that
for all P0, P1 ⊆ {1, . . . , n} with P0 ∩ P1 = ∅ and P0 ∪ P1 = {1, . . . , n}
either P0 has an arithmetic progression of size 3 or P1 has an arithmetic progression of size t , or both.

The known exact values of w(2; 3, t) are shown in Table 1 (with our contribution in bold).
As references and for relevant information on the above numbers, see Chvátal [16], Brown [14], Beeler and O’Neil [8],

Kouril [44], Landman, Robertson and Culver [54], and Ahmed [2–5].2 Recently, Kullmann [50]3 reported the following lower
bounds

w(2; 3, 19) ≥ 349, w(2; 3, 20) ≥ 389, w(2; 3, 21) ≥ 416.

We confirm the exact value of w(2; 3, 19) = 349, and we extend the list of lower bounds up to t = 39. Brown, Landman,
and Robertson [15], showed the lower bound w(2; 3, t) > t2−1/ log log t for t ≥ 4 · 10316, and observed that w(2; 3, t) ≤ t2
for 5 ≤ t ≤ 16, suggesting that this might hold for all t . Our lower bounds in Section 3.2 however prove that there are t
with w(2; 3, t) > t2. We provide an improved upper bound 1.675t2 in Section 3.3 (satisfying all known values and lower
bounds of w(2; 3, t)).

We also present a new type of van-der-Waerden-like numbers, namely palindromic number-pairs, obtained by the
constraint on good partitions that they must be symmetric under reflection at the mid-point of the interval {1, . . . , n}.
Perceived originally only as a heuristic tool for studying ordinary vanderWaerdennumbers, it turned out that these numbers
are interesting objects on their own. An interesting phenomenon is that we no longer have the standard behaviour of the
SAT instances with increasing n, where
• first all instances are satisfiable (for n < w(k; t0, . . . , tk−1)), and from a certain point on (the van der Waerden number)

all instances are unsatisfiable (for n ≥ w(k; t0, . . . , tk−1)),
• but now first again all instances are satisfiable (for n ≤ p), then we have a region with strict alternation between

unsatisfiability and satisfiability, and only from a second point on all instances are unsatisfiable (for n ≥ q).

These two turning points constitute the palindromic ‘‘number’’ pdw(2; 3, t) = (p, q) as pairs of natural numbers. We were
able to compute pdw(2; 3, t) for t ≤ 27. We also provide (conjectured) values for t ≤ 39.4 The full definition is in Section 5,
while the special case experimentally studied in this paper is defined as follows:

In pdw(2; 3, t) = (p, q),
the number q is the smallest number such that for all n ≥ q and
for all P0, P1 ⊆ {1, . . . , n} with P0 ∩ P1 = ∅ and P0 ∪ P1 = {1, . . . , n} with the property,
that for all v ∈ {1, . . . , n} we have v ∈ P0 ⇔ n + 1 − v ∈ P0 and v ∈ P1 ⇔ n + 1 − v ∈ P1,
either P0 has an arithmetic progression of size 3 or P1 has an arithmetic progression of size t , or both.

While p is the largest number such that for all n ≤ p and for all such (P0, P1)
neither P0 has an arithmetic progression of size 3 nor P1 has an arithmetic progression of size t.

2 This sequence is http://oeis.org/A007783 in the ‘‘On-Line Encyclopedia of Integer Sequences’’.
3 The conference article [51] contains only material related to Green–Tao numbers and SAT.
4 The sequence pdw(2; 3, t) is http://oeis.org/A198684, http://oeis.org/A198685 in the ‘‘On-Line Encyclopedia of Integer Sequences’’ (the first and second

components).

T. Ahmed et al. / Discrete Applied Mathematics 174 (2014) 27–51 29

In the ordinary case of plain partitions (without the additional symmetry condition) we have p + 1 = q, and thus one uses
just one number (instead of a pair), however here we can have a ‘‘palindromic span’’, that is, p + 1 < q can happen for the
palindromic case. The reason is that from a good partition of {1, . . . , n}we obtain a good partition of {1, . . . , n−1} by simple
removing n, however for ‘‘goodpalindromic partitions’’ besides removing nwealso need to remove the corresponding vertex
1 (due to the palindromicity condition).

Apparently themost advanced special algorithm (and implementation) for computing (mixed) vanderWaerdennumbers
is the algorithm/implementation developed in [64].5 For computing w(2; 3, 17) = 279, with this special algorithm a run-
time of 552 days is reported; the machine used should be at most 30% slower than the machine used in our experiments,
and so this should translate into at least 400 days on our machine. As we can see in Table 9, the tawSolver-2.6 used is
85-times faster, while Table 10 shows, that Cube & Conquer is around 40-times faster. These algorithms know nothing
about the specific problem, and are just given the generic SAT formulation of the underlying hypergraph colouring problem.
So it seems that SAT solving does a good job here.6

1.1. Using SAT solvers

As explored in Dransfield et al. [20], Herwig et al. [28], Kouril [44,43], Ahmed [2,3], and Kullmann [50,51], we can generate
an instance F(t0, . . . , tk−1; n) of the satisfiability problem (for definition, see any of the above references) corresponding to
w(k; t0, t1, . . . , tk−1) and integer n, such that F(t0, . . . , tk−1; n) is satisfiable if and only if n < w(k; t0, t1, . . . , tk−1). In
particular, the instance F(3, t; n) corresponding to w(2; 3, t) with n variables consists of the following clauses:

(a) {xa, xa+d, xa+2d} with a ≥ 1, d ≥ 1, a + 2d ≤ n, and
(b) {xa, xa+d, . . . , xa+d(t−1)} with a ≥ 1, d ≥ 1, a + d(t − 1) ≤ n,

where an assignment xi = ε encodes i ∈ Pε for ε ∈ {0, 1} (if xi is not assigned but the formula is satisfied, then i can
be arbitrarily placed in either of the blocks of the partition). The (‘‘positive’’) clauses (a) (consisting only of variables),
constructed from all arithmetic progressions of length 3 in {1, . . . , n}, prohibit the existence of an arithmetic progression
of length 3 in P0. And the (‘‘negative’’) clauses (b) (consisting only of negated variables), constructed from all arithmetic
progressions of length t in {1, . . . , n}, prohibit the existence of an arithmetic progression of length t in P1. To check the
satisfiability of the generated instance, we need to use a ‘‘SAT solver’’. A complete SAT solver finds a satisfying assignment
if one exists, and otherwise correctly says that no satisfying assignment exists and the formula is unsatisfiable. One of the
earliest complete algorithms is the DLL algorithm [19], and our algorithm for computing w(2; 3, 19) ≤ 349, discussed in
Section 2, actually implements this very basic scheme, using modern heuristics.

SAT solving has progressed much beyond this simple algorithm, and the handbook [13] gives an overview (where [71]
discusses some applications of SAT to combinatorics). There in [18] we find a general overview on complete SAT algorithms,
while [41] gives an overview on incomplete algorithms. For complete algorithms especially the algorithms derived from the
DLL algorithm are of importance, and there are two families, namely the (earlier) ‘‘look-ahead solvers’’ outlined in [31],
and the (later) ‘‘conflict-driven solvers’’ (or ‘‘CDCL’’ like ‘‘conflict-driven clause-learning’’) outlined in [56]. In Section 6
we will discuss how general SAT solvers perform on the problems from this article. The motivation for our choice of
the most basic DLL algorithm for tackling the unsatisfiability of the instance F(3, 19; 349), already employed in [3] and
discussed in Section 3.1, is, that on these special problems classes this basic algorithm together with a modern heuristic is
very competitive—best on ordinary problem instances, and beaten on palindromic instances only by the Cube & Conquer
method.7 And then it is also instructive to use such an algorithm, which due to its simplicity might enable greater insight.
Another advantage of its simplicity is, that it can also count and enumerate the solutions, but in this article we focus mostly
on mere SAT solving; see [23] for an overview on counting solutions.

Local-search based incomplete algorithms (see Ubcsat-suite [68]) are generally faster than aDLL-like algorithm in finding
a satisfying assignment (on such combinatorial problems), and this is also the case for the instances of this article. However
theymay fail to deliver a satisfying assignmentwhen there exists one, and they cannot prove unsatisfiability. If they succeed
on our instances, then they deliver a good partition, and thus a lower bound for a certain van der Waerden number. So such
incomplete algorithms are used for obtaining good partitions and improving lower bounds of van der Waerden numbers.
When they fail to improve the lower bound any further, we need to turn to a complete algorithm.

1.1.1. Informed versus uninformed SAT solving
We use general SAT solvers, and the new solvers developed by us are also general SAT solvers, which can run without

modification on any SAT problem; these solvers just run on the naked and natural SAT formulation of the problem, without
giving them further information. More specifically, to show unsatisfiability we have developed the tawSolver (Section 2)

5 http://www.mpi-inf.mpg.de/~pascal/software/VanderWaerdenR1160.tar.
6 As discussed in Section 2.1, for enumerating all solutions for n = w(2; 3, 17) − 1 = 278 with tawSolver-2.6 we need at most the time needed for

determining unsatisfiability; in this special case we have actually precisely one solution.
7 The Cube & Conquermethod, developed originally on the instances of this article, combines a look-ahead solver with a conflict-driven solver, and is

faster by a factor of two on palindromic instances.

30 T. Ahmed et al. / Discrete Applied Mathematics 174 (2014) 27–51

and the Cube & Conquer-method (Section 6.1.1), while to find satisfying assignments we have selected local-search
algorithms (Section 6.2).

On the other end of the spectrum is [44,43], which uses a highly specialised method, which involves a variety of
specialised SAT solvers on specialised hardware, in combination with some special insights into the problem domain. For
finding satisfying assignments we have the methods developed in [28,34,33]. For more examples on informed search to
compute van der Waerden numbers, see also Section 2 of [5].

Our ‘‘uninformed approach’’ has stronger bearings on general SAT solving, while the informed approach can be more
efficient for producing numerical results (however it seems to need a lot of effort to beat general SAT solvers (by specialised
SAT solvers); as we have already reported, our general methods are at least on the instances of this paper much faster than
the dedicated (non-SAT-based) method in [64]).

1.1.2. Parallel/distributed SAT solving
The problems we consider are computationally hard, and for the hardest of them in this paper, computation of

w(2; 3, 19) = 349, a single processor, even when run for a long time, is not enough. Hence some form of parallelisation or
distribution of the work is needed. Four levels of parallelisation have been considered for general-purpose SAT solving (in a
variety of schemes):

(i) Processor-level parallelisation: This helps only for very special algorithms, and can only achieve some relatively small
speed-up; see [32] for an example which exploits parallel bit-operations. It seems to play no role for the problems we
are considering.

(ii) Computer-level parallelisation: Here it is exploited that currently a single (standard) computer can contain up to, say,
16 relatively independent processing units, working on shared memory. So threads (or processes) can run in parallel,
using one (or more) of the following general forms of collaboration:
(a) Partitioning the work via partitioning the instance (see below); [72,40] are ‘‘classical’’ examples.
(b) Using the same algorithm running in various nodes on the same problem, exploiting randomisation and/or sharing

of learned results; see [37,25] for recent examples.
(c) Using some portfolio approach, running different algorithms on the same problem, exploiting that various

algorithms can behave very differently and unpredictably; see [24] for the first example.
Often these approaches are combined in various ways; see [63,22,38,39] for recent examples. Approaches (b) and (c)
do not seem to be of much use for the well-specified problem domain of hard instances from Ramsey theory. Only (a) is
relevant, but in a more extreme form (see below). In the context of (ii), still only relatively ‘‘easy’’ problems (compared
to the hard problems from Ramsey theory) are tackled.

(iii) Parallelisation on a cluster of computers: Here up to, say, 100 computers are considered, with restricted communication
(though typically still non-trivial). In this case, the approach (ii)(a) becomes more dominant, but other considerations
of (ii) are still relevant. For hard problems this form of computation is a common approach.

(iv) Internet computation, with completely independent computers, and only very basic communication between the cen-
tre and the machines: In principle, the number of computers is unbounded. Since progress must be guaranteed, and
the instances for which Internet computation is applied would be very hard, at the global level only (ii)(a) is appli-
cable (while at a local level all the other schemes can in principle be applied). Yet there is no real example for a SAT
computation at this level.

We remark that the classical area of ‘‘high performance computing’’ seems to be of no relevance for SAT solving, since the
basic SAT algorithms like unit-clause propagation are, different from typical forms of numerical computation, inherently
sequential (compare also our remarks to (i)). However using dedicated hardware with specialised algorithms has been
utilised in [44,43], yielding the currently most efficient machinery for computing van der Waerden numbers.

A major advantage of the DLL solver architecture (which has been further developed into so-called ‘‘look-ahead’’ SAT
solvers) is that the computation is easily parallelisable and distributable: Just compute the tree only up to a certain depth
d, and solve the (up to) 2d sub-problems at level d. Only minimal interaction is required: The sub-problems are solved
independently, and in case one sub-problem has been found satisfiable, then the whole search can be aborted (for the
purpose of mere SAT-solving; for counting all solutions of course the search needs to be completed). And the sub-problems
are accessible via the partial assignment constituting the path from the root to the corresponding leaf, and thus also require
only small storage space. This is the core of method (ii)(a) from above, and will be further considered in Section 3.1 (for our
special example class).

In the subsequent subsection we will discuss the general merits of applying SAT solving to (hard) Ramsey problems. One
spin-off of this combination lies in pushing the frontier of large computations. As a first example we have developed in
[30,69], motivated by the considerations of the present article, an improved method for (ii)(a) called ‘‘Cube & Conquer’’,
which is also relevant for industrial problems (typically from the verification area). One aspect exploited here is that for
extremely hard problems, splitting into millions of sub-instances is needed. In the literature until now (see above for
examples) only splitting as required, by at most hundreds of processors, has been performed, while it turned out that the
above ‘‘extreme splitting’’, when combined with ‘‘modern’’ (CDCL) SAT solvers, is even beneficial when considered as a
(hybrid) solver on a single-processor, and this for a large range of problem instances.

T. Ahmed et al. / Discrete Applied Mathematics 174 (2014) 27–51 31

1.1.3. Synergies between Ramsey theory and SAT
For Ramsey-numbers (see [58] for an overview on exact results), relatively precise asymptotic bounds exist, and due to

the inherent symmetry, relatively specialisedmethods for solving concrete instances have an advantage. Van-der-Waerden-
like numbers seem harder to tackle, both asymptotically and exactly, and perhaps the only way ever to know the precise
values is by computation (and perhaps this is also true for Ramsey-numbers, only more structures are to be exploited). SAT
solvers are especially suited for the task, since the computational problems are hypergraph-colouring problems, which, at
least for two colours, have canonical translations into SAT problems (as only considered in this paper). For more colours, see
the approach started in [51], while for a general theory of multi-valued SAT close to hypergraph-colouring, see [52,53].

Through applying and improving SAT solvers (as in the present article), Ramsey theory itself acquires an applied side.
Perhaps unknown tomanymathematicians is the fact, thatwhenever for example a recentmicrochip is employed, this likely
involves SAT solving, playing an important (though typically hidden) role in its development, by providing the underlying
‘‘engines’’ for its verification; see the recent handbook [13] to get some impression of this astounding development. Nowwe
believe that problem instances fromRamsey theory are good benchmarks, serving to improve SAT solvers on hard instances:

• Unlike with random instances (see [1] for an overview), instances from Ramsey theory are ‘‘structured’’ in various ways.
One special structure which one finds in all these instances is that they are layered by the number of vertices (the same
structural pattern is repeated again and again, on growing scales).

• A major advantage of random instances is their scalability, that is, we can create relatively easily instances of the same
‘‘structure’’ and different sizes. With instances from Ramsey theory we can also vary the parameters, however due to the
possibly large and unknown growth of Ramsey-like numbers, controlling satisfiability and hardness is more complicated
here. This possible disadvantage can be overcome through computational studies like in this paper, which serve to
calibrate the scale via precise numerical data, so that the field of SAT instances from Ramsey-theory becomes accessible
(one knows for initial parameter values the satisfiability status and (apparent) solving complexity, and gets a feeling
what happens beyond that).

• In this paper, we consider two instance classes: instances related to ordinary van der Waerden numbers w(2; 3, t) and
instances related to the palindromic forms pdw(2; 3, t). Now already with these two classes, the two main types of
complete SAT solvers, ‘‘look-ahead’’ (see [31]) and ‘‘conflict-driven’’ (see [56]), are covered in the sense that theydominate
on one class each (and are (relatively) efficient); see Section 6 for further details. On the other hand, for random instances
only look-ahead solvers are efficient (for complete solvers).

• Especially for local-search methods (see [41] for an overview), these problems are hard, but not overwhelmingly so (for
the ranges considered), and thus all the given lower bounds can trigger further progress (and insight) into the solution
process in a relatively simple engineering-like manner (by studying which algorithms work best where).

• On the other hand, for upper bounds we need to show unsatisfiability, which is much harder (we can only solve much
smaller instances). All applications of SAT solving in hardware verification are ‘‘unsatisfiability-driven’’ (see [10,45] for
introductions). So future progress in solving hard Ramsey instances might trigger a breakthrough in tackling unsatisfia-
bility, and should then also improve these industrial applications.

We believe that for better SAT solving, established hard problem instances are needed in a great variety, andwe believe that
Ramsey theory offers this potential. To begin the process of applying Ramsey theory in this direction, problem instances from
this paper (aswell as related to [51]) have beenused in the SAT2011 competition (http://www.satcompetition.org/2011/). As
alreadymentioned in the previous subsection, the first fruits of the collaboration between SAT and Ramsey theory appeared
in [30,69], yielding a method for tackling hard problems with strong scalability.

Finally, the interaction between Ramsey theory and SAT should yield new insights for Ramsey theory itself:

1. The numerical data can yield conjectures on growth rates; see Section 3.3.
2. The good partitions found can yield conjectures on patterns; see Section 4.
3. New forms of Ramsey problems can be found through algorithmic considerations; see Section 5.
4. The SAT solving process, considered in detail, acts like a microscope, enabling insights into the structure of the problem

instances which are out of sight for Ramsey theory yet. For approaches towards structures in SAT instances, which we
hope to study in the future, see [62,42].

1.2. The results of this paper

In Section 2, we present the new SAT solver, tawSolver-2.6, with superior performance on the instances considered
in this paper (only for palindromic instances the new hybrid method Cube & Conquer is superior). Section 3 contains
our results on the numbers w(2; 3, t). We discuss the computation of the one new van der Waerden number, and present
further conjectures regarding precise values8 and the growth rate. In Section 4, we investigate some patterns we found in
the good partitions (establishing the lower bounds). In Section 5, we introduce palindromic problems and the corresponding
palindromic number-pairs. Finally in Section 6, we discuss the observations on the use of the various SAT solvers involved.

8 To establish these conjectures will require major advances in SAT solving.

32 T. Ahmed et al. / Discrete Applied Mathematics 174 (2014) 27–51

The certificates of the lower bounds and how to access all the numbers and many methods in the OKlibrary (an open-
source research platform for hard problems around the SAT problem) can be found in the underlying report [6].

In this paper, we represent partitions of w(2; 3, t) as bitstrings. For example, the partition P0 = {1, 4, 5, 8} and
P1 = {2, 3, 6, 7}, which is an example of a good partition of {1, 2, . . . , 8}, where 8 = w(2; 3, 3) − 1, is represented as
01100110, or more compactly as 01202120, using exponentiation to denote repetition of bits.

2. The tawSolver

We now discuss the tawSolver, an open-source SAT solver, created by the first author with a special focus on van der
Waerden problems (version 1.0), and improved by the second author through an improved branching heuristic (version
2.6).9 Algorithm 1 shows that the basic algorithm of the tawSolver is the simplest possible (reasonable) DLL-scheme, just
branching on a variable plus unit-clause propagation. Aswe can see in Section 6, it is the strongest SAT solver on the instances
considered in this paper, only beaten on palindromic problems by the new hybrid scheme Cube & Conquer, which came
out as a result on research on the instances of this paper.

2.1. The basic structure

Algorithm 1 specifies the tawSolver, which for input F (a formula or ‘‘clause-set’’) decides satisfiability:
1. Lines 3–5 is ‘‘unit-clause propagation’’ (UCP), denoted by the function r1, which sets literals x in the current F to true

while there are unit-clauses {x} ∈ F .
(a) Setting a literal x to true in a clause-set F is performed by first removing all clauses from F containing x, and removing

the element x from the remaining clauses.
(b) r1 finds a contradiction (Line 4) by finding two unit-clauses {v} and {v} (i.e., v ∧ ¬v).
(c) While r1 finds a satisfying assignment (Line 5) if all clauses vanished (have been satisfied).

2. Lines 6–7 give the branching heuristic, which yields the branching literal x, first set to true, then to false, in the recursive
call of the tawSolver.
(a) p(a, b) ∈ R>0 for a, b ∈ R>0 in Line 6 is the ‘‘projection’’, and we consider three choices p+, p∗, pτ .
(b) wF (x) for literal x is a heuristical value, measuring in a sense the ‘‘progress achieved’’ when setting x to FALSE

(‘‘progress’’ in the sense of the instance becoming more constrained, so that more unit-clause propagations are to
be expected).

(c) The details are specified in Sections 2.3 and 2.5.
3. The implementation is discussed in Section 2.4.
4. The tree of recursive calls made by the solver is called the DLL-tree of F .

Besides the choice of the heuristic, this is the basic SAT solver as published in [19]. The implementation is optimised for
the needs of the branching heuristic, which requires to know from each (original) clause in the input F whether it has been
satisfied meanwhile, and if not, what is its current length.

Algorithm 1 tawSolver
1: Global variable F , initialised by the input.
2: function DLL() : returns SAT or UNSAT for the current F
3: Update F to r1(F)
4: If contradiction found via r1, then goto line 12
5: If satisfying assignment found via r1, then return SAT
6: Choose variable v with maximal p(wF (v), wF (v))
7: If wF (v) ≥ wF (v), then x := v, else x := v
8: Set x to TRUE in F ; if DLL() = SAT, then return SAT
9: Undo assignment of x

10: Set x to TRUE in F ; if DLL() = SAT, then return SAT
11: Undo assignment of x
12: Undo assignments made by r1
13: Return UNSAT
14: end function

With a small modification, namely just continuing when a satisfying assignment was found, the tawSolver can also
count all satisfying assignments, or output them; this is available as a compile-time option for the solver. In Section 4, we
will discuss some patterns which we found in satisfying assignments for F(3, t; n) with n < w(2; 3, t). We do not report
run-times for determining (or counting) all solutions in Section 6, but for n = w(2; 3, t)− 1 (empirically) the run-time is at
most the run-time needed to determine unsatisfiability for n = w(2; 3, t); for numerical values of solution-counts see [43].

9 http://sourceforge.net/projects/tawsolver/, and in the OKlibrary:
https://github.com/OKullmann/oklibrary/blob/master/Satisfiability/Solvers/TawSolver/tawSolver.cpp.

T. Ahmed et al. / Discrete Applied Mathematics 174 (2014) 27–51 33

2.2. Look-ahead solvers

It is useful for the general picture to consider the general rk-operations, as introduced in [46] and further studied in
[26,27]. These operations transform a clause-set F into a satisfiability-equivalent clause-set via application of some forced
assignments (i.e., where the opposite assignmentswould yield an unsatisfiable clause-set). Let⊥ be the empty clause, which
stands for a trivial contradiction. r0 just maps F to {⊥} in case of ⊥ ∈ F , while otherwise F is left unchanged. Now we can
recognise r1 as an operation which is applied recursively to the result of F with literal x set to true if setting x to true yields
{⊥} via r0. This scheme yields also the general rk for k ∈ N: as long as there is a literal x such that F with x set to true yields
{⊥} via rk−1, set x to true and iterate. The final result, denoted by rk(F), is uniquely determined. Besides the ubiquitous
unit-clause propagation r1 also r2, called ‘‘failed literal elimination’’, is popular for SAT solving, and even r3, typically called
‘‘double look-ahead’’, is used in some solvers (always partially, testing the reductions only for selected variables).

The general scheme for a look-ahead solver (as stipulated in [49]) now generalises the DLL-procedure from Algorithm 1,
by replacing the reduction F ❀ r1(F) in Line 3 by the general F ❀ rk(F) for some k ≥ 1. Furthermore, for the inspection
of a branching variable and the computation of the heuristical values w(v) and w(v), now the effects of setting v resp. v to
true and performing rk−1 reduction are considered. This explains also the notion of ‘‘look-ahead’’: the rk-reduction can be
partially achieved at the time when running through all variables v, setting v resp. v to true and applying rk−1—if this yields
{⊥}, then performing the opposite assignment is justified. Since r1 is the standard for reduction of a branch, (partial) r2 is
the default for the reduction at a node.10

We see that tawSolver uses k = 1 (so the ‘‘look-ahead’’ uses k = 0, and in this sense tawSolver is a ‘‘look-ahead
solver with zero look-ahead’’). The prototypical solver for using k = 2 is the OKsolver [47]. In a rather precise sense
the tawSolver can be considered at the level-1-version of the OKsolver (or the latter as the level-2-version of the
tawSolver). Also for the branching heuristic, which is discussed in the following subsection, tawSolver uses the same
scheme as the OKsolver, appropriately simplified to the lower level. Both tawSolver and OKsolver are solvers with a
‘‘mathematical meaning’’, precisely implementing an algorithm to full extent, with the only magical numbers the clause-
weights used in the branching heuristic.

The general scheme for the branching heuristic of a look-ahead solver, as developed in [49, Section 7.7.2], is as follows: For
a clause-set F and its direct successor F ′ on a branch (applying the branching assignment and further reductions), a ‘‘distance
measure’’ d(F , F ′) ∈ R>0 is chosen, with the meaning the bigger this distance, the larger the decrease in complexity. The
branching heuristic considers for each variable v its two successors F ′, F ′′ and computes the distances d(F , F ′), d(F , F ′′).
Then via a ‘‘projection’’ p : R2

>0 → R>0 one heuristical value hv := p(d(F , F ′), d(F , F ′′)) is obtained. Finally some v with
maximal hv is chosen. Choosingwhich of v or v to be processed first (important for satisfiable instances) is done via a second
heuristic, estimating the satisfiability-probabilities of F ′, F ′′ in some way.

2.3. From tawSolver-1.0 to tawSolver-2.6

We are now turning to the discussion of the branching heuristic in tawSolver-2.6 (lines 6, 7 in Algorithm 1), the version
developed for this article. For tawSolver-1.0 (used in [2,3]) the ‘‘Two-sided Jeroslaw-Wang’’ (2sJW) rule by Hooker and
Vinay [35] was used, which chooses v such that the weighted sum of the number of clauses of F containing v is maximal,
where the weight of a clause of length k is 2−k.11 As discussed in [49], the ideas from [35] are actually rather misleading,
and this is demonstrated here again by obtaining a large speed-up through the replacement of the branching heuristic, as
can be seen by the data in Section 6 (comparing tawSolver-1.0 with tawSolver-2.6).

For a literal x, a clause-set F and k ∈ N let ldk
F (x) := |{C ∈ F : x ∈ C ∧|C | = k}| be the ‘‘literal degree’’ of x in the k-clauses

of F . The 2sJW-rule consists of three components:

1. The weight wF (x) of literal x is set as wF (x) :=

k 2
−k

· ldk
F (x).

2. A variable v with maximal p+(wF (v), wF (v)) for p+(a, b) := a + b is chosen.
3. The literal x ∈ {v, v} to be set first to true is given by the condition wF (x) ≥ wF (x).

This approach has the following fundamental flaws:

1. The choice of the first branch (v or v) is mixed up with the choice of v itself, but very different heuristics are needed:
(a) For the choice of the first branch, some form of approximated satisfiability-probability must be maximised,
(b) while the branching-variable must minimise some approximated tree-size for the worst case, the unsatisfiable case.
In 2sJW the weights 2−k are only motivated by satisfiability-probabilities, but are used for the choice of v itself.

10 The look-ahead solvers satz and march_pl run through the variables once (actually also only considering ‘‘interesting’’ variables by some criterion),
and so they do not compute r2 , but only an approximation. The only solver to completely compute r2 is the OKsolver (while satz and march_pl search
also for some r3 reductions on selected variables).
11 We do not care much here about the order of branching, since the algorithm is only effective on unsatisfiable problems, where the order does not
matter (while on satisfiable problems local search is much faster).

34 T. Ahmed et al. / Discrete Applied Mathematics 174 (2014) 27–51

2. Once two weights wF (v), wF (v) have been determined, one number (the projection) must be computed from this (to
be maximised). 2sJW uses the sum, which, as demonstrated in [49], corresponds to minimising a lower bound on the
DLL-tree-size—much better is the product p∗(a, b) := a · b, which corresponds to minimising an upper bound on the
tree-size.

So the improved heuristic (which nowadays, when extended appropriately to take the look-ahead into account, is the basis
for all look-ahead solvers) chooses clause-weights w2, w3, . . . ∈ R>0, from which the total weight

wF (x) :=

k

wk · ldk
F (x)

is determined, and chooses a variable v with maximal

p∗(wF (v), wF (v)) = wF (v) · wF (v).

The meaning of these weights is completely different from the argumentation in [35]: as mentioned, satisfiability-
probabilities have no place here. The underlying distance measure is

k wk · νk(F ′), where F ′ is the resulting clause-set

after performing the branch-assignment and the subsequent rk-reduction, while νk(F ′) is the number of new k-clauses in F ′.
When setting literal x to true, ldk

F (x) is an ‘‘approximation’’ of the number of new clauses of length k−1 (since in the clauses
containing x this literal is removed).

The weights wOK
k for the OKsolver have been experimentally determined as roughly 5−k. Since the value of the first

weight is arbitrary, the weights are rescaled to wOK
2 = 1, obtaining then each new weight by multiplication with 1/5.

Now w2 for the tawSolver is a stand-in for the number of new 1-clauses, which are handled in the OKsolver by the
look-ahead; accordingly it seems plausible that now w2 needs a relatively higher weight. We rescale here the weights to
w3 = 1 (note that for the tawSolver the weight wk concerns new clauses of length k − 1). Empirically we determined
w2 = 4.85, w4 = 0.354, w5 = 0.11, w6 = 0.0694, and thereafter a factor of 1

1.46 ; thus starting with w2 the next weights
are obtained by multiplying with (rounded) 1/4.85, 1/2.82, 1/3.22, 1/1.59, 1/1.46,

For the choice of the first branch there are two main schemes, as discussed in [49, Section 7.9]. Roughly, the target now
is to get rid off (satisfy) as many short clauses as possible (since shorter clauses are bigger obstructions for satisfiability).12
Both schemes amount to choose literal x ∈ {v, v} with w′

F (x) ≥ w′

F (x) for some weights w′

k. For the Franco-estimator we
have w′

k = − log(1 − 2−k), while for the Johnson-estimator we have w′

k = 2−k. In the OKsolver the Franco-estimator is
used. But for the tawSolver with its emphasis on unsatisfiable instances, while the computation of the heuristic is very
time-sensitive (much more so than for the OKsolver), actually just the same weights w′

k = wk are used.
As one can see from the data in Section 6, on ordinary van derWaerden problems the new heuristic yields a reduction in

the size of the DLL-tree by a factor increasing from 2 to 5 for t = 12, . . . , 16 (comparing tawSolver-2.6 with tawSolver-
1.0), and for palindromic problems by a factor increasing from 5 to 20 for t = 17, . . . , 23.13 We do not present the data,
but most of the reduction in node-count is due to the replacement of the sum as projection by the product (the optimised
clause-weights only further improve the node reduction by at most 50% for the biggest instances, compared with a simple
but reasonable scheme like 2−k).

2.4. The implementation

The tawSolver is written in modern C++ (C++11, to be precise), with around 1000 lines of code, with complete input-
and output-facilities, error handling and various compile-time options for implementations. The code is highly optimised for
run-time speed, but at the same time expressing the concepts via appropriate abstractions, relying on the expressiveness of
C++ both at the abstraction- and the implementation-level, so that the compiler can do a good job producing efficient code.

Look-ahead solvers are often ‘‘eager’’, that is, they represent the clause-set at each node of the DLL-tree in such a way,
that the current (‘‘residual’’) clause-set is visible to the solver, and precisely the current clauses can be accessed. On the
other hand, conflict-driven solvers are all ‘‘lazy’’, that is, the initial clause-set is not updated, and the state of the current
clause-set has to be inferred via the current assignment to the variables. The representation of the input clause-set F by the
tawSolver now is ‘‘mostly lazy’’:

1. Assignments to variables are entered into a global array.
2. Via the usual occurrence lists, for each literal x one obtains access to all the clauses C ∈ F with x ∈ C .
3. This representation of F is static (is not updated), and in this sense we have a lazy datastructure.
4. But the status of clauses, which is either inactive (when satisfied) or active, and their length (in the active case) is handled

eagerly, by storing status and length for each clause and updating this information appropriately. So at each node, when
running through the occurrence lists (still as in the input), for each clause we can see directly whether the clause is active
and in this case its current length.

12 While for a good branching variable we want to create as many short clauses as possible (via setting literals to false)!
13 tawSolver-2.6 additionally has the implementation improved, so that nodes are processed now twice as fast as with tawSolver-1.0.

T. Ahmed et al. / Discrete Applied Mathematics 174 (2014) 27–51 35

5. When doing an assignment, the clause-lengths are updated: if a literal is falsified in a clause, the length is decreased by
one, and if a literal is satisfied, the status of the clause is set to inactive.

6. For each active clause containing a variable which is assigned, there is exactly one change (either decrease in length or
going from active to inactive). This change is entered into a change-list.

7. When backtracking, the assignment is simply undone by going through the change-list in reverse order, and undoing the
changes to the clauses.

No counters are maintained for the literal degrees ldk(x). Instead, the heuristic is computed by running through all literal
occurrences in the original input for the unassigned literals, and adding the contributions of the clauses which are still active
(this is the use of maintaining the length of a clause).

When doing unit-clause propagation, the basic choice is whether performing a BFS search, by using a first-in-first-out
strategy for the processing of derived unit-clauses, of a DFS search, using a last-in-first-out strategy. BFS is slightly easier to
implement, but on the palindromic vdW-instances needs roughly 10% more unit-clauses to propagate,14 while on ordinary
vdW-instances it uses less propagations, though the difference is less than 2%, and thus DFS is the default. This can also be
motivated by the consideration that newly derived unit-clauses can be considered to be ‘‘more expensive’’, and thus should
be treated as soon as possible.

Look-ahead solvers in general rely on the distance for branch-evaluation to be positive, while a zero value should indicate
that a special reduction can be performed. And indeed, when counting new clauses, theweighted sumbeing zeromeans that
an autarky has been found, a partial assignment not creating new clauses, whichmeans that all touched clauses are satisfied;
see [42].15 Thus starting with the OKsolver, look-ahead solvers looked out for such autarkies, and applied them when
found [31,49]. Now for a zero-look-ahead solver like the tawSolver, these autarkies are just pure literals (only occurring
in one sign, not in the other). Their elimination causes a slight run-time increase, without changingmuch anything else, and
so by default they are not eliminated but not chosen for branching (if there are still non-pure literals left).16

2.5. The optimal projection: the τ -function

In [49] it is shown that the τ -function is the best generic projection in the following sense:

• The τ -function is defined for arbitrary tuples a ∈ Rn, n ∈ N, namely τ(a) ∈ R>0 is the unique x ≥ 1 such thatn
i=1 x

−ai = 1.
• This projection induces a linear order on the set of all such ‘‘branching tuples’’ a (of arbitrary length) by defining a ≤ b if

τ(a) ≤ τ(b); here ‘‘a ≤ b’’ means that a is better than b.
• Theorem 7.5.3 in [49] shows that when imposing some general consistency-constraints on the comparison of branching

tuples (where it is of importance that branching tuples can have arbitrary length), there is precisely one such linear order
on the set of branching tuples, namely the one induced by τ .

Now specific solvers might have a special built-in bias, and, more importantly, the theorem is not applicable when consid-
ering only branching tuples of length 2 (as it is the case for ordinary Boolean SAT solving). But nevertheless, considering the
τ -function as projection (more precisely, since we maximised projection values, 1/τ is used) is an interesting option, and
leads to the τawSolver-2.6 (with ‘‘τ ’’ in place of ‘‘t’’):

pτ (wF (v), wF (v)) := 1/τ(wF (v), wF (v)).

In Section 6 we see that τawSolver-2.6 is faster than tawSolver-2.6 on large palindromic problems due to a much re-
duced node-count, but on ordinary problems the node-count stays basically the same, and then the overhead for computing
pτ makes the τawSolver-2.6 slower.

The weights for τawSolver-2.6 have been empirically determined as w2 = 7, w4 = 0.31, w5 = 0.19, and then a factor
of 1

1.7 ; so starting with w2 the next weights are obtained by multiplying with 1/7, 1/3.22, 1/1.63, 1/1.7,17

3. Computational results on w(2;3, t)

This section is concerned with the numbers w(2; 3, t). The discussion of the computation of w(2; 3, 19) is the subject
of Section 3.1. Conjectures on the values of w(2; 3, t) for 20 ≤ t ≤ 30 are presented in Section 3.2, and also further lower
bounds for 31 ≤ t ≤ 39 are given there. Finally in Section 3.3, we update the conjecture on the (quadratic) growth of
w(2; 3, t).

14 The final result is uniquely determined, but in general there are many ways to get there.
15 The point about autarkies is that they can be applied satisfiability—equivalently.
16 Elimination of pure literals is thus optional, but not possible if counting or enumerating all solutions. If enabled, elimination of pure literals does not
happen iteratively, but only those literals with currently wF (x) = 0 will be eliminated (by setting x to true), when running (once) through all the variables
to determine the branching variable.
17 We consider the values for the weights as reasonable all-round values. A deeper understanding, based on the theory developed in [49], is left for future
investigations.

36 T. Ahmed et al. / Discrete Applied Mathematics 174 (2014) 27–51

Table 2
Conjectured precise lower bounds for w(2; 3, t).

t 20 21 22 23 24 25 26 27 28 29 30

w(2; 3, t) ≥ 389 416 464 516 593 656 727 770 827 868 903

3.1. w(2; 3, 19) = 349

The lower bound w(2; 3, 19) ≥ 349 was obtained by Kullmann [50] using local search algorithms and it could not be
improved any further using these incomplete algorithms (because, as we now know, the bound is tight). An example of a
good partition of the set {1, 2, . . . , 348} is as follows:

140160118013014015014011101901301601701501140116010120212011501401120
1150120150170110011301201150112014011501202120101901601140150114012.

To finish the search, i.e., to decide that a current lower bound of a certain van der Waerden number is exact, one might
require many years of CPU-time. Discovering a new van der Waerden number has always been a challenge, as it requires
to explore the search space completely, which has a size exponential in the number of variables in the corresponding
satisfiability instance. To prove that an instance with n variables is unsatisfiable, the DLL algorithm has to implicitly
enumerate all the 2n cases. So the algorithm systematically explores all possible cases, however without actually explicitly
evaluating all of them—herein lies the strength (and the challenge) for SAT solving.

In Section 1.1.2, we gave an overview on the area of distributing hard SAT problems from a general SAT perspective,
and we are concerned here with method (ii)(a), applied to tawSolver. We find the simplest division of the computation
of the search into parts, that have no inter-process communication among themselves, together with the observation of
some patterns, very successful. Namely a level (depth) L ∈ N0 of the DLL-tree is chosen, where the level considers only the
decisions (ignoring the variables inferred via unit-clause propagation), and the 2L subtrees rooted at that level are distributed
among the processors.

To show the unsatisfiability of F(3, 19; 349), we have used tawSolver-1.0 and 2.2 GHz AMDOpteron 64-bit processors
(200 of them) from the cirrus cluster at Concordia University for running the distributed branches of the DLL-tree.
The value L = 8 was chosen, splitting the search space into 28

= 256 independent parts (subtrees) P0, . . . , P255. The
total CPU-time of all processors together was roughly 196 years (the first part P0 alone has taken roughly 60 years of
CPU-time).18 For the prediction of run-times for the sub-tasks, the following observation made in Ahmed [3] was used.
Recall that for tawSolver-1.0 (Algorithm 1) the branching rule was to select a variable with maximal wF (v) + wF (v) =

k(ldF (v) + ldF (v)) · 2−k, where for the first branch x ∈ {v, v} with

k ldF (v) · 2−k
≥

k ldF (v) is chosen. Now the

observation is that the parts (sub-trees of the DLL-tree) P0, P1, P2, P4, P8, P16, P32, P64, P128 are bigger than the other parts,
and P0 is the biggest.

Meanwhile our result w(2; 3, 19) = 349 has been reproduced in [43], via an alternative SAT solving approach (see
Section 1.1.1). At least at this time there seems to be no competitive alternative to SAT solving. See Section 6 for further
remarks on SAT solving for these instances in general. It would be highly desirable to be able to substantially compress the
resolution proofs obtained from the solver runs, so that a proof object would be obtainedwhich could be verified by certified
software (and hardware); see [17] for some recent literature.

3.2. Some new conjectures

In Table 2, we provide conjectured values of w(2; 3, t) for t = 20, 21, . . . , 30. We have used the Ubcsat suite [68] of
local-search based satisfiability algorithms for generating good partitions, which provide a proof of these lower bounds;
see [6] for the certificates. In Section 6.2 we provide details of the algorithms used to find the good partitions. The
characteristics of the searches were such that we believe these values to be optimal, namely with the right settings, these
bounds can be found rather quickly, and in the past, all such conjectures turned out to be true (though, as discussed below,
the situation gets weaker for t = 29, 30). However, since local search based algorithms are incomplete (they may fail to
deliver a satisfying assignment, and hence a good partition when there exists one), it remains to prove exactness of the
numbers using a complete satisfiability solver or some complete colouring algorithm.

We observe that for t = 24, 25, . . . , 30 we have w(2; 3, t) > t2, which refutes the possibility that ∀ t : w(2; 3, t) ≤ t2,
as suggested in [15], based on the exact values for 5 ≤ t ≤ 16 known by then. Further (strict) lower bounds we found are
in Table 3 (where now we think it is likely that these bounds can be improved; see [6] for the certificates).

18 Comparing tawSolver-1.0 with tawSolver-2.6, as we can see in Table 9, the series of quotients qi = old-time / new-time, for t = 12, . . . , 16 is
(rounded) 4.3, 5.6, 6.8, 9.4, 12.8. This can be approximated well by the law qi+1 = 1.3 · qi , which would yield for t = 19 the factor 12.8 · 1.33

≈ 28.1.
So we would expect with tawSolver-2.6 at least a speed-up by a factor 20, which would reduce the 200 years to 10 years. Another approximation is
obtained by considering Table 9: we see that for each step from t to t + 1 the run-time always increases by less than a factor of 10, while for t = 17 we
use less than five days, which would yield at most 500 days for t = 19 with tawSolver-2.6.

T. Ahmed et al. / Discrete Applied Mathematics 174 (2014) 27–51 37

Table 3
Further lower bounds for w(2; 3, t).

t 31 32 33 34 35 36 37 38 39

w(2; 3, t) > 930 1006 1063 1143 1204 1257 1338 1378 1418

That we conjecture the data of Table 2 to be true, that is, that the used local-search algorithm is strong enough, while
for the data of Table 3 that algorithm seems too weak to reach the solution, has the following background in the data: As
we report in Section 6.2, in the range 24 ≤ t ≤ 33 the local-search algorithm RoTS from the Ubcsat suite was found best-
performing. This algorithm is used in an incremental fashion, initialising the search by known solutions for smaller n. This
approach for t = 28, with a cut-off 5 ·106 rounds, found a solution for n = 826, and in 1000 (non-incremental) independent
runs two solutions were found. But for n = 827 with cut-off 107 in 1000 runs and with cut-off 2 · 107 in 500 runs no so-
lutions was found. From our experience this seems ‘‘pretty safe’’ for a conjecture. We are entering now a transition period.
For t = 29 the iterative approach with cut-off 5 ·106 found the solution for n = 867, while cut-off 107 found no solution for
n = 868 in 1000 runs. For t = 30 the iterative approach managed to find a solution for n = 897; restarting it with cut-off
108 found a solution for n = 902, while for n = 903 no solution with that cut-off was found in 300 runs. So we see that
already t = 30 is stretching it. However for t = 31 the iterative approach with cut-off 108 only reached n = 919 (despite
restarts), while we happen to have a palindromic solution for n = 930 (these are much easier to find; see Section 5.3). So
here now we believe we definitely over-stretched the abilities of the algorithm.

3.3. A conjecture on the upper bound

An important theoretical question is the growth-rate of t → w(2; 3, t). Although the precise relation ‘‘w(2; r, t) ≤ t2’’
has been invalidated by our results, quadratic growth still seems appropriate (see [50] for a more general conjecture on
polynomial growth for van der Waerden numbers in certain directions of the parameter space; indeed in some directions
linear growth is proven there):

Conjecture 3.1. There exists a constant c > 1 such that w(2; 3, t) ≤ ct2.

See Conjecture 4.4 for a strengthening. To determine the current best guess for c , and to give some heuristic justification
for Conjecture 3.1, we observe the known exact values and lower bounds, and we arrive at the following possible recursion:

w(2; 3, t) ≤ w(2; 3, t − 1) + d(t − 1),

for 4 ≤ t ≤ 39 and some d > 0, with w(2; 3, 3) = 9. So we make the Ansatz w(2; 3, t) ≤ wt := 9 +
t−1

i=3 d · i, for t ≥ 3,
where d := max39t=4

w(2;3,t)−w(2;3,t−1)
t−1 ; in case w(2; 3, t) is not known, we use the lower bounds from Tables 2, 3. From our

data we obtain d =
593−516

23 =
77
23 (see the underlying report [6]). We have (geometric sum)wt =

d
2 t

2
−

3
2dt +9−2d < d

2 t
2,

and so we obtain

w(2; 3, t) ≤
d
2
t2 =

77
46

t2 < 1.675t2,

which satisfies all data regarding w(2; 3, t) presented so far.

4. Patterns in the good partitions

In this section, we investigate the set of all good partitions corresponding to certain van derWaerden numbers w(2; 3, t)
for patterns. As described in Section 1.1.1, themotivation behind this section is to obtainmore problem-specific information
on the solution-patterns, which may help to design heuristics to reduce search-space while computing specific van der
Waerden numbers.

Let S(t) denote the set of all binary strings each of which represents a good partition of the set {1, 2, . . . ,w(2; 3, t)− 1}.
Generating S(t) involves traversing the respective search space completely. Let n0(B), n1(B), and n00(B) be the number
of zeros, ones, and double-zeros, respectively, in a bitstring B (note that three consecutive zeros are not possible in any
B ∈ S(t)). Let EP1S(B) denote the sequence of powers of 1 in a bitstring B. Let np(B) and nv(B) denote the number of peaks
(local maxima) and valleys (local minima), respectively, in EP1S(B) (not necessarily strict). For example, for the compact
bitstring 180016013011013001501801500130110130160018 (with n0 = 16, n1 = 60 and n00 = 4), we have the following
EP1S, with p and v, marking peaks and valleys, respectively, corresponding to changes in magnitudes.

8
p
6 3 1

v
3 5 8

p
5 3 1

v
3 6 8

p
.

And for B = 11011012012013013 we have n0(B) = 5, n1(B) = 12, n00(B) = 0, while there is one valley followed by one
peak, and thus nv(B) = np(B) = 1.

38 T. Ahmed et al. / Discrete Applied Mathematics 174 (2014) 27–51

Table 4
Zeros in good partitions of {1, 2, . . . ,w(2; 3, t) − 1}.

w(2; 3, t) (min{n0(B) : B ∈ S(t)},
max{n0(B) : B ∈ S(t)})

max{n00(B) : B ∈ S(t)}

w(2; 3, 3) = 9 (4, 4) 2
w(2; 3, 4) = 18 (6, 6) 2
w(2; 3, 5) = 22 (7, 9) 2
w(2; 3, 6) = 32 (8, 10) 4
w(2; 3, 7) = 46 (11, 12) 3
w(2; 3, 8) = 58 (14, 14) 1
w(2; 3, 9) = 77 (16, 16) 4
w(2; 3, 10) = 97 (19, 21) 5
w(2; 3, 11) = 114 (19, 22) 5
w(2; 3, 12) = 135 (22, 22) 1
w(2; 3, 13) = 160 (25, 29) 5
w(2; 3, 14) = 186 (29, 29) 4

4.1. Number of 0’s and 00’s

In this section, we determine the minimal and maximal numbers of zeros in good partitions (min{n0(B) : B ∈ S(t)} resp.
max{n0(B) : B ∈ S(t)}), and the maximal numbers max{n00(B) : B ∈ S(t)} of double-zeros, for 3 ≤ t ≤ 14. Note that the
zeros mark the elements of the first block of the good partitions, which have to avoid arithmetic progressions of size 3, and
thus there are far fewer zeros than ones. Observations in Table 4 lead us to Conjectures 4.1 and 4.2.

It seems that there is little variation concerning the total number of zeros:

Conjecture 4.1. There exists a constant c > 0 such that |n0(B) − n0(B′)| ≤ ct, ∀B, B′
∈ S(t) with t ≥ 3.

And there seem to be very few consecutive zeros:

Conjecture 4.2. There exists a constant c > 0 such that n00(B) < ct, ∀B ∈ S(t) with t ≥ 3.

4.2. Number of 1’s

In this section, we determine T = min{np(EP1S(B))+nv(EP1S(B)) : B ∈ S(t)}, as well asminimum andmaximum values
of n1(B) over all B ∈ S(t). The observations in Table 5 lead us to Conjectures 4.3, 4.4, and Questions 4.1 and 4.2.

Again, there seems little variation concerning the total number of ones:

Conjecture 4.3. There exists a constant c > 0 such that |n1(B) − n1(B′)| ≤ ct, ∀B, B′
∈ S(t) with t ≥ 3.

Stronger than Conjecture 4.3, the number of ones seems very close to the vdW-number for the previous t:

Conjecture 4.4. There exists a constant c > 0 such that |w(2; 3, t − 1) − n1(B)| < ct, ∀B ∈ S(t).

This conjecture also implies the earlier conjecture on the quadratic growth of w(2; 3, t):

Lemma 4.1. Conjecture 4.4 implies Conjecture 4.3 and Conjecture 3.1.

Proof. Conjecture 4.3 follows by the triangle inequality. Conjecture 3.1 follows, if for t large enough we can show n0(B) ≤

n1(B) for all B ∈ S(T), and this is a special case of Szemerédi’s Theorem [67], which for arithmetic progressions of size 3 was
already proven in [60],19 namely that the relative size of maximum independent subsets of the hypergraph of arithmetic
progressions of size 3 in the numbers 1, . . . , t goes to 0 with t → ∞. �

We turn to the growth of the number of peaks and valleys:

Question 4.1. For each positive constant c does there exist a t ′ such that for all t ≥ t ′, np(EP1S(B)) + nv(EP1S(B)) ≥ ct ,
(t ≥ 3) ∀B ∈ S(t)? (We conjecture yes).

We conclude with the observation, that for t > 3 there do not seem to be long plateaus for the numbers of ones:

Question 4.2. Is there a good partition B ∈ S(t), (t ≥ 4) with 3 consecutive numbers equal in EP1S(B)? (Note that, for t = 3,
the partition 110110011011 has four consecutive exponents, which are the same.)

19 See http://rothstheorem.wikidot.com/on-certain-sets-of-integers.

T. Ahmed et al. / Discrete Applied Mathematics 174 (2014) 27–51 39

Table 5
Selected good-partitions of {1, 2, . . . ,w(2; 3, t) − 1}.

w(2; 3, t) A good partition B corresponding to T T min{n1(B) : B ∈

S(t)},max{n1(B) : B ∈

S(t)}

w(2; 3, 3) = 9 12001200 1 (4, 4)
(2 2)

w(2; 3, 4) = 18 1300110130011013 5 (11, 11)
(3 1 3 1 3)

w(2; 3, 5) = 22 001300110140014011 4 (12, 14)
(3 1 4 4 1)

w(2; 3, 6) = 32 015001501300150015 3 (21, 23)
(5 5 3 5 5)

w(2; 3, 7) = 46 1101101401201501401100130150120150 8 (33, 34)
(1 1 4 2 5 4 1 3 5 2 5)

w(2; 3, 8) = 58 140120140110140130150015013014011014012011 12 (43, 43)
(4 2 4 1 4 3 5 5 3 4 1 4 2 1)

w(2; 3, 9) = 77 180016013011013001501801500130110130160018 5 (60, 60)
(8 6 3 1 3 5 8 5 3 1 3 6 8)

w(2; 3, 10) = 97 1701401201500120017014018011018014001600120018019 13 (75, 77)
(7 4 2 5 2 7 4 8 1 8 4 6 2 8 9)

w(2; 3, 11) = 114 0110014001601100120019016011019001100110016001100110 11 (91, 94)
(10 4 6 10 2 9 6 1 9 1 10 6 10 10)

w(2; 3, 12) = 135 1901801901201301101701201013011102 17 (112, 112)
11101301012017011013012019018019

(9 8 9 2 3 1 7 2 1 3 11 11 3 1 2 7 1 3 2 9 8 9)

w(2; 3, 13) = 160 110160112014001110016011001201401110110 15 (130, 134)
16019012013017011001100150112015014012

(1 6 12 4 11 6 10 2 4 11 1 6 9 2 3 7 10 1 5 12 5 4 2)

4.3. How can it help for SAT solving?

If one of the above conjectures (or some other conjecture) turns out to be true, and if moreover the numerical constants
have good estimates, then they can be used to restrict the search space. When using a general purpose SAT solver, this
can be achieved by adding further constraints. It seems however that these constraints do not help with the search, even
if we assume that they are true, since they are too difficult to handle for the solver. It seems the problem is that these
constraints do not mix well with the original problem formulation, and a deeper integration is needed. Such an integration
was achieved in the case of the palindromic constraint, which is the subject of the following section—here an organic new
problem formulation could be established, where the additional restriction does not appear as an ‘‘add-on’’, but establishes
a natural new problem class.

5. Palindromes

Recall Definitions 1.1, 1.2:

1. for given k ∈ N (the number of ‘‘colours’’),
2. t0, . . . , tk−1 (the lengths of arithmetic progressions),
3. and n ∈ N (the number of vertices)

we consider block partitions (P0, . . . , Pk−1)of {1, . . . , n} such that no Pi contains an arithmetic progression of length ti—these
are the ‘‘good partitions’’, andw(k; t0, . . . , tk−1) ∈ N is the smallest n such that no good partition exists. If (P0, . . . , Pk−1) is a
good partition of {1, . . . , n}w.r.t. t0, . . . , tk−1, then for 1 ≤ n′

≤ nwe obtain a good partition of {1, . . . , n′
}w.r.t. t0, . . . , tk−1

by just removing vertices n′
+ 1, . . . , n from their blocks. Thus w(k; t0, . . . , tk−1) completely determines for which n ∈ N

good partitions exist, namely exactly for n < w(k; t0, . . . , tk−1).

40 T. Ahmed et al. / Discrete Applied Mathematics 174 (2014) 27–51

Definition 5.1. For n ∈ N let mn : {1, . . . , n} → {1, . . . , n} (with ‘‘m’’ like ‘‘mirror’’) defined by mn(v) := n + 1 − v. This
map is extended to S ⊆ {1, . . . , n} as usual: mn(S) := {mn(v) : v ∈ S}.

Now if (P0, . . . , Pk−1) is a good partition w.r.t. n, then also (mn(P0), . . . ,mn(Pk−1)) is a good partition w.r.t. n. So it is of
interest to consider self-symmetric partitions (with mn(Pi) = Pi for all i):

Definition 5.2. A good palindromic partition of {1, . . . , n} w.r.t. parameters t0, . . . , tk−1, where n, t0, . . . , tk−1 ∈ N, is a good
partition of {1, . . . , n} w.r.t. t0, . . . , tk−1 such that for all j ∈ {0, . . . , k − 1} holds mn(Pj) = Pj.

We call these special good partitions ‘‘palindromic’’, since a block partition can be represented as a string of numbers
over {0, . . . , k − 1}, and then the block partition is palindromic iff the string is a palindrome (reads the same forwards
and backwards). For example, the string 01200120 represents a good palindromic partition for k = 2, t0 = t1 = 3
and n = 8, namely ({1, 4, 5, 8}, {2, 3, 6, 7}), and so does ({1, 3, 6, 8}, {2, 4, 5, 7}), represented by 01012010, while
({1, 2, 5, 6}, {3, 4, 7, 8}), represented by 00120012, is a good partition which is not palindromic.

For given k and t0, . . . , tk−1 againwewant to completely determine (in theory) forwhichndo goodpalindromic partitions
exist and for which not. The key is the following observation (which follows also from Lemmas 5.2, 5.3).

Lemma 5.1. Consider fixed k, t0, . . . , tk−1, and n ≥ 3. From a good palindromic partition (P0, . . . , Pk−1) of {1, . . . , n}we obtain
a good palindromic partition (P ′

0, . . . , P
′

k−1) of {1, . . . , n − 2} by removing vertices 1, n and replacing the remaining vertices v
by v − 1, that is, P ′

i := {v − 1 : v ∈ Pi \ {1, n}}.

Proof. The notion of a good partition of {1, . . . , n} w.r.t. w(k; t0, . . . , tk−1), as defined in Definition 1.2, can be generalised
to good partitions of arbitrary T ⊆ Z by demanding that for every block partition (P0, . . . , Pk−1) of T into k parts no part Pj
contains an arithmetic progression of size tj. In the remainder of the proof we omit the ‘‘w.r.t. t0, . . . , tk−1’’.

If T has a good partition, then also every subset has a good partition, by restricting the blocks accordingly, and for every
d ∈ Z also d + T = {d + x : x ∈ T } has a good partition, by shifting the blocks as well.

We can also generalise the notion of a good palindromic partition to intervals T = {a, a + 1, . . . , b} ⊂ Z for a < b,
defining now the mirror-mapma,b : T → T via v ∈ T → b + a − v (mn in Definition 5.1 is the special casemn = m1,n).

Again, if T has a good palindromic partition, then d + T for d ∈ Z has as well. But for subsets of T we can only consider
sub-intervals T ′

= {a′, . . . , b′
}, where from both sides we have taken away equal amounts. That is, for a ≤ a′ < b′

≤ bwith
a′

− a = b − b′ we have, that from a good palindromic partition for T we can obtain a good palindromic partition for T ′ (by
just restricting the blocks).

So from a good palindromic partition of {1, . . . , n} we obtain a good palindromic partition of {1, . . . , n − 2} by first
restricting to {2, . . . , n − 1} and then shifting by −1. �

Corollary 5.1.1. If there is no good palindromic partition of {1, . . . , n}, then there is no good palindromic partition of {1, . . . , n+
2 · i} for all i ∈ N0.

Proof. If there would be a good palindromic partition of {1, . . . , n + 2 · i}, then by repeated applications of Lemma 5.1 we
would obtain a good palindromic partition of {1, . . . , n}. �

Since by van der Waerden’s theorem we know there always exists some n such that for all n′
≥ n no good palindromic

partition exists, we get that the existence of good palindromic partitions w.r.t. fixed t0, . . . , tk−1 is determined by two
numbers, the endpoint p of ‘‘always exists’’ resp. q of ‘‘never exists’’, with alternating behaviour in the interval in-between:

Corollary 5.1.2. Consider the maximal p ∈ N0 such that for all n ≤ p good palindromic partitions exist, and the minimal q ∈ N
such that for all n ≥ q no good palindromic partitions exist. Then q − p is an odd natural number, where no good palindromic
partition exists for p + 1, but p + 2 again has a good palindromic partition, and so on alternately, until from q on no good
palindromic partition exists anymore.

Proof. By Corollary 5.1.1 there is no good palindromic partition for p + 1 + 2i and all i ∈ N0. Now for the first i ∈ N0, such
that p+2+2i has no good palindromic partition, we let q′

:= (p+2+2i)−1.We have a good palindromic partition for q−1
by definition of i (as the smallest such i) resp. in case of i = 0 by definition of p. We have q′

+ 2j = (p + 2 + 2i) − 1 + 2j =

p+1+2(i+j) for j ∈ N0, and thus there is no good palindromic partition for q′
+2j. And if therewould be a good palindromic

partition for q′
+1+2j = p+2+2i+2j, then by Corollary 5.1.1 there would be a good palindromic partition for p+2+2i.

So we have q′
= q. �

Definition 5.3. The palindromic van-der-Waerden number pdw(k; t0, . . . , tk−1) ∈ N2
0 is defined as the pair (p, q) such that

p is the largest p ∈ N0 with the property, that for all 1 ≤ n ≤ p there exists a good palindromic partition of {1, . . . , n},
while q is the smallest q ∈ N such that for no n ≥ q there exists a good palindromic partition of {1, . . . , n}. We use
pdw(k; t0, . . . , tk−1)1 = p and pdw(k; t0, . . . , tk−1)2 = q. So 0 ≤ pdw(k; t0, . . . , tk−1)1 < pdw(k; t0, . . . , tk−1)2 ≤

w(k; t0, . . . , tk−1).

T. Ahmed et al. / Discrete Applied Mathematics 174 (2014) 27–51 41

The palindromic gap is

pdg(k; t0, . . . , tk−1) := w(k; t0, . . . , tk−1) − pdw(k; t0, . . . , tk−1)2 ∈ N0,

while the palindromic span is defined as

pds(k; t0, . . . , tk−1) := pdw(k; t0, . . . , tk−1)2 − pdw(k; t0, . . . , tk−1)1 ∈ N.

To certify that w(k; t0, . . . , tk−1) = n holds means to show that there exists a good partition of {1, . . . , n − 1} and that
there is no good partition of n. For palindromic number-pairs we need to double the effort:

Theorem 5.1. To certify that pdw(k; t0, . . . , tk−1) = (p, q) holds, exactly the following needs to be shown for (arbitrary) p ∈ N0,
q ∈ N with p < q:

(i) there are good palindromic partitions of {1, . . . , p − 1} and {1, . . . , q − 1} w.r.t. t0, . . . , tk−1;
(ii) there are no good palindromic partitions of {1, . . . , p + 1} and {1, . . . , q + 1} w.r.t. t0, . . . , tk−1.

Proof. The given conditions are necessary for pdw(k; t0, . . . , tk−1) = (p, q) by the defining properties of p and q. We show
that they are sufficient to establish pdw(k; t0, . . . , tk−1) = (p, q). First we have by Corollary 5.1.1 that q − p is odd, since
otherwise p + 1 having no good palindromic partitions would yield that q − 1 would have no good palindromic partition.
Then, again by Corollary 5.1.1, all n ≥ q+ 1 have no good palindromic partition, while all n ≤ p− 1 have good palindromic
partitions. By Corollary 5.1.2 we must now have pdw(k; t0, . . . , tk−1) = (p, q). �

5.1. Palindromic vdW-hypergraphs

Recall that a finite hypergraphG is a pairG = (V , E), where V is a finite set (of ‘‘vertices’’) and E is a set of subsets of V (the
‘‘hyperedges’’); one writes V (G) := V and E(G) := E. The essence of the (finite) van der Waerden problem (which we will
now often abbreviate as ‘‘vdW-problem’’) is given by the hypergraphs ap(t, n) of arithmetic progressions with progression
length t ∈ N and the number n ∈ N0 of vertices:

• V (ap(t, n)) := {1, . . . , n}
• E(ap(t, n)) := {p ⊆ {1, . . . , n} : p arithmetic progression of length t}.

For example ap(3, 5) = ({1, 2, 3, 4, 5}, {{1, 2, 3}, {2, 3, 4}, {1, 3, 5}, {3, 4, 5}}). Considering hypergraphs, the reader might
wonder how determination of vdW-numbers fits with hypergraph colouring. While the determination of diagonal vdW-
numbers is an ordinary hypergraph colouring problem, for general vdW-numbers a more general concept of hypergraph
colouring is to be used, involving the simultaneous colouring of several hypergraphs in the following sense: The diagonal
vdW-number w(k; t, . . . , t) for k, t ∈ N is the smallest n ∈ N such that the hypergraph ap(t, n) is not k-colourable, where
in general a k-colouring of a hypergraph G is a map f : V (G) → {1, . . . , k} such that no hyperedge is ‘‘monochromatic’’, that
is, every hyperedge gets at least two different values by f . For the general vdW-number w(k; t0, . . . , tk−1) we now consider
for each colour i ∈ {0, . . . , k−1} the hypergraph ap(ti, n), andwe forbid (to formulate ‘‘good partition’’) for each i that there
is a hyperedge in ap(ti, n) monocoloured with colour i (while we do not care about the other colours here). Accordingly the
SAT-encoding of ‘‘w(2; 3, t) > n?’’, as discussed in Section 1.1, exactly consists of the two hypergraphs ap(3, n) and ap(t, n)
represented by positive resp. negative clauses.

The task now is to define the palindromic version pdap(t, n) of the hypergraph of arithmetic progressions, so that
for diagonal palindromic vdW-numbers pdw(k; t, . . . , t) = (p, q) we have, that q is minimal for the condition that for
all n ≥ q the hypergraph pdap(t, n) is not k-colourable, while p is maximal for the condition that for all n ≤ p the
hypergraph is k-colourable. Furthermore we should have that for two-coloured problems (i.e., k = 2) the SAT-encoding
of ‘‘pdw(2; t0, t1) > n?’’ (satisfiable iff the answer is yes) consists exactly of the two hypergraphs pdap(t0, n), pdap(t1, n)
represented by positive resp. negative clauses (while for more than two colours generalised clause-sets can be used;
see [51]).

Consider fixed t ∈ N and n ∈ N0. Obviously pdap(t, 0) := ap(t, 0) = ({}, {}), and so assume n ≥ 1. Recall the
permutation m = mn of {1, . . . , n} from Definition 5.1. As every permutation, m induces an equivalence relation ∼ on
{1, . . . , n} by considering the cycles, which here, since m is an involution (self-inverse), just has the equivalence classes
{1, . . . , n}/ ∼= {{v, f (v)}}v∈{1,...,n} of size 1 or 2 comprising the elements and their images. Note that m has a fixed
point (an equivalence class of size 1) iff n is odd, in which case the unique fixed point is n+1

2 . The idea now is to define
m′

: {1, . . . , n} → {1, . . . , n}, which chooses from each equivalence class one representative (som′(v) ∈ {v,m(v)} and v ∼

w ⇔ m′(v) = m′(w)), and to let pdap(t, n) be the image of ap(t, n) underm′, that is, (m′(V (ap(t, n))), {m′(H)}H∈E(ap(t,n))).
Naturally we choose m′(v) to be the smaller of v and m(v). Now it occurs that images of arithmetic progressions under
m′ can subsume each other, i.e., for H1,H2 ∈ E(ap(t, n)) with H1 ≠ H2 we can have m′(H1) ⊂ m′(H2), and so we define
pdap(t, n) as the image of ap(t, n) underm′, where also all subsumed hyperedges are removed (sowe only keep theminimal
hyperedges under the subset-relation).

42 T. Ahmed et al. / Discrete Applied Mathematics 174 (2014) 27–51

Definition 5.4. For t ∈ N and n ∈ N0 the hypergraph pdap(t, n) is defined as follows:

• V (pdap(t, n)) := {1, . . . , ⌈ n
2⌉}

• E(pdap(t, n)) is the set of minimal elements w.r.t. ⊆ of the set of m′
n(H) for H ∈ E(ap(t, n)), where m′

n : {1, . . . , n} →

V (pdap(t, n)) is defined bym′
n(v) := v for v ≤ ⌈

n
2⌉ and m′

n(v) := n + 1 − v for v > ⌈
n
2⌉.

Using ap(3, 5) = ({1, 2, 3, 4, 5}, {{1, 2, 3}, {2, 3, 4}, {1, 3, 5}, {3, 4, 5}}) as above, we have m′({1, 2, 3}) = {1, 2, 3},
m′({2, 3, 4}) = {2, 3},m′({1, 3, 5}) = {1, 3} andm′({3, 4, 5}) = {1, 2, 3}, whence pdap(3, 5) = ({1, 2, 3}, {{1, 3}, {2, 3}}).

Lemma 5.2. Consider t ∈ N and n ∈ N0. The hypergraph pdap(t, n) is embedded into the hypergraph pdap(t, n + 2) via the
map e : V (pdap(t, n)) → V (pdap(t, n + 2)) given by v → v + 1.

Proof. First we note that |V (pdap(t, n+2))| = |V (pdap(t, n))|+1, and so the range of e is V (pdap(t, n+2))\ {1}. Let G be
the hypergraph with vertex set V (pdap(t, n + 2)) \ {1}, whose hyperedges are all those hyperedges H ∈ E(pdap(t, n + 2))
with 1 ∉ H . We show that e is an (hypergraph-)isomorphism from pdap(t, n) to G, which proves the assertion.

Now obviously the underlying hypergraph ap(t, n) is embedded into the underlying ap(t, n + 2) via the underlying
map v ∈ V (ap(t, n)) → v + 1 ∈ V (ap(t, n + 2)), where the image of this embedding is given by the hypergraph with
vertex set V (ap(t, n + 2)) \ {1, n + 2}, and where the hyperedges are those H ∈ E(ap(t, n + 2)) with 1, n + 2 ∉ H . Since
m′

n+2(n + 2) = 1 and m′
n(v) = m′

n+2(v + 1) − 1 for v ∈ {1, . . . , n}, the assertion follows from the fact that there are
no hyperedges H,H ′

∈ E(ap(t, n + 2)) with H ∩ {1, n + 2} ≠ ∅, H ′
∩ {1, n + 2} = ∅ and m′

n+2(H) ⊂ m′

n+2(H
′) (thus

m′

n+2(H
′) can only be removed from pdap(t, n + 2) by subsumptions already at work in pdap(t, n)), and this is trivial since

1 ∈ m′

n+2(H) but 1 ∉ m′

n+2(H
′). �

The SAT-translation of ‘‘Is there a good palindromic partition of {1, . . . , n} w.r.t. t0, t1?’’ is accomplished similar to the
translation of ‘‘w(2; t0, t1) > n?’’, now using pdap(t0, n), pdap(t1, n) instead of ap(t0, n), ap(t1, n):

Lemma 5.3. Consider t0, t1 ∈ N, t0 ≤ t1, and n ∈ N0. Let the Boolean clause-set Fpd(t0, t1, n) be defined as follows:

• the variable-set is {1, . . . , ⌈ n
2⌉} (=V (pdap(t0, n)) = V (pdap(t1, n)));

• the hyperedges of pdap(t0, n) are directly used as positive clauses;
• the hyperedges H of pdap(t1, n) yield negative clauses {v}v∈H .

Then there exists a good palindromic partition if and only if Fpd(t0, t1, n) is satisfiable, where the satisfying assignments are in
one-to-one correspondence to the good palindromic partitions of {1, . . . , n} w.r.t. (t0, t1). �

For more than two colours, Lemma 5.3 can be generalised by using generalised clause-sets, as in [51], and there one
also finds the ‘‘generic translation’’, a general scheme to translate generalised clause-sets (with non-Boolean variables) into
Boolean clause-sets (see also [52,53]).

5.2. Precise values

See Section 6.1 for details of the computation (see Table 6).

5.3. Conjectured values and bounds

For 28 ≤ t ≤ 39we have reasonable values on pdw(2; 3, t), which are given in Table 7, andwhichwe believe to be exact
for t ≤ 35. These values have been computed by local-search methods (see Section 6.2), and thus for sure we can only say
that they present lower bounds. We obtain conjectured values for the palindromic span (which might however be too large
or too small) and conjectured values for the palindromic gap (which additionally depend on the conjectured values from
Section 3.2, while for t ≥ 31 we only have the lower bounds from Section 3.2).

For the certificates for these lower bounds see [6].

5.4. Open problems

The relation between ordinary and palindromic vdW-numbers are of special interest:

• It seems the palindromic span can become arbitrarily large—also in relative terms? Perhaps the span shows a periodic
behaviour, oscillating between small and large?

• Similar questions are to be asked for the gap. Does it attain value 0 infinitely often?

Do the hypergraphs pdap(t, n) have interesting properties (more basic than their chromatic numbers)? A basic exercise
would be to estimate the number of hyperedges and their sizes. In the subsequent Section 6.1 we find data that SAT
solvers behave rather different on palindromic vdW-problems (compared to ordinary problems). It seems that palindromic
problems are more ‘‘structured’’ than ordinary problems—can this be made more precise? Perhaps the hypergraphs
pdap(t, n) show characteristic differences to the hypergraphs ap(t, n), which could explain the behaviour of SAT solvers?

T. Ahmed et al. / Discrete Applied Mathematics 174 (2014) 27–51 43

Table 6
Palindromic vdW-numbers pdw(2; 3, t).

t pdw(2; 3, t) pds(2; 3, t) pdg(2; 3, t)

3 (6, 9) 3 0
4 (15, 16) 1 2
5 (16, 21) 5 1
6 (30, 31) 1 1
7 (41, 44) 3 2
8 (52, 57) 5 1
9 (62, 77) 15 0

10 (93, 94) 1 3
11 (110, 113) 3 1
12 (126, 135) 9 0
13 (142, 155) 13 5
14 (174, 183) 9 3
15 (200, 205) 5 13
16 (232, 237) 5 1
17 (256, 279) 23 0
18 (299, 312) 13 0
19 (338, 347) 9 2

20 (380, 389) 9 ≥0
21 (400, 405) 5 ≥11
22 (444, 463) 19 ≥1
23 (506, 507) 1 ≥9
24 (568, 593) 25 ≥0
25 (586, 607) 21 ≥49
26 (634, 643) 9 ≥84
27 (664, 699) 35 ≥71

Table 7
Conjectured palindromic vdW-numbers pdw(2; 3, t).

t pdw(2; 3, t) ≥ pds(2; 3, t) ∼ pdg(2; 3, t) ∼

28 (728, 743) 15 84
29 (810, 821) 11 47
30 (844, 855) 11 48

31 (916, 931) 15 0
32 (958, 963) 5 44
33 (996, 1005) 9 59
34 (1054, 1081) 27 63
35 (1114, 1155) 41 50
36 (1186, 1213) 27 45
37 (1272, 1295) 23 44
38 (1336, 1369) 33 10
39 (1406, 1411) 5 8

5.5. Remarks on the use of symmetries

The heuristic use of symmetries for finding good partitions has been studied in [28,34,33] (while for symmetries in the
context of general SAT solving see [61]). Especially we find there an emphasis on ‘‘internal symmetries’’, which are not found
in the problem, but are imposed on the solutions.

The good palindromic partitions introduced in this section are more restricted in the sense, that they are based on the
symmetries m from Section 5.1 of the clause-sets F expressing ‘‘w(k; t0, t1, . . . , tk−1) > n?’’ (i.e., we have m(F) = F ; recall
Section 1.1), which then is imposed as an internal symmetry on the potential solution by demanding that the solutions be
self-symmetric. In [28] ‘‘reflection symmetric’’ certificates arementioned,which for even n are the same as good palindromic
partitions, however for odd n they ignore vertex 1, not themid-point ⌈ n

2⌉ as we do. This definition in [28] serves to maintain
monotonicity (i.e., a solution for n + 1 yields a solution for n, while we obtain one only for n − 1 (Lemma 5.1)). We believe
that palindromicity is a more natural notion, but further studies are needed here to compare these two notions.

Other internal symmetries used in [28,34,33] are obtained by modular additions and multiplications (these are central
to the approaches there), based on the method from [57] for constructing lower bounds for diagonal vdW-numbers. No
generalisations are known for the mixed problems we are considering.

Finallywewish to emphasise thatwe do not consider palindromicity as amere heuristic for finding lower bounds, butwe
get an interesting variation of the vdW-problem in its own right, which hopefullywill help to develop a better understanding
of the vdW-problem itself in the future.

44 T. Ahmed et al. / Discrete Applied Mathematics 174 (2014) 27–51

6. Experiments with SAT solvers

We conclude by summarising the experimental results and insights gained by running SAT solvers on the instances
considered in this paper. All the solvers (plus build environments), generators and the data are available in the OKlibrary
[48]; see [6] for more information.

For determining unsatisfiabilitywe consider complete SAT solvers in Section 6.1. In general, for (ordinary) vdW-problems
look-ahead solvers seem to perform better than conflict-driven solvers, while for palindromic problems it seems to be the
opposite. However tawSolver-2.6 is the best (single) solver for both classes.

The hybrid approach, Cube & Conquer, was developed precisely on the instances of this paper, as discussed in [30] (fur-
ther developments one finds in [69]). This approach is third-best on vdW-problems (after tawSolver-2.6 and τawSolver-
2.6), and best on palindromic vdW-problems (before τawSolver-2.6 and tawSolver-2.6).

We conclude this section in Section 6.2 by remarks on incomplete SAT solvers, used to obtain lower bounds (determine
satisfiability).

For the experiments we used a 64-bit workstation with 32 GB RAM and Intel i5-2320 CPUs (6144 kB cache) running with
3 GHz, where we only employed a single CPU.

6.1. Complete solvers

Complete SAT solvers exist in mainly two forms, ‘‘look-ahead solvers’’ and ‘‘conflict-driven solvers’’; see [56,31] for
general overviews on these solver paradigms. Besides the tawSolver (see Section 2), for our experimentation we use the
following (publicly available) complete solvers, which give a good coverage of state of the art SAT solving and of the winners
of recent SAT competitions and SAT races20:

• Look-ahead solvers:
– OKsolver [47], a solver with well-defined behaviour, no ad-hoc heuristics, and which applies complete r2 (at every

node). This solver won gold at the SAT 2002 competition.
– satz [55], a solver which applies partial r2 and r3. In the OKlibrary we maintain version 215, with improved/

corrected in/output and coding standard.
– march_pl [29], a solver applying partial r2, r3, and resolution- and equivalence-preprocessing. march_pl contains

the same underlying technology as its sibling solversmarch_{rw,hi,ks,dl,eq}, whichwon gold, silver and bronze
at the 2004 to 2011 SAT competitions and SAT races. We use the pl (partial lookahead) version.

• Conflict-driven solvers:
– MiniSat family:

∗ MiniSat [21], version 2.0 and 2.2, the latest version of this well-established solver, used as starting point for many
new conflict-driven solvers. Previous versions won gold at the SAT Race 2006 and 2008, as well as numerous bronze
and silver awards at the SAT competition 2007.

∗ CryptoMiniSat [65], a MiniSat derivative designed specifically to tackle hard cryptographic problems. This
solver won gold at SAT Race 2010 and gold and silver at the SAT competition 2011. We use version 2.9.6.

∗ Glucose [7], a MiniSat derivative utilising a new clause scoring scheme and aggressive learnt-clause deletion.
This solver won gold in both SAT 2011 competition and SAT Challenge 2012. We use versions 2.0 and 2.2.

– Lingeling family:
∗ PicoSAT [9], a conflict-driven solver using an aggressive restart strategy, compact data-structures, and offering

proof-trace options to allow for unsatisfiability checking. This solver won gold and silver at the SAT competition
2007. We use the latest version 913.

∗ PrecoSAT [11], integrates theSATeLite preprocessor intoPicoSAT, applying various reductions including partial
r2 at certain nodes in the search tree. This solver won gold and silver at the SAT 2009 competition. We use the latest
version 570.

∗ Lingeling [12], based on PrecoSAT, focuses further on integrating preprocessing and search, introducing new
algorithms and data-structures to speed up these techniques and reduce memory footprint. As with PrecoSAT,
this solver applies partial r2 at specially chosen nodes in the search tree. This solver won bronze at the SAT 2011
competition and silver at the SAT Race 2010. We use the latest version ala-b02aa1a-121013.

6.1.1. Cube-and-Conquer
The Cube & Conquer method uses a look-ahead solver as the ‘‘cube-solver’’, splitting the instance into subinstances

small enough such that the ‘‘conquer-solver’’, a conflict-driven solver, can solve almost all sub-instances in at most a few

20 The (parent) SAT competition homepage is at http://www.satcompetition.org with links to each individual competition.

T. Ahmed et al. / Discrete Applied Mathematics 174 (2014) 27–51 45

Table 8
Instance data for F(3, t; n), wheren is the number of vertices aswell as the
number of variables, c = c3+ct is the number of clauses, ci the number of
clauses of length i, and ℓ = 3c3 + tct is the number of literal occurrences.

t n c c3 ct ℓ

12 135 5,251 4,489 762 22,611
13 160 7,308 6,320 988 31,804
14 186 9,795 8,556 1239 43,014
15 218 13,362 11,772 1590 59,166
16 238 15,812 14,042 1770 70,446
17 279 21,616 19,321 2295 96,978
18 312 26,889 24,180 2709 121,302
19 349 33,487 30,276 3211 151,837

seconds. We use the OKsolver as the cube-solver and MiniSat as the conquer-solver. The main (and single) parameter
is D ∈ N0, the cut-off depth for the OKsolver: the DLL-tree created by the OKsolver is cut off when the number of as-
signments reaches D, where it is important that this includes all assignments on the path, not just the decisions, but also
the forced assignments found by r1 and r2—only in this way a relatively balanced load is guaranteed. The data reported in
Tables 10, 14 shows first data on the cube-phase, namely

• D (cut-off depth),
• the number of nodes in the (truncated) DLL-tree of the OKsolver,
• the time needed (this includes writing the partial assignments representing the sub-instances to files),
• and the number N of sub-instances.

For the conquer-phase we have:

• the median and maximum time for solving the sub-instances by MiniSat,
• the sum of conflicts over all sub-instances,
• and the total time used by MiniSat.

Finally the overall total time is reported, which does not include the time used by the processing-script, which applies the
partial assignments to the original instance and produces so the sub-instances: this adds an overhead of nearly 20% for the
smallest problem, but this proportion becomes smaller for larger problems, and is less than 1% for the largest problems.

6.1.2. VdW-problems
We consider the (unsatisfiable) instances to determine the upper bounds for w(2; 3, t) with 12 ≤ t ≤ 17; in Table 8 we

give basic data for these instances (plus t = 18, 19).
In Table 9, we see the running times and number of nodes/conflicts for the SAT solvers. We see that in general look-

ahead solvers here have the upper hand over conflict-driven solvers, with the tawSolver-2.6 with a large margin the
fastest solver. Regarding conflict-driven solvers, we see that version 2.2 for MiniSat is superior over version 2.0, while for
Glucose it is the opposite. The low node-count for march_pl seems due to the preprocessing phase, which adds a large
number of resolvents to the original instance: this reduces the node-count, but increases the run-time. Compared to the
other look-ahead solvers, the strength of tawSolver-2.6 is that the number of nodes is just larger by a factor of most 3,
while processing of each node happens much faster. Compared with the strongest conflict-driven solver, MiniSat-2.2, we
see that the node-count of tawSolver-2.6 is considerably less than the number of conflicts used by MiniSat, and that one
node is processed somewhat faster than one conflict.

One aspect important here for the superiority of look-ahead solver is the ‘‘tightness’’ of the problem formulation. Consider
for example t = 12, not with n = 135 as in Tables 8, 9, but with n = 1000; this yields c = 294,455, c3 = 249,500, c12 =

44,955, and ℓ = 1,287,960, which is now a highly redundant problem instance. For tawSolver-2.6 we obtain 1,311,511
nodes and 2868 s, and for τawSolver-2.6 we get 935,475 nodes and 2452 s, while for MiniSat-2.2 we get 1,140,616
conflicts and 159 s. We see that MiniSat-2.2 was able to utilise the additional clauses to determine unsatisfiability with
fewer conflicts, and with a run-time not much affected by the large increase in problem size, while for tawSolver-2.6 the
run-time (naturally) explodes, and the number of nodes stayed the same.21 If we consider typical branching-heuristics for
look-ahead solvers (as discussed in Section 2.3), thenwe see that locality of the search process is not taken into consideration,
and thus for non-tight problem formulations the solver can ‘‘switch attention’’ again and again. This is very different from
heuristics for conflict-driven solvers, which via ‘‘clause-activity’’ have a strong focus on locality of reasoning. Furthermore,
look-ahead solvers consider much more of the whole input, for example the tawSolver considers always all remaining
variables and their occurrences for the branching heuristic, while conflict-driven solvers do not use such global heuristics.

21 The OKsolver yields a more extreme example: the run was aborted after 657,648 s and 603,177 nodes, where yet only 49.2% of the search space was
visited (so that the solver was still working on completing the first branch at the root of the tree, making very slow progress towards 50%). This shows the
big overhead caused by the r2-reduction, and the danger of a heuristic which (numerically) sees opportunities ‘‘all over the place’’, and thus cannot focus
on one relevant part of the input.

46 T. Ahmed et al. / Discrete Applied Mathematics 174 (2014) 27–51

Table 9
Complete solvers on unsatisfiable instances F(3, t; n) for computing w(2; 3, t) (with t = 12, . . . , 16 and n = 135, 160, 186, 218, 238). The first line is
run-time in seconds, the second line is the number of nodes for look-ahead solvers resp. number of conflicts for conflict-driven solvers.

t = 12 13 14 15 16 17

tawSolver-2.6 11 83 673 5,010 42,356 401,940
961,949 5,638,667 35,085,795 194,035,915 1,462,429,351 10,258,378,909

τawSolver-2.6 19 143 1068 7,607 59,585
953,179 5,869,055 35,668,687 200,208,507 1,479,620,647

tawSolver-1.0 47 463 4577 47,006 532,416
1,790,733 13,722,975 102,268,511 774,872,707 8,120,609,615

satz 77 711 6233 54,913 562,161
262,304 1,698,185 10,822,316 66,595,028 599,520,428

march_pl 185 1,849 17,018 175,614
47,963 279,061 1,975,338 11,959,263

OKsolver 216 3,806 47,598
281,381 2,970,723 22,470,241

MiniSat-2.2 107 1,716 16,836 190,211
5,963,349 63,901,998 463,984,635 3,205,639,994

MiniSat-2.0 273 3,022 33,391 274,457
1,454,696 9,298,288 60,091,581 314,678,660

PrecoSAT 211 2,777 47,624
2,425,722 16,978,254 140,816,236

PicoSAT 259 4,258 48,372
9,643,671 82,811,468 576,692,221

Glucose-2.0 58 781 84,334
1,263,087 8,377,487 163,500,051

Lingeling 519 7,651 107,243
1,659,607 24,124,525 176,909,499

CryptoMiniSat 212 4,630 141,636
2,109,106 18,137,202 205,583,043

Glucose-2.2 94 1,412 >940,040
1,444,017 10,447,051 Aborted

Table 10
Cube & Conquer, via the OKsolver as the cube-solver, and MiniSat-2.2 as the conquer-solver. Times are in seconds. ‘‘Factor’’ is run-time of MiniSat-
2.2, divided by total time of Cube & Conquer. The run-times of the OKsolver include writing all data-files (the partial assignments), the run-times of
MiniSat include reading the files. 106 s are roughly 11.6 days.

t = 13 14 15 16 17

D 20 30 35 40 50
nds 3197 27,053 64,663 209,593 1,399,505
t 10 146 821 3248 23,546
N 1599 13,527 32,331 104,797 699,751

t: med, max 0.06, 0.49 0.06, 0.68 0.16, 3.9 0.46, 29.6 0.8, 199
Σ cfs 8,479,987 59,402,586 361,511,501 3,723,995,162 35,931,491,146
Σt 120 961 6888 80,056 1,006,718

Total t 130 1107 7709 83,304 1,030,264

Factor 13.2 15.2 24.7 NA NA

Finally we consider Cube & Conquer, with the OKsolver as Cube-solver and MiniSat-2.2 as Conquer-solver, in
Table 10.We see that the combination is vastly superior to each of the two solvers involved, and approaches in performance
the best solver, the tawSolver-2.6 (but still slower by a factor of two).

6.1.3. Palindromic vdW-problems
The data for the palindromic problems we considered is shown in Table 11. Recall that for palindromic problems, that

is, the determination of pdw(2; 3, t) = (n1, n2), we have to determine two numbers: the n1 such that all Fpd(3, t, n) with
n ≤ n1 are satisfiable, while Fpd(3, t, n1 + 1) is unsatisfiable, and n2 for which Fpd(3, t, n) is unsatisfiable for all n ≥ n2,

T. Ahmed et al. / Discrete Applied Mathematics 174 (2014) 27–51 47

Table 11
Instance data for Fpd(3, t, n), where v is the number of variables, c = c2 + c3 + c⌈t/2⌉ + c⌈t/2⌉+1 + ct is the number of clauses, ci the number of clauses of
length i, and ℓ is the number of literal occurrences.

t n v c ℓ c2 c3 c⌈t/2⌉ c⌈t/2⌉+1 ct

17 279 140 10,536 45,139 185 9,357 25 0 969
18 312 156 13,277 58,763 52 11,954 9 0 1262
19 347 174 16,208 70,414 230 14,586 28 0 1364
20 389 195 20,327 88,944 258 18,393 10 19 1647
21 405 203 21,950 96,305 269 19,958 29 0 1694
22 463 232 28,650 126,560 308 26,171 11 21 2139
23 507 254 34,289 152,236 337 31,448 34 0 2470
24 593 297 46,881 209,792 394 43,156 12 24 3295
25 607 304 48,979 219,525 404 45,237 37 0 3301
26 643 322 54,843 246,503 428 50,813 12 24 3566
27 699 350 64,719 292,102 465 60,133 38 0 4083

Table 12
Look-ahead solvers on unsatisfiable instances Fpd(3, t; n) for computing w(2; 3, t) (with t = 17, . . . , 25 and n = 279, . . . , 607). The first line is run-time
in seconds, the second line is the number of nodes.

t τawSolver-2.6 tawSolver-2.6 satz tawSolver-1.0 march_pl OKsolver

17 1 0.8 12 7 35 18
32,855 32,697 16,466 143,319 1,448 5,023

18 11 8 182 60 269 335
276,249 279,309 208,873 1,063,979 12,289 100,803

19 13 10 143 134 500 322
283,229 285,037 123,199 2,009,635 12,423 62,009

20 48 39 701 738 1,980 1,419
894,777 897,529 459,899 9,076,261 39,681 206,617

21 115 101 2,592 2,541 5,053 3,536
2,144,743 2,239,371 1,567,736 30,470,349 99,493 490,841

22 564 525 9,418 18,306 25,841 47,593
8,427,503 8,683,035 4,393,139 170,414,771 376,285 3,197,173

23 1,547 1695 35,633 86,869 77,763 132,150
19,858,971 21,565,129 12,587,868 573,190,251 876,315 7,461,907

24 8,558 26,724
79,790,419 198,685,857

25 22,841
219,575,127

while Fpd(3, t, n2 − 1) is satisfiable. In order to do so, as shown in Theorem 5.1, the main unsatisfiable instances are for n1
and n2 + 1. To reduce the amount of data, we do not show the data for these two critical points, but for n2, which is easier
than n2 + 1 (in our range by a factor of around five; possible due to the fact that except of one case n2 happens to be odd
here, as discussed in the next paragraph), and harder than n1.

For Fpd(3, t, n) with odd n we can determine that the middle vertex n+1
2 cannot be element of the first block of the

partition (belonging to progression-size 3), since then no other vertex could be in the first block (due to the palindromic
property and the symmetric position of the middle vertex), and then we would have an arithmetic progression of size t in
the second block. Due to this (and there might be other reasons), palindromic problems for odd n are easier (running times
can go up by a factor of 10 for even n).22

First we consider the look-ahead solvers in Table 12. Comparing tawSolver with the other solvers, we see a similar
behaviour as with (ordinary) vdW-problems, but more extreme so. The node-count of tawSolver-2.6 and τawSolver-2.6
is not much worse than the ‘‘real’’ look-ahead solvers, with exception of march_pl (where again a large number of inferred
clauses is added by the solver). The weak performance of the OKsolver is (likely) explained by the instances not having
many r2-reductions (recall that OKsolver is completely eliminating failed literals, as the only solver), and so the overhead
is prohibitive (the savings in node-count do not pay off). satz only investigates 10% of the most promising variables for r2-
reductions, and additionally looks for some r3-reductions. This strategy here works far better than OKsolver’s ‘‘strategy’’
(but the OKsolver deliberately does not employ a ‘‘strategy’’ here, since the aim is to have a stable and ‘‘mathematical
meaningful’’ solver); nevertheless still the overhead is too large.

22 We remark that while for example PrecoSAT determines this forced variable right at the beginning, this is not the case for the MiniSat versions,
which infer that fact rather late, and they are helped by adding the corresponding unit-clause to the instance.

48 T. Ahmed et al. / Discrete Applied Mathematics 174 (2014) 27–51

Table 13
Conflict-driven solvers on unsatisfiable instances Fpd(3, t; n) for computing w(2; 3, t) (with t = 17, . . . , 24 and n = 279, . . . , 593). The first line is
run-time in seconds, the second line is the number of conflicts.

t MiniSat Glucose PrecoSAT Lingeling CryptoMiniSat

17 0.8 0.8 1.2 3.7 3.6
34,426 34,826 41,961 57,306 59,443

18 19 14 25 59 78
607,908 340,568 506,793 919,123 871,916

19 19 15 24 61 72
568,924 336,861 485,357 915,107 765,301

20 118 66 131 355 384
2,852,150 1,132,012 1,799,145 3,633,502 3,071,462

21 423 228 445 1060 1418
9,179,642 2,903,573 4,687,589 8,672,073 8,458,496

22 3151 1631 2825 8428 14,321
51,582,064 13,397,451 22,283,651 41,696,062 49,716,762

23 8191 6817 9280 28,543 55,544
108,028,217 36,314,064 54,951,563 104,007,799 141,249,316

24 54,678 >992,540 82,750 152,076
476,716,936 >1,100,664,795 261,084,988 285,546,948

Aborted

Table 14
Cube & Conquer, via the OKsolver as the cube-solver, and MiniSat-2.2 as the conquer-solver. Times are in seconds. ‘‘Factor’’ is run-time of best solver,
i.e., τawSolver-2.6, divided by total time of Cube & Conquer. 105 s are roughly 1.2 days.

t = 23 24 25 26 27

D 25 35 45 55 65
nds 1717 5559 17,633 77,161 220,069
t 106 500 1752 7889 25,478
N 859 2780 8817 38,581 110,032

t: med, max 0.95, 17.6 1.2, 27 0.81, 47 0.95, 58 0.82, 125
Σ cfs 27,308,572 93,831,664 258,829,555 1,231,383,588 3,423,841,749
Σt 1095 4466 11,822 55,306 172,033

Total t 1201 4966 13,574 63,195 197,511

Factor 1.3 1.7 1.7 NA NA

An interesting aspect is that for larger t the more complex heuristic (i.e., projection) of τawSolver-2.6 compared to
tawSolver-2.6 pays off. This is different fromordinary vdW-problems. And as the comparisonwithtawSolver-1.0 shows,
the heuristic (mostly the projection) is of great importance here (more pronounced than for ordinary vdW-problems).

The conflict-driven solvers are shown in Table 13. We see that they are not competitive with tawSolver-2.6 or
τawSolver-2.6, however now most of them are better than the ‘‘real’’ look-ahead solvers. Here MiniSat-2.2 is better
than MiniSat-2.0, and Glucose-2.2 is better than Glucose-2.0, so we show only data for the newest versions. With
Glucosewe see a pattern which we observed also at other (hard) instance classes: for smaller instances Glucose is better
than MiniSat, but from a certain point on the performance of Glucose becomes very bad. This is likely due to the more
aggressive restart strategy, which pays off for smaller instances, but from a certain point on the solver becomes essentially
incomplete.

Finally we consider Cube & Conquer in Table 14. We see that this is now the fastest solver overall. Glucose-2.2 is 10%
faster, but since this is only a small amount, for consistency we stick with MiniSat-2.2.

6.2. Incomplete solvers (stochastic local search)

In the OKlibrary we use the Ubcsat suite (see [68]) of local-search algorithms in version 1-2-0. The considered
algorithms are GSAT, GWSAT, GSAT-TABU, HSAT, HWSAT, WALKSAT, WALKSAT-TABU, WALKSAT-TABU-NoNull, Novelty,
Novelty+, Novelty++, Novelty+p, Adaptive Novelty+, RNovelty, RNovelty+, SAPS, RSAPS, SAPS/NR, PAWS, DDFW, G2WSAT,
Adaptive G2WSat, VW1, VW2, RoTS, IRoTS, and SAMD. The performance of local-search algorithms is very much instance-
dependent, and so a good choice of algorithms is essential. Our experiments yield the following selection criteria:

• For standard problems (Section 3) the best advice seems to use GSAT-TABU for t ≤ 23, to use RoTS for t > 23, and to use
Adaptive G2WSat for t > 33 (also trying DDFW then).

• For the palindromic problems (Section 5) GSAT-TABU is the best algorithm.

T. Ahmed et al. / Discrete Applied Mathematics 174 (2014) 27–51 49

For a given t in principle we let these algorithms run for n = t + 1, t + 2, . . . ,, until the search seems unable to find a
solution. But running these algorithms from scratch on these vdW-problems ismuch less effective than using an incremental
approach, based on a solution found for n − 1, respectively for palindromic vdW-problems on a solution found for n − 2
(according to Lemma 5.1), as initial guess, and repeating this process for the next n: this helps to go much quicker through
the easier part of the search space (of possible n), and also seems to help for the harder problems. Finally, we recall that in
Section 3.2 we explained how we made the distinction between lower bounds we conjecture to be exact and sheer lower
bounds.

7. Conclusion

This article presented the following contributions to the fields of Ramsey theory and SAT solving:

• Study of w(2; 3, t):
1. determination of w(2; 3, 19) = 349;
2. lower bounds for w(2; 3, t) with 20 ≤ t ≤ 30, conjectured to be exact;
3. further lower bounds for 31 ≤ t ≤ 39;
4. improved conjecture on the growth rate of w(2; 3, t);
5. various observations on structural properties of good partitions.

• Introduction and study of pdw(2; 3, t):
1. basic definitions and properties;
2. determination of pdw(2; 3, t) for t ≤ 27;
3. lower bounds for pdw(2; 3, t) with 28 ≤ t ≤ 35, conjectured to be exact;
4. further lower bounds for 36 ≤ t ≤ 39.

• SAT solving:
1. introduced the new SAT-solver tawSolver, with the basic implementation given by tawSolver-1.0, and the

versions with improved heuristic by tawSolver-2.6 and τawSolver-2.6;
2. experimental comparison with current look-ahead and conflict-driven solvers;
3. comparison and data for the new Cube & Conquermethod;
4. experimental determination of good local-search algorithms for lower bounds.

We hope that these investigations contribute to a better understanding of the connections between Ramsey theory and SAT
solving. The following seem relevant research directions for future investigations:

• Showing w(2; 3, 20) = 389 (recall Section 3.2) should be in reach with tawSolver-2.6, while showing w(2; 3, 21) =

416 seems to require new (algorithmic) insight (when using similar computational resources).
• Conjecture 3.1 states that the lower bound from [15] for w(2; 3, t) is tight up to a small factor.
• In Section 4 four conjectures on patterns in good partitions are presented (one implying Conjecture 3.1).
• In Section 5.4 various open problems on palindromic van der Waerden numbers are stated.
• Considering SAT solving:

1. Understand the differences between ordinary and palindromic problems:
– Why is the projection relatively more important for the palindromic problems? (So that the difference between
tawSolver-2.6 and tawSolver-1.0 is more pronounced, and τawSolver-2.6 becomes faster than tawSolver-
2.6 on bigger instances.)

– Why do we have different behaviour of look-ahead versus conflict-driven solvers?
2. Can the branching heuristic of tawSolver for the instances of this paper be much further improved? Especially can

we gain some understanding of the weights?
3. How to understand the success of Cube & Conquer? Does its success indicate that there are important dag-like

structures in good resolution refutations of the instances of these classes, which are dispersed locally, so that ordinary
conflict-driven solvers have problems exploiting them?

Acknowledgements

The authors would like to thank Donald Knuth, the Editor and the anonymous referees for their valuable suggestions and
helpful comments.

References

[1] Dimitris Achlioptas, Random satisfiability, in: Biere et al. [13], pp. 245–270 (Chapter 8).
[2] Tanbir Ahmed, Some new van der Waerden numbers and some van der Waerden-type numbers, Integers 9 (2009) 65–76. #A6.

50 T. Ahmed et al. / Discrete Applied Mathematics 174 (2014) 27–51

[3] Tanbir Ahmed, Two new van der Waerden numbers: w(2; 3, 17) and w(2; 3, 18), Integers 10 (2010) 369–377. #A32.
[4] Tanbir Ahmed, On computation of exact van der Waerden numbers, Integers 12 (3) (2012) 417–425. #A71.
[5] Tanbir Ahmed, Some more van der Waerden numbers, J. Integer Seq. 16 (4) (2013) #13.4.4.
[6] Tanbir Ahmed, Oliver Kullmann, Hunter Snevily, On the van der Waerden Numbers w(2; 3, t), Technical Report, 2014, arXiv arXiv:1102.5433v4

[math.CO].
[7] Gilles Audemard, Laurent Simon, Predicting learnt clauses quality in modern SAT solvers, in: IJCAI’09 Proceedings of the 21st International Joint

Conference on Artificial Intelligence, AAAI, 2009, pp. 399–404.
[8] Michael D. Beeler, Patrick E. O’Neil, Some new van der Waerden numbers, Discrete Math. 28 (2) (1979) 135–146.
[9] Armin Biere, Picosat essentials, J. Satisf. Boolean Model. Comput. 4 (2008) 75–97.

[10] Armin Biere, Bounded model checking, in: Biere et al. [13], pp. 455–481 (Chapter 14).
[11] Armin Biere, P{re, i}coSAT@SC’09, 2009. http://fmv.jku.at/precosat/preicosat-sc09.pdf.
[12] Armin Biere, Lingeling and friends entering the SAT Challenge 2012, in: Adrian Balint, Anton Belov, Daniel Diepold, Simon Gerber, Matti Järvisalo,

Carsten Sinz (Eds.), Proceedings of SAT Challenge 2012: Solver and BenchmarkDescriptions, in: Department of Computer Science Series of Publications
B, vol. B-2012-2, University of Helsinki, 2012, pp. 33–34. https://helda.helsinki.fi/bitstream/handle/10138/34218/sc2012_proceedings.pdf.

[13] Armin Biere, Marijn J.H. Heule, Hans vanMaaren, TobyWalsh (Eds.), Handbook of Satisfiability, in: Frontiers in Artificial Intelligence and Applications,
vol. 185, IOS Press, 2009.

[14] T.C. Brown, Some new van der Waerden numbers (preliminary report), Notices Amer. Math. Soc. 21 (1974) 432.
[15] Tom Brown, Bruce M. Landman, Aaron Robertson, Bounds on some van der Waerden numbers, J. Combin. Theory Ser. A 115 (2008) 1304–1309.
[16] V. Chvátal, Some unknown van der Waerden numbers, in: R.K. Guy (Ed.), Combinatorial Structures and their Applications, Gordon and Breach, New

York, 1970, pp. 31–33.
[17] Scott Cotton, Two techniques for minimizing resolution proofs, in: Strichman and Szeider [66], pp. 306–312. ISBN-13 978-3-642-14185-0.
[18] Adnan Darwiche, Knot Pipatsrisawat, Complete algorithms, in: Biere et al. [13], pp. 99–130 (Chapter 3).
[19] Martin Davis, George Logemann, Donald Loveland, A machine program for theorem-proving, Commun. ACM 5 (1962) 394–397.
[20] Michael R. Dransfield, Lengning Liu, Victor W. Marek, Miroslaw Truszczyński, Satisfiability and computing van der Waerden numbers, Electron. J.

Combin. 11 (#R41) (2004).
[21] Niklas Eén, Niklas Sörensson, An extensible SAT-solver, in: Enrico Giunchiglia, Armando Tacchella (Eds.), Theory and Applications of Satisfiability

Testing 2003, in: Lecture Notes in Computer Science, vol. 2919, Springer, Berlin, ISBN: 3-540-20851-8, 2004, pp. 502–518.
[22] Luís Gil, Paulo Flores, Luís Miguel Silveira, PMSat: a parallel version of MiniSAT, J. Satisf. Boolean Model. Comput. 6 (2009) 71–98.
[23] Carla P. Gomes, Ashish Sabharwal, Bart Selman, Model counting, in: Biere et al. [13], pp. 633–654 (Chapter 20).
[24] Jun Gu, The multi-SAT algorithm, Discrete Appl. Math. 96–97 (1999) 111–126.
[25] Long Guo, Youssef Hamadi, Said Jabbour, Lakhdar Sais, Diversification and intensification in parallel SAT solving, in: CP’10 Proceedings of the 16th

International Conference on Principles and Practice of Constraint Programming, in: Lecture Notes in Computer Science, vol. 6308, Springer-Verlag,
2010, pp. 252–265.

[26] Matthew Gwynne, Oliver Kullmann, Generalising and unifying SLUR and unit-refutation completeness, in: Peter van Emde Boas, Frans C.A. Groen,
Giuseppe F. Italiano, Jerzy Nawrocki, Harald Sack (Eds.), SOFSEM 2013: Theory and Practice of Computer Science, in: Lecture Notes in Computer
Science (LNCS), vol. 7741, Springer, 2013, pp. 220–232.

[27] MatthewGwynne, Oliver Kullmann, Generalising unit-refutation completeness and SLUR via nested input resolution, J. Automat. Reason. 52 (1) (2014)
31–65.

[28] P.R. Herwig, M.J.H. Heule, P.M. van Lambalgen, H. van Maaren, A new method to construct lower bounds for van der Waerden numbers, Electron. J.
Combin. 14 (#R6) (2007).

[29] Marijn Heule, Mark Dufour, Joris van Zwieten, Hans van Maaren, March_eq: implementing additional reasoning into an efficient look-ahead SAT
solver, in: Hoos and Mitchell [36], pp. 345–359. ISBN 3-540-27829-X.

[30] Marijn J.H. Heule, Oliver Kullmann, Siert Wieringa, Armin Biere, Cube and conquer: guiding CDCL SAT solvers by lookaheads, in: Kerstin Eder,
João Lourenço, Onn Shehory (Eds.), Hardware and Software: Verification and Testing, HVC 2011, in: Lecture Notes in Computer Science (LNCS),
vol. 7261, Springer, 2012, pp. 50–65. http://cs.swan.ac.uk/~csoliver/papers.html#CuCo2011.

[31] Marijn J.H. Heule, Hans van Maaren, Look-ahead based SAT solvers, in: Biere et al. [13], pp. 155–184 (Chapter 5).
[32] Marijn J.H. Heule, Hans van Maaren, Parallel SAT solving using bit-level operations, J. Satisf. Boolean Model. Comput. 4 (2008) 99–116.
[33] Marijn Heule, Toby Walsh, Internal symmetry, in: Pierre Flener, Justin Pearson (Eds.), The 10th International Workshop on Symmetry in Constraint

Satisfaction Problems, SymCon’10, 2010, pp. 19–33.
[34] Marijn Heule, Toby Walsh, Symmetry within solutions, in: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI-10,

2010, pp. 77–82.
[35] John N. Hooker, V. Vinay, Branching rules for satisfiability, J. Automat. Reason. 15 (1995) 359–383.
[36] Holger H. Hoos, David G. Mitchell (Eds.), Theory and Applications of Satisfiability Testing 2004, in: Lecture Notes in Computer Science, vol. 3542,

Springer, Berlin, ISBN: 3-540-27829-X, 2005.
[37] Antti E. Hyvärinen, Tommi Junttila, Ilkka Niemelä, Incorporating clause learning in grid-based randomized SAT solving, J. Satisf. Boolean Model.

Comput. 6 (2009) 223–244.
[38] Antti E. Hyvärinen, Tommi Junttila, Ilkka Niemelä, Partitioning search spaces of a randomized search, in: AI*IA 2009: Proceedings of the XIth

International Conference of the Italian Association for Artificial Intelligence Reggio Emilia on Emergent Perspectives in Artificial Intelligence,
in: Lecture Notes in Computer Science, vol. 5883, Springer-Verlag, 2009, pp. 243–252.

[39] Antti E. Hyvärinen, Tommi Junttila, Ilkka Niemelä, Partitioning SAT instances for distributed solving, in: LPAR’10 Proceedings of the 17th International
Conference on Logic for Programming, Artificial Intelligence, and Reasoning, in: Lecture Notes in Computer Science, vol. 6397, Springer-Verlag, 2010,
pp. 372–386.

[40] Bernard Jurkowiak, Chu Min Li, Gil Utard, A parallelization scheme based on work stealing for a class of SAT solvers, J. Automat. Reason. 34 (1) (2005)
73–101.

[41] Henry A. Kautz, Ashish Sabharwal, Bart Selman, Incomplete algorithms, in: Biere et al. [13], pp. 185–203 (Chapter 6).
[42] Hans Kleine Büning, Oliver Kullmann, Minimal unsatisfiability and autarkies, in: Biere et al. [13], pp. 339–401 (Chapter 11).
[43] Michal Kouril, Computing the van der Waerden number w(3, 4) = 293, INTEGERS: Electron. J. Comb. Number Theory 12 (A46) (2012) 1–13.
[44] Michal Kouril, Jerome L. Paul, The van der Waerden numberW (2, 6) is 1132, Experiment. Math. 17 (1) (2008) 53–61.
[45] Daniel Kroening, Software verification, in: Biere et al. [13], pp. 505–532 (Chapter 16).
[46] Oliver Kullmann, Investigating a General Hierarchy of Polynomially Decidable Classes of CNF’s Based on Short Tree-like Resolution Proofs, Technical

Report TR99-041, Electronic Colloquium on Computational Complexity (ECCC), 1999.
[47] Oliver Kullmann, Investigating the Behaviour of a SAT Solver on Random Formulas, Technical Report CSR 23-2002, Swansea University, Computer

Science Report Series, 2002, p. 119. Available from http://www-compsci.swan.ac.uk/reports/2002.html.
[48] Oliver Kullmann, The OKlibrary: Introducing a ‘‘holistic’’ research platform for (generalised) SAT solving, Stud. Log. 2 (1) (2009) 20–53.
[49] Oliver Kullmann, Fundaments of branching heuristics, in: Biere et al. [13], pp. 205–244 (Chapter 7).
[50] Oliver Kullmann, Exact Ramsey Theory: Green-Tao Numbers and SAT, Technical Report, 2010, arXiv arXiv:1004.0653v2 [cs.DM].
[51] Oliver Kullmann, Green-Tao numbers and SAT, in: Strichman and Szeider [66], pp. 352–362. ISBN-13 978-3-642-14185-0.
[52] Oliver Kullmann, Constraint satisfaction problems in clausal form I: autarkies and deficiency, Fund. Inform. 109 (1) (2011) 27–81.
[53] Oliver Kullmann, Constraint satisfaction problems in clausal form II: minimal unsatisfiability and conflict structure, Fund. Inform. 109 (1) (2011)

83–119.

T. Ahmed et al. / Discrete Applied Mathematics 174 (2014) 27–51 51

[54] Bruce Landman, Aaron Robertson, Clay Culver, Some new exact van derWaerden numbers, INTEGERS: Electron. J. Comb. Number Theory 5 (2) (2005)
1–11. #A10.

[55] Chu Min Li, Anbulagan, Heuristics based on unit propagation for satisfiability problems, in: Proceedings of 15th International Joint Conference on
Artificial Intelligence, IJCAI’97, Morgan Kaufmann Publishers, 1997, pp. 366–371.

[56] Joao P. Marques-Silva, Ines Lynce, Sharad Malik, Conflict-driven clause learning SAT solvers, in: Biere et al. [13], pp. 131–153 (Chapter 4).
[57] John R. Rabung, Some progression-free partitions constructed using Folkman’s method, Canad. Math. Bull. 22 (1) (1979) 87–91.
[58] Stanisław P. Radziszowski, Small Ramsey numbers, Electron. J. Combin. (2009) Dynamic Surveys DS1, Revision 12;

see http://www.combinatorics.org/Surveys.
[59] Vera Rosta, Ramsey theory applications, Electron. J. Combin. (2004) Dynamic Surveys DS13, Revision 1; see http://www.combinatorics.org/Surveys.
[60] K.F. Roth, On certain sets of integers, J. Lond. Math. Soc. 28 (1953) 245–252.
[61] Karem A. Sakallah, Symmetry and satisfiability, in: Biere et al. [13], pp. 289–338 (Chapter 10).
[62] Marko Samer, Stefan Szeider, Fixed-parameter tractability, in: Biere et al. [13], pp. 425–454 (Chapter 13).
[63] Tobias Schubert, Matthew Lewis, Bernd Becker, PaMiraXT: parallel SAT solving with threads and message passing, J. Satisf. Boolean Model. Comput. 6

(2009) 203–222.
[64] Pascal Schweitzer, Problems of Unknown Complexity: Graph Isomorphism and Ramsey Theoretic Numbers (Ph.D. thesis), Universität des Saarlandes,

Saarbrücken, 2009, Revised version, April 2012; http://www.mpi-inf.mpg.de/~pascal/docs/thesis_pascal_schweitzer.pdf.
[65] Mate Soos, Karsten Nohl, Claude Castelluccia, Extending SAT solvers to cryptographic problems, in: Oliver Kullmann (Ed.), Theory and Applications

of Satisfiability Testing—SAT 2009, in: Lecture Notes in Computer Science, vol. 5584, Springer, 2009, pp. 244–257. http://planete.inrialpes.fr/∼soos/
publications/Extending_SAT_2009.pdf.

[66] Ofer Strichman, Stefan Szeider (Eds.), Theory and Applications of Satisfiability Testing—SAT 2010, in: Lecture Notes in Computer Science, LNCS,
vol. 6175, Springer, 2010, ISBN: 13 978-3-642-14185-0.

[67] E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith. 27 (1975) 299–345.
[68] Dave A.D. Tompkins, Holger H. Hoos, UBCSAT: an implementation and experimentation environment for SLS algorithms for SAT and MAX-SAT,

in: Hoos and Mitchell [36], pp. 306–320. ISBN 3-540-27829-X.
[69] Peter van der Tak, Marijn J.H. Heule, Armin Biere, Concurrent Cube-and -Conquer, in: Alessandro Cimatti, Roberto Sebastiani (Eds.), Theory and

Applications of Satisfiability Testing—SAT 2012, in: Lecture Notes in Computer Science (LNCS), vol. 7317, Springer, 2012, pp. 475–476.
[70] B.L. van der Waerden, Beweis einer Baudetschen Vermutung, Nieuw Arch. Wiskd. 15 (1927) 212–216.
[71] Hantao Zhang, Combinatorial designs by SAT solvers, in: Biere et al. [13], pp. 533–568 (Chapter 17).
[72] Hantao Zhang, Maria Paola Bonacina, Jie Hsiang, PSATO: a distributed propositional prover and its application to quasigroup problems, J. Symbolic.

Comput. 11 (1996) 1–18.

