546 research outputs found

    Cryptanalysis of Sun and Cao's Remote Authentication Scheme with User Anonymity

    Full text link
    Dynamic ID-based remote user authentication schemes ensure efficient and anonymous mutual authentication between entities. In 2013, Khan et al. proposed an improved dynamic ID-based authentication scheme to overcome the security flaws of Wang et al.'s authentication scheme. Recently, Sun and Cao showed that Khan et al. does not satisfies the claim of the user's privacy and proposed an efficient authentication scheme with user anonymity. The Sun and Cao's scheme achieve improvement over Khan et al.'s scheme in both privacy and performance point of view. Unfortunately, we identify that Sun and Cao's scheme does not resist password guessing attack. Additionally, Sun and Cao's scheme does not achieve forward secrecy

    Cryptanalysis and improvement of chen-hsiang-shih's remote user authentication scheme using smart cards

    Get PDF
    Recently, Chen-Hsiang-Shih proposed a new dynamic ID-based remote user authentication scheme. The authors claimed that their scheme was more secure than previous works. However, this paper demonstrates that theirscheme is still unsecured against different kinds of attacks. In order to enhance the security of the scheme proposed by Chen-Hsiang-Shih, a new scheme is proposed. The scheme achieves the following security goals: without verification table, each user chooses and changes the password freely, each user keeps the password secret, mutual authentication, the scheme establishes a session key after successful authentication, and the scheme maintains the user's anonymity. Security analysis and comparison demonstrate that the proposed scheme is more secure than Das-Saxena-Gulati's scheme, Wang et al.'s scheme and Chen-Hsiang-Shih.Peer ReviewedPostprint (published version

    Privacy protection for telecare medicine information systems using a chaotic map-based three-factor authenticated key agreement scheme

    Get PDF
    Telecare Medicine Information Systems (TMIS) provides flexible and convenient e-health care. However the medical records transmitted in TMIS are exposed to unsecured public networks, so TMIS are more vulnerable to various types of security threats and attacks. To provide privacy protection for TMIS, a secure and efficient authenticated key agreement scheme is urgently needed to protect the sensitive medical data. Recently, Mishra et al. proposed a biometrics-based authenticated key agreement scheme for TMIS by using hash function and nonce, they claimed that their scheme could eliminate the security weaknesses of Yan et al.’s scheme and provide dynamic identity protection and user anonymity. In this paper, however, we demonstrate that Mishra et al.’s scheme suffers from replay attacks, man-in-the-middle attacks and fails to provide perfect forward secrecy. To overcome the weaknesses of Mishra et al.’s scheme, we then propose a three-factor authenticated key agreement scheme to enable the patient enjoy the remote healthcare services via TMIS with privacy protection. The chaotic map-based cryptography is employed in the proposed scheme to achieve a delicate balance of security and performance. Security analysis demonstrates that the proposed scheme resists various attacks and provides several attractive security properties. Performance evaluation shows that the proposed scheme increases efficiency in comparison with other related schemes
    • …
    corecore