818 research outputs found

    Another Nail in the Coffin of White-Box AES Implementations

    Get PDF
    The goal of white-box cryptography is to design implementations of common cryptographic algorithm (e.g. AES) that remain secure against an attacker with full control of the implementation and execution environment. This concept was put forward a decade ago by Chow et al. (SAC 2002) who proposed the first white-box implementation of AES. Since then, several works have been dedicated to the design of new implementations and/or the breaking of existing ones. In this paper, we describe a new attack against the original implementation of Chow et al. (SAC 2002), which efficiently recovers the AES secret key as well as the private external encodings in complexity 2222^{22}. Compared to the previous attack due to Billet et al. (SAC 2004) of complexity 2302^{30}, our attack is not only more efficient but also simpler to implement. Then, we show that the \emph{last} candidate white-box AES implementation due to Karroumi (ICISC 2010) can be broken by a direct application of either Billet et al. attack or ours. Specifically, we show that for any given secret key, the overall implementation has the \emph{exact same} distribution as the implementation of Chow et al. making them both vulnerable to the same attacks. By improving the state of the art of white-box cryptanalysis and putting forward new attack techniques, we believe our work brings new insights on the failure of existing white-box implementations, which could be useful for the design of future solutions

    Survey and Benchmark of Block Ciphers for Wireless Sensor Networks

    Get PDF
    Cryptographic algorithms play an important role in the security architecture of wireless sensor networks (WSNs). Choosing the most storage- and energy-efficient block cipher is essential, due to the facts that these networks are meant to operate without human intervention for a long period of time with little energy supply, and that available storage is scarce on these sensor nodes. However, to our knowledge, no systematic work has been done in this area so far.We construct an evaluation framework in which we first identify the candidates of block ciphers suitable for WSNs, based on existing literature and authoritative recommendations. For evaluating and assessing these candidates, we not only consider the security properties but also the storage- and energy-efficiency of the candidates. Finally, based on the evaluation results, we select the most suitable ciphers for WSNs, namely Skipjack, MISTY1, and Rijndael, depending on the combination of available memory and required security (energy efficiency being implicit). In terms of operation mode, we recommend Output Feedback Mode for pairwise links but Cipher Block Chaining for group communications

    Measuring Performances of a White-Box Approach in the IoT Context

    Get PDF
    The internet of things (IoT) refers to all the smart objects that are connected to other objects, devices or servers and that are able to collect and share data, in order to "learn" and improve their functionalities. Smart objects suffer from lack of memory and computational power, since they are usually lightweight. Moreover, their security is weakened by the fact that smart objects can be placed in unprotected environments, where adversaries are able to play with the symmetric-key algorithm used and the device on which the cryptographic operations are executed. In this paper, we focus on a family of white-box symmetric ciphers substitution-permutation network (SPN)box, extending and improving our previous paper on the topic presented at WIDECOM2019. We highlight the importance of white-box cryptography in the IoT context, but also the need to have a fast black-box implementation (server-side) of the cipher. We show that, modifying an internal layer of SPNbox, we are able to increase the key length and to improve the performance of the implementation. We measure these improvements (a) on 32/64-bit architectures and (b) in the IoT context by encrypting/decrypting 10,000 payloads of lightweight messaging protocol Message Queuing Telemetry Transport (MQTT)

    White-box implementation to advantage DRM

    Get PDF
    Digital Rights Management (DRM) is a popular approach for secure content distribution. Typically, DRM encrypts the content before delivers it. Most DRM applications use secure algorithms to protect content. However, executing these algorithms in an insecure environment may allow adversaries to compromise the system and obtain the key. To withstand such attack, algorithm implementation is modified in such a way to make the implementation unintelligible, namely obfuscation approach. White-box cryptography (WBC) is an obfuscation technique intended to protect secret keys from being disclosed in a software implementation using a fully transparent methodology. This mechanism is appropriate for DRM applications and able to enhance security for the content provider. However, DRM is required to provide a balanced protection for the content provider and users. We construct a protocol on implementing WBC to improve DRM system. The system does not only provide security for the content provider but also preserves privacy for users

    Systematization of a 256-bit lightweight block cipher Marvin

    Get PDF
    In a world heavily loaded by information, there is a great need for keeping specific information secure from adversaries. The rapid growth in the research field of lightweight cryptography can be seen from the list of the number of lightweight stream as well as block ciphers that has been proposed in the recent years. This paper focuses only on the subject of lightweight block ciphers. In this paper, we have proposed a new 256 bit lightweight block cipher named as Marvin, that belongs to the family of Extended LS designs.Comment: 12 pages,6 figure

    Generating large non-singular matrices over an arbitrary field with blocks of full rank

    Full text link
    This note describes a technique for generating large non-singular matrices with blocks of full rank. Our motivation to construct such matrices arises in the white-box implementation of cryptographic algorithms with S-boxes.Comment:

    Enhancing Electromagnetic Side-Channel Analysis in an Operational Environment

    Get PDF
    Side-channel attacks exploit the unintentional emissions from cryptographic devices to determine the secret encryption key. This research identifies methods to make attacks demonstrated in an academic environment more operationally relevant. Algebraic cryptanalysis is used to reconcile redundant information extracted from side-channel attacks on the AES key schedule. A novel thresholding technique is used to select key byte guesses for a satisfiability solver resulting in a 97.5% success rate despite failing for 100% of attacks using standard methods. Two techniques are developed to compensate for differences in emissions from training and test devices dramatically improving the effectiveness of cross device template attacks. Mean and variance normalization improves same part number attack success rates from 65.1% to 100%, and increases the number of locations an attack can be performed by 226%. When normalization is combined with a novel technique to identify and filter signals in collected traces not related to the encryption operation, the number of traces required to perform a successful attack is reduced by 85.8% on average. Finally, software-defined radios are shown to be an effective low-cost method for collecting side-channel emissions in real-time, eliminating the need to modify or profile the target encryption device to gain precise timing information

    09031 Abstracts Collection -- Symmetric Cryptography

    Get PDF
    From 11.01.09 to 16.01.09, the Seminar 09031 in ``Symmetric Cryptography \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available
    corecore