36 research outputs found

    A Review on Biological Inspired Computation in Cryptology

    Get PDF
    Cryptology is a field that concerned with cryptography and cryptanalysis. Cryptography, which is a key technology in providing a secure transmission of information, is a study of designing strong cryptographic algorithms, while cryptanalysis is a study of breaking the cipher. Recently biological approaches provide inspiration in solving problems from various fields. This paper reviews major works in the application of biological inspired computational (BIC) paradigm in cryptology. The paper focuses on three BIC approaches, namely, genetic algorithm (GA), artificial neural network (ANN) and artificial immune system (AIS). The findings show that the research on applications of biological approaches in cryptology is minimal as compared to other fields. To date only ANN and GA have been used in cryptanalysis and design of cryptographic primitives and protocols. Based on similarities that AIS has with ANN and GA, this paper provides insights for potential application of AIS in cryptology for further research

    A Comparison between Memetic algorithm and Genetic algorithm for the cryptanalysis of Simplified Data Encryption Standard algorithm

    Full text link
    Genetic algorithms are a population-based Meta heuristics. They have been successfully applied to many optimization problems. However, premature convergence is an inherent characteristic of such classical genetic algorithms that makes them incapable of searching numerous solutions of the problem domain. A memetic algorithm is an extension of the traditional genetic algorithm. It uses a local search technique to reduce the likelihood of the premature convergence. The cryptanalysis of simplified data encryption standard can be formulated as NP-Hard combinatorial problem. In this paper, a comparison between memetic algorithm and genetic algorithm were made in order to investigate the performance for the cryptanalysis on simplified data encryption standard problems(SDES). The methods were tested and various experimental results show that memetic algorithm performs better than the genetic algorithms for such type of NP-Hard combinatorial problem. This paper represents our first effort toward efficient memetic algorithm for the cryptanalysis of SDES.Comment: 9Page

    A Binomial Crossover Based Artificial Bee Colony Algorithm for Cryptanalysis of Polyalphabetic Cipher

    Get PDF
    Cryptography is one of the common approaches to secure private data and cryptanalysis involves breaking down a coded cipher text without having the key. Cryptanalysis by brute force cannot be accepted as an effective approach and hence, metaheuristic algorithms performing systematic search can be applied to derive the optimal key. In this study, our aim is to examine the overall suitability of Artificial Bee Colony algorithm in the cryptanalysis of polyalphabetic cipher. For this purpose, using a number of different key lengths in both English and Turkish languages, basic Artificial Bee Colony algorithm (ABC) is applied in the cryptanalysis of Vigenere cipher. In order to improve the ABC algorithm\u27s convergence speed, a modified binomial crossover based Artificial Bee Colony algorithm (BCABC) is proposed by introducing a binomial crossoverbased phase after employed bee phase for a precise search of global optimal solution. Different keys in various sizes, various cipher texts in both English and Turkish languages are used in the experiments. It is shown that optimal cryptanalysis keys produced by BCABC are notably competitive and better than those produced by basic ABC for Vigenere cipher analysis

    Cryptanalysis of Homophonic Substitution-Transposition Cipher

    Get PDF
    Homophonic substitution ciphers employ a one-to-many key to encrypt plaintext. This is in contrast to a simple substitution cipher where a one-to-one mapping is used. The advantage of a homophonic substitution cipher is that it makes frequency analysis more difficult, due to a more even distribution of plaintext statistics. Classic transposition ciphers apply diffusion to the ciphertext by swapping the order of letters. Combined transposition-substitution ciphers can be more challenging to cryptanalyze than either cipher type separately. In this research, we propose a technique to break a combined simple substitution- column transposition cipher. We also consider the related problem of breaking a combination homophonic substitution-column transposition cipher. These attacks extend previous work on substitution ciphers. We thoroughly analyze our attacks and we apply the homophonic substitution-columnar transposition attack to the unsolved Zodiac-340 cipher

    A Hybrid Computational Intelligence based Technique for Automatic Cryptanalysis of Playfair Ciphers

    Get PDF
    The Playfair cipher is a symmetric key cryptosystem-based on encryption of digrams of letters. The cipher shows higher cryptanalytic complexity compared to mono-alphabetic cipher due to the use of 625 different letter-digrams in encryption instead of 26 letters from Roman alphabets. Population-based techniques like Genetic algorithm (GA) and Swarm intelligence (SI) are more suitable compared to the Brute force approach for cryptanalysis of cipher because of specific and unique structure of its Key Table. This work is an attempt to automate the process of cryptanalysis using hybrid computational intelligence. Multiple particle swarm optimization (MPSO) and GA-based hybrid technique (MPSO-GA) have been proposed and applied in solving Playfair ciphers. The authors have attempted to find the solution key applied in generating Playfair crypts by using the proposed hybrid technique to reduce the exhaustive search space. As per the computed results of the MPSO-GA technique, correct solution was obtained for the Playfair ciphers of 100 to 200 letters length. The proposed technique provided better results compared to either GA or PSO-based technique. Furthermore, the technique was also able to recover partial English text message for short Playfair ciphers of 80 to 120 characters length

    Genetic algorithms in cryptography

    Get PDF
    Genetic algorithms (GAs) are a class of optimization algorithms. GAs attempt to solve problems through modeling a simplified version of genetic processes. There are many problems for which a GA approach is useful. It is, however, undetermined if cryptanalysis is such a problem. Therefore, this work explores the use of GAs in cryptography. Both traditional cryptanalysis and GA-based methods are implemented in software. The results are then compared using the metrics of elapsed time and percentage of successful decryptions. A determination is made for each cipher under consideration as to the validity of the GA-based approaches found in the literature. In general, these GA-based approaches are typical of the field. Of the genetic algorithm attacks found in the literature, totaling twelve, seven were re-implemented. Of these seven, only three achieved any success. The successful attacks were those on the transposition and permutation ciphers by Matthews [20], Clark [4], and Griindlingh and Van Vuuren [13], respectively. These attacks were further investigated in an attempt to improve or extend their success. Unfortunately, this attempt was unsuccessful, as was the attempt to apply the Clark [4] attack to the monoalphabetic substitution cipher and achieve the same or indeed any level of success. Overall, the standard fitness equation genetic algorithm approach, and the scoreboard variant thereof, are not worth the extra effort involved. Traditional cryptanalysis methods are more successful, and easier to implement. While a traditional method takes more time, a faster unsuccessful attack is worthless. The failure of the genetic algorithm approach indicates that supplementary research into traditional cryptanalysis methods may be more useful and valuable than additional modification of GA-based approaches

    Heuristic Search Cryptanalysis of the Zodiac 340 Cipher

    Get PDF
    The Zodiac 340 cipher is one of the most famous unsolved ciphers of all time. It was allegedly written by “the Zodiac”, whose identity remains unknown to date. The Zodiac was a serial killer who killed a number of people in and around the San Francisco Bay area during the 1960s. He is confirmed to have seven victims, two of whom survived [1], although in taunting letters to the news media he claims to have killed 37 people. During this time, an encrypted message known as the Zodiac 408 cipher was mailed to 3 different newspapers in the San Francisco bay area. This was a homophonic cipher and was successfully decoded. Within a few days he sent out another cipher that was 340 characters long [4]. This cipher, which is known as the Zodiac 340 cipher, is unsolved to date. Many cryptologists have tried to crack this cipher but with no success. In this project, we implemented a novel genetic algorithm in an attempt to crack the Zodiac 340 cipher. We have attacked the cipher as a homophonic cipher where each cipher symbol is mapped to only a single English letter, but each English letter can be mapped to multiple cipher symbols. In the genetic algorithm, we implemented two variants of crossover: simple and intelligent. The simple crossover looks for commonly occurring substrings, without looking for actual English words in a putative decrypt. The intelligent crossover counts the number of actual English words that can be found in a putative decrypt when evaluating each solution. We implemented a dictionary lookup for quickly identifying English words for the intelligent crossover. The genetic algorithm using a combination of simple and intelligent crossovers was able to identify many English words in various putative decrypts but no solution was found

    Analisa Algoritma Ciphers Transposition: Study Literature

    Get PDF
    Technological developments allow the sending and storage of data can be done quickly, easily, practically, and safely. One security used uses cryptographic techniques. Cryptography is a technique of converting original text (plaintext) into secret text (ciphertext) using cryptographic algorithms (ciphers) or what is called the encryption process. The decryption process is the process of converting data encoded into original data. One of the cryptographic algorithms is the Cipher Transposition Algorithm. The analysis aims to determine the characteristics and application of the Transposition Cipher. The method used in this study by means of Study Literature, analyzes previous research from journals related to the Transposition Cipher Algorithm. The results are in the form of a view using the study literature method and knowing the characteristics and application of the Cipher Transposition algorithm and analyzing trends in previous studies. Kata Kunci : Cryptography, Algorithms, Cipher Transposition, Study literatur

    Analisa Algoritma Ciphers Transposition: Study Literature

    Get PDF
    Technological developments allow the sending and storage of data can be done quickly, easily, practically, and safely. One security used uses cryptographic techniques. Cryptography is a technique of converting original text (plaintext) into secret text (ciphertext) using cryptographic algorithms (ciphers) or what is called the encryption process. The decryption process is the process of converting data encoded into original data. One of the cryptographic algorithms is the Cipher Transposition Algorithm. The analysis aims to determine the characteristics and application of the Transposition Cipher. The method used in this study by means of Study Literature, analyzes previous research from journals related to the Transposition Cipher Algorithm. The results are in the form of a view using the study literature method and knowing the characteristics and application of the Cipher Transposition algorithm and analyzing trends in previous studies. Kata Kunci : Cryptography, Algorithms, Cipher Transposition, Study literatur
    corecore