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ABSTRACT

Cryptanalysis of Homophonic Substitution-Transposition Cipher

by Jeffrey Yi

Homophonic substitution ciphers employ a one-to-many key to encrypt plaintext.

This is in contrast to a simple substitution cipher where a one-to-one mapping is

used. The advantage of a homophonic substitution cipher is that it makes frequency

analysis more difficult, due to a more even distribution of plaintext statistics. Classic

transposition ciphers apply diffusion to the ciphertext by swapping the order of letters.

Combined transposition-substitution ciphers can be more challenging to cryptanalyze

than either cipher type separately.

In this research, we propose a technique to break a combined simple substitution-

column transposition cipher. We also consider the related problem of breaking a

combination homophonic substitution-column transposition cipher. These attacks

extend previous work on substitution ciphers. We thoroughly analyze our attacks and

we apply the homophonic substitution-columnar transposition attack to the unsolved

Zodiac-340 cipher.
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CHAPTER 1

Introduction

The classic simple substitution cipher is one of the most basic forms of cryptogra-

phy. Encryption with a simple substitution cipher involves a one-to-one substitution

of ciphertext for plaintext characters based on a key. The simple substitution is easy

to use; however, in addition to its ease of use is the ease with which it can be bro-

ken using letter frequency analysis. There have been different methods of breaking

simple substitution ciphers [5, 14, 18, 21] but this paper will focus on a fast attack

that uses a hill climb search [13]. An extension to the simple substitution cipher

is the homophonic substitution cipher, which was developed to prevent a statistical

attack [7]. Rather than use a one-to-one mapping for plaintext characters to cipher-

text characters, homophonic ciphers use a one-to-many key so that a single plaintext

character can map to multiple ciphertext characters. What this also means is that

the key will contain more than 26 alphabetic characters. Previous work done on an

attack against the homophonic substitution cipher has produced methods to attack

homophonic ciphertext [8, 15]. This technique is based on an algorithm developed to

quickly solve simple substitution ciphers [13] and recover at least 80% of the text for

ciphertext of at least 300 characters, which is the minimum amount needed to be able

to manually recover the rest of the key. It extends this work by using three nested

hill climbing steps rather than only one. The algorithm showed good results with at

least 1000 characters of text and less than 42 symbols.

Transposition ciphers encrypt plaintext by permuting the text based on a pro-

vided key, thus providing diffusion [11]. Previous research on the cryptanalysis of

transposition ciphers has used a variety of heuristic searches to attack and deter-
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mine the key of the cipher [6, 9, 10, 11, 17, 20]. Most of this research centered

on using simulated annealing, genetic algorithms, and tabu search to determine the

key [6, 9, 10, 11, 20]. Simulated annealing works by generating an initial solution

and randomly altering it through a number of iterations and choosing the key that

generates the best score based on putative text’s digram statistics. Tabu search is

similar but generates and maintains a list of keys and uses the best of those keys to

perform the perturbation step and find new solutions. Finally, the genetic algorithm

produces a pool of possible keys and each iteration generates a new pool of children

based on the pairing of parents and scores all of these keys.

The Zodiac-340 is a famous cipher sent by the Zodiac killer in 1969 that has

never been decrypted. The previous cipher, known as the Zodiac-408, was sent to

three newpapers and was solved within a week [2]. It contained 408 characters with 53

distinct symbol and was encrypted with a homophonic substitution cipher. The

Zodiac-340 contains 340 characters with 62 symbols and many approaches to solving

it assume it to be a homophonic cipher as well [3, 4, 7, 8, 12, 16]. However, based

on tests performed on the Zodiac-340 cipher using the efficient method mentioned

above, a solution has not been found. This suggests that the cipher may not only use

a homophonic cipher but also another encryption method, such as transposition.

The aim of this project is to extend the previous work done on cryptanalysis

of homophonic and transposition ciphers by finding an attack on a homophonic-

transposition cipher. In order to test the effectiveness of the attack, ciphertext of

varying lengths and encryptions will be generated and tested against and with a

successful series of tests completed, the algorithm will be used against the Zodiac-340

cipher. Chapter 2 will provide background on past work. Chapter 3 will introduce

a new data structure that will be used in following chapters also present how this
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new data structure can be used with an existing attack on simple substitution and

a new attack on columnar transposition will be laid out in Chapter 4. The modified

attack from Chapter 3 and the new attack in Chapter 4 will be combined in Chapter 5

to attack simple substitution-columnar transposition ciphers. Chapter 6 will extend

the work in Chapter 5 to incorporate the homophonic attack in place of the simple

substitution one. Chapter 7 will present the results of experiments done on these new

attacks and finally, Chapter 8 will present conclusions of the work done.
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CHAPTER 2

Background

In this section, we will discuss previous work done on simple substitution, ho-

mophonic substitution, and columnar transposition ciphers. Next, the history of the

Zodiac-340 cipher will be discussed.

2.1 Simple Substitution

Substitution ciphers are a class of classic ciphers that performs encryption by

replacing plaintext symbols with ciphertext symbols. There are a variety of ways to

perform these substitution. The simplest of these is appropriately named the simple

substitution cipher.

The simple substitution cipher encrypts plaintext by replacing each character

with a ciphertext character using a one-to-one key [19]. Table 1 presents an example

of a simple substitution key.

Table 1: Simple Substitution Key

plaintext A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ciphertext P E Z Q F A O W R B M S Y U T D C V H L N I G J K X

Using the key in Table 1, the ciphertext in Table 2 is generated from the corre-

sponding plaintext.

This is one of the most basic forms of cryptography and with this simplicity

comes an easy way to break the cipher.
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Table 2: Simple Substitution Encryption

plaintext THISISATEST

ciphertext LWRHRHPLFHL

Assuming the key is made up of 26 symbols based on the English alphabet, the

keyspace is quite large. If an exhaustive key search is performed, then there are

26! ≈ 288 possible keys and requires an average of 288/2 ≈ 287 keys to be tested

before the correct key is found. Assuming that a million keys are tested per second,

then it would take 287/106 = 1.55 × 1020 seconds on average to find the correct key.

This equates to 4.9 × 1012 years making an exhaustive key search impractical [8].

While this large keyspace may seem daunting, the simple substitution cipher has a

weakness that greatly reduces the amount of work an attacker must do in order to

find the corresponding key.

Since a one-to-one relationship is used, the frequencies of each letter will not

change in value but will instead move from the plaintext letter to the ciphertext letter.

For example, in the ciphertext in Table 2, the repeated use of L in the ciphertext

means that they all correspond to the same plaintext letter. In the English language,

the letter E is the most common letter and what this means for the ciphertext is that

the most frequent letter in the text most likely corresponds with a plaintext letter E.

This process can be applied for all letter frequencies and generate a putative key [19].

This putative key gives a reasonable starting point to find the final key and greatly

reduces the keyspace that needs to be searched.

In order to determine if a new key is better, a scoring function is needed to test

the putative key and compare it with the previous solution. This can be done by

comparing the digram statistics of the English language with the digram frequencies
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of the putative text. Using a lengthy text, such as Moby Dick, the matrix 𝐸 can

be constructed and represent the expected digram statistics for English. The matrix

𝐷 contains the digram frequencies from the decrypted ciphertext. The score is then

calculated using the following formula:

𝑓(𝑡) =
∑︁
𝑖,𝑗

|𝐷𝑖𝑗 − 𝐸𝑖𝑗|. (1)

Now the question becomes, how do we update this key to find a better solution. Using

a hill climb heuristic search provides a way to manipulate the key and find better

solutions to decrypt the ciphertext with [13]. The general algorithm is presented in

algorithm 1.

The resulting key may not be the absolute solution depending on the amount of

ciphertext used to test with but it will hopefully be enough for readable text to be

decrypted and can then be adjusted manually to find the true key.

One drawback of this method is the amount of decryption that must be done.

With each putative key, the ciphertext must be decrypted and the digram frequencies

must be calculated. However, an interesting observation about the change in the 𝐷

matrix between key changes shows that this decryption does not need to occur for

every key. Instead, it has been observed that with each key swap, the corresponding

rows and columns of the 𝐷 matrix are simply interchanged and the new matrix

represents the digram frequency matrix of the putative text after decrypting with the

new key [13].

This can demonstrated using a smaller alphabet of

E, T, I, S, H, R, L, and K.

With the ciphertext below, a putative key can be generated based on the letter

6



Algorithm 1 General Hill Climb Attack
1: Let 𝑎 = 1 and 𝑏 = 1.
2: Get initial 𝑘𝑒𝑦 based on letter frequencies in the ciphertext.
3: Construct 𝐸 matrix based on English language text.
4: Decrypt the ciphertext with the putative key and construct 𝐷 matrix.
5: Score the putative key with equation (1).
6: while 𝑏 ̸= 26 do
7: if 𝑎 + 𝑏 ≤ 26 then
8: Let tempkey = key.
9: Swap element a and b in tempkey.

10: Decrypt and score with tempkey.
11: if newscore < score then
12: score = newscore

13: key = tempkey

14: 𝑎 = 1
15: 𝑏 = 1
16: else
17: tempkey = key

18: increment 𝑎
19: end if
20: else
21: 𝑎 = 1
22: increment 𝑏
23: tempkey = key

24: end if
25: end while

frequencies in the text.

RIHILKHIERSKILEKKLKTRSKHRIHILKHLREIRTRSKLKTRSKHHLEKRS.

The counts for each ciphertext letter is as follows:

E T I S H R L K

4 3 7 5 7 9 7 11

Based on these counts, the initial key in Table 3 is determined. Using this key, the

following putative plaintext can be decrypted

TIHISEHILTREISLEESEKTREHTIHISEHSTLITKTRESEKTREHHSLETR.
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Table 3: Initial Putative Key

plaintext E T I S H R L K

ciphertext K R I L H S E T

This putative plaintext generates the digram frequency matrix in Table 4.

Table 4: Initial Digram Matrix

E T I S H R L K

E 1 1 1 2 4 0 0 2

T 0 0 2 0 0 5 1 1

I 0 1 0 3 2 0 1 0

S 4 1 0 0 0 0 2 0

H 0 1 3 2 1 0 0 0

R 4 0 0 0 0 0 0 0

L 2 1 1 0 0 0 0 0

K 0 3 0 0 0 0 0 0

The next step is to perform a swap on the putative key and generate a new

digram matrix. The new key would be

plaintext E T I S H R L K

ciphertext R K I L H S E T

This key decrypts the ciphertext to

EIHISTHILERTISLTTSTKERTHEIHISTHSELIEKERTSTKERTHHSLTER.

And this plaintext generates the digram frequency matrix in Table 5.

As can be seen in Table 5, the matrix is an update of the matrix in Table 4. It is

updated by simply swapping the corresponding rows and columns based on the swap

performed on the key. So rather than having to decrypt the ciphertext repeatedly,

8



Table 5: Updated Digram Matrix

E T I S H R L K

E 0 0 2 0 0 5 1 1

T 1 1 1 2 4 0 0 2

I 1 0 0 3 2 0 1 0

S 1 4 0 0 0 0 2 0

H 1 0 3 2 1 0 0 0

R 0 4 0 0 0 0 0 0

L 1 2 1 0 0 0 0 0

K 3 0 0 0 0 0 0 0

the digram matrix can be updated in this manner and be used in the scoring process.

This fast attack is presented in algorithm 2.

The work needed for the Jakobsen algorithm in the best case is 𝑁+
(︀
26
2

)︀
≈

(︀
26
2

)︀
as

opposed to 𝑁
(︀
26
2

)︀
when each putative key must be used to decrypt the ciphertext [8].

This best case assumes that the algorithm does not need to reset and start the search

from the beginning. In the worst case, the algorithm would require work of
(︀
26
2

)︀
!.

The homophonic substitution cipher, another substitution cipher, is explored

next as well as a fast attack against it. This attack is based on the Jakobsen attack

and requires consideration for the more complex nature of the cipher.

2.2 Homophonic Substitution

Homophonic substitution ciphers attempt to overcome the frequency attacks that

simple substitution ciphers are vulnerable to by using a key with a one-to-many

relationship rather than a one-to-one key. Each plaintext letter can be encrypted

using one or more symbols, which allows more frequently used letters to be encrypted

with more symbols and even out the distribution of ciphertext frequencies. Using
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Algorithm 2 Jakobsen Attack
1: Let 𝑎 = 1 and 𝑏 = 1.
2: Get initial key based on letter frequencies in the ciphertext.
3: Construct 𝐸 matrix based on English language text.
4: Decrypt the ciphertext with the putative key and construct 𝐷 matrix.
5: Score the putative key with equation (1).
6: while 𝑏 ̸= 26 do
7: if 𝑎 + 𝑏 ≤ 26 then
8: Let tempkey = key.
9: Let 𝐷′ = 𝐷

10: Swap element a and b in tempkey.
11: Swap rows and columns a and b in 𝐷′.
12: Score with 𝐷′.
13: if newscore < score then
14: score = newscore

15: key = tempkey

16: 𝐷 = 𝐷′

17: 𝑎 = 1
18: 𝑏 = 1
19: else
20: tempkey = key

21: 𝐷′ = 𝐷
22: increment 𝑎
23: end if
24: else
25: 𝑎 = 1
26: increment 𝑏
27: tempkey = key

28: 𝐷′ = 𝐷
29: end if
30: end while

the key below, the text THISISATEST can be encrypted to GUVF1FN4RF5. Due to the

one-to-many relationship in the key, the letter T can be encrypted to L, 4, or 5 [8].

plaintext A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

ciphertext N O P Q R S T U V W X Y Z A B C D E F G H I J K L M

8 9 1 6 4

3 5

10



With n possible ciphertext symbols for 26 plaintext letters and each plaintext

letter has at least one ciphertext symbol associated with it, the key space is

(︂
𝑛

26

)︂
26!26𝑛−26 < 26𝑛 ≈ 22.7𝑛.

An exhaustive search for a key of length 𝑛 = 100 would require 2470/220 = 2450

seconds, or 9.2×10127 years. For 62 symbols, which is the number used in the Zodiac-

340 cipher, it would take 1.59×1074 years. Just as with the simple substitution cipher,

it is not feasible to perform an exhaustive search to find the correct key so a statistical

attack, similar to the Jakobsen attack, is required to find a solution [8].

Based on the Jakobsen algorithm, an efficient attack was created to determine

the key for a homophonic ciphertext. This algorithm is broken up into three layers:

an outer layer, random key layer, and inner layer [8].

2.2.1 Outer Hill Climb

The outer hill climb layer is designed to tackle the one-to-many property of

homophonic ciphers. Assuming that there are 𝑛 ciphertext symbols, and 𝑛𝑎, 𝑛𝑏, . . . , 𝑛𝑧

are the number of ciphertext symbols for each plaintext letter, then 𝑛𝑎 + 𝑛𝑏 + · · · +

𝑛𝑧 = 𝑛. The hill climb approach used is slightly different from the approach used

in the Jakobsen algorithm, in that the pairs of counts are not swapped but instead

incremented and decremented by 1 [8].

The first step of this layer is to calculate the 𝐷𝐶 matrix. This matrix holds the

digram frequency statistics for the ciphertext and will be used later on in the other

layers to perform the swapping and scoring procedures [8].

The next step is to find an initial distribution of values that constrains to 𝑛𝑎 +
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𝑛𝑏 + · · ·+𝑛𝑧 = 𝑛. Since the goal of the homophonic cipher is to evenly distribute the

ciphertext symbol statistics, the initial starting distribution should attempt to get

this even distribution based on English letter frequencies. So for the letter E, 12% of

the ciphertext would be the value of 𝑛𝑒, and 9% would correspond to the letter T [8].

Table 6 shows the possible initial distributions for different key lengths that can be

used in this layer. Once an initial distribution is determined, then it is sent to the

random key layer, as outlined in algorithm 3.

Table 6: Initial Frequency Distribution

𝑛 𝑛𝑒𝑛𝑡 𝑛𝑎𝑛𝑜𝑛𝑖 𝑛𝑛𝑛𝑠𝑛𝑟 𝑛ℎ𝑛𝑑𝑛𝑙 𝑛𝑐 𝑛𝑢𝑛𝑚𝑛𝑓𝑛𝑤𝑛𝑔𝑛𝑦𝑛𝑝𝑛𝑏 𝑛𝑣𝑛𝑘𝑛𝑥𝑛𝑗 𝑛𝑞 𝑛𝑧

26 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
27 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
35 4 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
45 5 4 3 3 3 3 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
55 7 5 4 4 4 3 3 3 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
65 8 6 5 5 5 4 4 4 4 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
75 9 7 6 6 5 5 5 4 4 3 3 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1
85 118 7 7 6 6 5 5 5 3 3 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1
95 129 8 7 7 7 6 6 5 4 4 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1

A swapping process is needed to make slight changes to this initial distribution

to determine the best distribution. This swapping method, shown in algorithm 4,

entails incrementing and decrementing adjacent pairs based on letter frequency. For

example, 𝑛𝑒 would increment by one and 𝑛𝑡 would decrement by one in the first swap.

If the score improves, then this new distribution is kept. Else, the distribution is reset

and 𝑛𝑒 decrements and 𝑛𝑡 increments. This process occurs with adjacent pairs, then

pairs of distance 2, then pairs of distance 3, and so on [8].
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Algorithm 3 OuterHillClimb
1: global 𝐾 = bestInitKey = bestKey = NULL.
2: parse ciphertext to determine 𝐷𝐶 .
3: initialize 𝑛𝑎, 𝑛𝑏, . . . , 𝑛𝑧 as in Table 6.
4: (𝑚1,𝑚2, . . . ,𝑚26) = (𝑛𝑎, 𝑛𝑏, . . . , 𝑛𝑧)
5: bestScore = RandomKeyLayer(𝑚1,𝑚2, . . . ,𝑚26)
6: bestKey = bestInitKey

7: for 𝑖 = 1 to 25 do
8: for 𝑗 = 1 to 26 − 𝑖 do
9: (𝑚′

1,𝑚
′
2, . . . ,𝑚

′
26) = (𝑚1,𝑚2, . . . ,𝑚26)

10: OuterSwap(𝑚′
𝑗,𝑚

′
𝑗+𝑖)

11: score = RandomKeyLayer(𝑚′
1,𝑚

′
2, . . . ,𝑚

′
26)

12: if score < bestScore then
13: (𝑚1,𝑚2, . . . ,𝑚26) = (𝑚′

1,𝑚
′
2, . . . ,𝑚

′
26)

14: bestScore = score

15: bestKey = bestInitKey

16: else
17: (𝑚′

1,𝑚
′
2, . . . ,𝑚

′
26) = (𝑚1,𝑚2, . . . ,𝑚26)

18: OuterSwap(𝑚′
𝑗+𝑖,𝑚

′
𝑗)

19: score = RandomKeyLayer(𝑚′
1,𝑚

′
2, . . . ,𝑚

′
26)

20: if score < bestScore then
21: (𝑚1,𝑚2, . . . ,𝑚26) = (𝑚′

1,𝑚
′
2, . . . ,𝑚

′
26)

22: bestScore = score

23: bestKey = bestInitKey

24: end if
25: end if
26: end for
27: end for

Algorithm 4 OuterSwap
Input: 𝑚𝑖,𝑚𝑗

1: increment 𝑚𝑖

2: decrement 𝑚𝑗

2.2.2 Random Key Layer

This layer, algorithm 5, uses the distribution calculated in the outer hill climb

layer and randomly generates initial keys based on this distribution [8].

Due to the fact that the keys are randomly generated, there is no confidence that

13



Algorithm 5 RandomKeyLayer
Input: 𝑛𝑎, 𝑛𝑏, . . . , 𝑛𝑧

1: bestInitScore = ∞.
2: for 𝑟 = 1 to 𝑅 do
3: randomly initialize 𝐾 = (𝑘1, 𝑘2, . . . , 𝑘𝑛) satisfying 𝑛𝑎, 𝑛𝑏, . . . , 𝑛𝑧.
4: 𝐷𝑃 = digram matrix from 𝐷𝐶 and 𝐾.
5: initScore = InnerHillClimb(𝐷𝑃 ).
6: if initScore < bestScore then
7: (𝑚1,𝑚2, . . . ,𝑚26) = (𝑚′

1,𝑚
′
2, . . . ,𝑚

′
26)

8: bestInitScore = initScore

9: bestInitKey = 𝐾
10: end if
11: end for

the initial key is a good starting point for the hill climb process in the inner hill climb

layer. So multiple keys need to be tested in order to ensure that the optimum score

is found. Based on previous testing of the attack, it was determined that having a

max 𝑅 value of 40, or 40 iterations, provided similar results to an 𝑅 of 100 [8].

Once a key is generated, it is used to calculate 𝐷𝑃 , which is the 26 × 26 matrix

that represents the digram frequencies of the initially decrypted ciphertext. This

matrix along with 𝐷𝐶 are used in the inner hill climb layer to perform the swaps and

scoring [8].

2.2.3 Inner Hill Climb

The inner layer performs a hill climb search on a putative key in much the

same way the Jakobsen algorithm, as shown in algorithm 6. With the Jakobsen

attack, when elements of the key are swapped, the corresponding rows and columns

are swapped in the digram matrix, 𝐷. Since the homophonic key can have the same

letter appear multiple times, the process must be modified to account for the different

situations that can arise [8].
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Swapping of the same letter is avoided since there would be no change to the

key. For situations involving swapping letters that only appear once in the key, then

the corresponding rows and columns of 𝐷𝑃 can be swapped just as with the Jakobsen

algorithm. The more complex situation arises when the different letters that appear

multiple times are swapped. For example, with the key in Table 7, shows that both

2 and 5 decrypt to E. Suppose the key in Table 7 is applied to ciphertext (2).

Table 7: Inner Hill Climb Putative Key

ciphertext 0 1 2 3 4 5 6 7 8 9

plaintext I L E K T E R T H S

09498249507298522861072309398248059010768610764485207 (2)

The resulting plaintext (3) is decrypted based on this putative key.

ISTSHETSEITESHEEEHRLITEKISKSHETHIESILITRHRLITRTTHEEIT. (3)

The ciphertext generates the 10 × 10 digram matrix, 𝐷𝐶 ,

0 1 2 3 4 5 6 7 8 9

0 0 1 0 0 0 1 0 5 0 2

1 3 0 0 0 0 0 0 0 0 0

2 1 0 1 1 2 0 0 0 1 1

3 1 0 0 0 0 0 0 0 0 1

4 0 0 0 0 1 0 0 0 2 2

5 1 0 2 0 0 0 0 0 0 1

6 0 2 0 0 1 0 0 0 1 0

7 0 0 2 0 0 0 2 0 0 0

8 1 0 2 0 0 2 2 0 0 0

9 1 0 0 1 1 1 0 0 3 0

Using the decrypted plaintext, the digram matrix, 𝐷𝑃 is generated as follows
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E T I S H R L K

E 3 2 2 2 1 0 0 1

T 2 1 0 2 2 2 0 0

I 1 5 0 2 0 0 1 0

S 1 1 1 0 3 0 0 1

H 4 0 1 0 0 2 0 0

R 0 1 0 0 1 0 2 0

L 0 0 3 0 0 0 0 0

K 0 0 1 1 0 0 0 0

If H and S are swapped then the columns and rows of matrix 𝐷𝑃 just need to be

swapped. However, if the first E and S are swapped, since there are multiple E’s in

the key, the matrix 𝐷𝑃 matrix needs to be updated using 𝐷𝐶 . This does not require

a full recalculation but only an update of the affected rows and columns [8].

Algorithm 6 InnerHillClimb
Input: key 𝐾
1: innerScore = 𝑓(𝑡) from equation (1).
2: for 𝑖 = 1 to 𝑛− 1 do
3: for 𝑗 = 1 to 𝑛− 𝑖 do
4: 𝐾 ′ = 𝐾
5: swap(𝑘′

𝑗, 𝑘
′
𝑗+𝑖)

6: 𝐷′ = digram matrix from 𝐾 ′ using 𝐷𝑃 and 𝐷𝐶

7: score = 𝑓𝑡
8: if score < innerScore then
9: innerScore = score

10: 𝐾 = 𝐾 ′

11: 𝐷𝑃 = 𝐷′

12: end if
13: end for
14: end for

Once the inner hill climb is completed, the best key and score is returned to the

random key layer and is repeated with a unique initial key [8].
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2.2.4 Work Factor

The work required for this attack is based on the work for each layer. The

outer hill climb layer deals with swaps of pairs similar to the swaps performed by

the Jakobsen algorithm. However, these swaps can occur twice, where a pair can

increment one and decrement the other, and vice-versa. So the amount of work is

2 ·
(︀
26
2

)︀
[8].

For the random key layer, there will always be 40 random keys generated and

tested with in the inner hill climb. In the inner hill climb, the amount of work done

is at most
(︀
𝑛
2

)︀
, where 𝑛 is the total number of ciphertext symbols. So for the entire

attack, the total work would be

80 ·
(︂

26

2

)︂
·
(︂
𝑛

2

)︂
< 215𝑛2.

This work is based on the work needed to calculate the score based on equation (1)

and does not include the work needed to recalculate the 𝐷𝑃 matrix where necessary.

Due to this more complex task, the time to complete each swap of the attack is not

the same as with the Jakobsen algorithm and overall, the work is 64𝑛2 greater than

with the Jakobsen attack [8].

2.3 Transposition

Transposition ciphers encrypt plaintext by swapping the letters around rather

than replacing plaintext symbols with ciphertext symbols. In particular, columnar

transposition ciphers moves characters around in a given period, with this pattern

occurring for every period. An easier way to visualize this is to place the plaintext

into a matrix where the number of columns represents the period or key size [19]. For

example, the plaintext THISISPLAINTEXT can be placed into a matrix with period of
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5.

T H I S I
S P L A I
N T E X T

Based on a key that represents where each column should be moved, the ciphertext

can be generated. So for the key:

key 32541

The resulting matrix is:

I H I S T
L P I A S
E T T X N

Three types of attacks have been used to attack columnar transposition ciphers:

simulated annealing, genetic algorithm, and tabu search.

2.3.1 Simulated Annealing

Simulated annealing, algorithm 7, is a method that tries to mimic the process of

annealing in physics. Annealing is the process of heating a metal to a high tempera-

ture and slowly cooling it in order to achieve an optimal energy state. The algorithm

works by utilizing the Metropolis criterion, which is a set of conditions that determine

whether a new key should be accepted as the current key [9, 10].

Metropolis Criterion:

∆𝐸 < 0

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝐸1 ⇒ 𝐸2) = 𝑒−
Δ𝐸
𝑇
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where ∆𝐸 is the difference between the new score and the old score. The algorithm

works as follows:

Algorithm 7 SimulatedAnnealing
1: Generate random key.
2: Construct 𝐸 matrix based on English language text.
3: Decrypt the ciphertext with the putative key and construct 𝐷 matrix.
4: Score the putative key with 𝑓(𝑡) from equation (1).
5: for 𝑖 = 1 to MAX do
6: Let 𝑁𝑠𝑢𝑐𝑐 = 0
7: for 100 × 𝑃 times: do
8: tempkey = key

9: Swap two random elements tempkey.
10: Decrypt and score with tempkey.
11: Calculate ∆𝐸 = newscore− score.
12: if Metropolis Criterion fulfilled then
13: key = tempkey

14: increment 𝑁𝑠𝑢𝑐𝑐

15: else
16: tempkey = key

17: end if
18: end for
19: if 𝑁𝑠𝑢𝑐𝑐 > 10 × 𝑃 then
20: 𝑇 = 𝑇 × 𝑇𝑓𝑎𝑐𝑡

21: else if 𝑁𝑠𝑢𝑐𝑐 = 0 then
22: Break

23: end if
24: end for

In algorithm 7, 𝑃 is the period of the cipher, 𝑁𝑠𝑢𝑐𝑐 is a counter for the number

of improved solutions found, and 𝑀𝐴𝑋 is the maximum number of iterations to

perform. 𝑇 and 𝑇𝑓𝑎𝑐𝑡 represent the current temperature and the reduction factor,

respectively. The initial value of T is chosen as a large number and is decreased at

each iteration. The perturbation step randomly selects two parts of the key and swaps

them [9, 10].
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The score is calculated using the same formula (1) and technique as the method

used with the simple substitution attack. However, rather than simply comparing the

score with the previous score, the difference between the two is used in the Metropolis

function and fitness of the solution is determined by the result. So if ∆𝐸 < 0 or

the probability based on the second equation is greater than some percentage, then

the solution is accepted [9, 10]. The amount of work required for this algorithm is

100 · MAX · 𝑃 . This is in terms of decrypting the ciphertext, generating the 𝐷 matrix,

and calculating the score.

2.3.2 Genetic Algorithm

The genetic algorithm is based on the evolution of species and how parents pass

on genetic information to their children. A pool of solutions is generated randomly and

updated and maintained through each iteration. The children of the new generation

are created by taking parts from each parent to create a new key. From these keys

and the keys from the previous generation, the best of the bunch are used to form

the new pool that will be used to create the next generation of children [9, 10, 20].

The pseudo-code is presented in algorithm 8, where 𝑁 is the size of the pool and MAX

is the number of iterations.

Algorithm 8 GeneticAlgorithm
1: Generate a pool of 𝑁 random keys.
2: Construct 𝐸 matrix based on English language text.
3: Decrypt the ciphertext with each key and score each one with equation (1).
4: for 𝑖 = 1 to MAX do
5: Pair up the keys and perform mating technique.
6: Perturb each key by randomly swapping two elements.
7: Decrypt and score with all the keys with equation (1).
8: Select best 𝑁 keys from new and old pool.
9: end for
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The children are created by pairing parents and using each parent as the base

for each child. A random number is generated to determine how much of the parent

is used for the child. Then the other parent is used to fill in the remaining part of

the key so that each child gets some part of its key from each parent. For example,

with parents 31254 and 34251 and random number 3, the next generation would be

31245 and 34215. In this example, the first child uses the first three numbers of the

first parent and fills in the missing numbers based on the order they appear in the

second parent. The second child does the same but uses the second parent as a base.

All of these children and the parents are scored using equation (1) and the best

of these keys are used as the new pool and act as the parents for the next generation.

This process repeats for MAX iterations and the best key after the last iteration is

returned [9, 10, 20]. The work factor for this attack is MAX · 𝑁 and just as with the

simulated annealing attack, this is in terms of decrypting the ciphertext, generating

the 𝐷 matrix, and calculating the score.

2.3.3 Tabu Search

Tabu search is similar to both simulated annealing and the genetic algorithm

in the way it generates new keys and the pool of solutions it maintains, which is

presented in algorithm 9, where 𝑁 is the list size and MAX is the number of iterations.

Much like simulated annealing, the perturbation step involves randomly swapping

elements in the key. And much like the genetic algorithm, multiple possible solutions

are generated and compared [6, 9].

Once the pool is created, the best of the keys is chosen and used in the next

iteration. In addition to the best key, the worst is also tracked since it signals to

the algorithm once the optimum solution is found. Once the worst solution is less
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Algorithm 9 TabuSearch
1: Generate pool of 𝑁 random keys.
2: Construct 𝐸 matrix based on English language text.
3: Decrypt the ciphertext with each key and score each one with equation (1).
4: Score the putative key with 𝑓(𝑡) from equation (1).
5: for 𝑖 = 1 to MAX do
6: Select the best and worst keys from the pool.
7: for 𝑗 = 1 to 𝑁 do
8: Perturb best key by randomly swapping two elements.
9: if key is not in list then

10: Add to list.
11: end if
12: end for
13: Decrypt the ciphertext with each key and score each one with equation (1).
14: Select the best and worst keys.
15: if worst score < best score then
16: break
17: end if
18: end for

than the best solution or the maximum number of iterations is reached, then the

best solution is returned. Again, as with the other algorithms discussed earlier, the

score is calculated using digram frequencies and equation (1) [6, 9]. For this attack,

the work factor is MAX ·𝑁 where each step perturbs the key, decrypts the ciphertext,

creates the digram frequency matrix, and scores the key.

2.4 Zodiac-340 Cipher

The Zodiac Killer was a serial killer active during the late 1960s and early 1970s.

During this time, he sent letters to newspapers to taunt police and on July 31, 1969,

he sent his first cipher, which has been labeled the Zodiac-408, in three parts. This

cipher contained 408 symbols with 53 distinct symbols. About a week after it was

published, it was cracked by two schoolteachers. This cipher utilized a homophonic

substitution cipher and the message read:
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"I like killing people because it is so much fun It is more fun than killing wild game

in the forrest because man is the most dangerous anamal of all To kill something

gives me the most thrilling experence It is even better than getting your rocks off

with a girl The best part of it is that when I die I will be reborn in paradice and all

the I have killed will become my slaves I will not give you my name because you will

try to slow down or stop my collecting of slaves for my afterlife"

In November of the same year, the Zodiac-340 cipher, figure 1, which contained

340 symbols with 62 unique symbols, was sent and published and to this day, it has

not been solved [7].

Figure 1: Zodiac-340 cipher [1]
.
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Attempts to solve this assume that it is encrypted with a homophonic substitu-

tion cipher since the Zodiac-408 was [3, 8]. Previous work done to efficiently attack

homophonic substitution ciphers was not successful in decoding this text and the pa-

per concludes that if the text is in fact using this type of cipher, then the issue may

be insufficient ciphertext to effectively find language statistics from and that a better

way of determining key effectiveness would be necessary by using a better English

language model [8].

Another type of attack performed on the cipher used the expectation–

maximization algorithm to find the homophonic substitution key. Since the EM

algorithm, much like the hill climb search, finds the local optimum, it requires mul-

tiple starting points to find the best solution. However, instead of 50 to 100 random

starts, the method looked at using a million random keys. In order to speed up the

attack, the method uses GPUs to perform the attack in parallel. The attack was able

to find the solution to the Zodiac-408 cipher, but was unable to find a solution to the

Zodiac-340 cipher, which could mean that the code is encrypted with another cipher

in addition to the homophonic substitution cipher [4].
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CHAPTER 3

New Digram Data Structure

In order to develop a quick way to perform a hill climb search to crack a columnar

transposition cipher, it was necessary to find a way to eliminate the most time inten-

sive step, which was the decryption and digram matrix construction steps. Since the

key would change the order of the columns for each perturbation, a data structure to

store these column relationships would make it easy to determine the digram statis-

tics for any given key. This data structure would hold the digram frequency matrices

of every possible combination of pairs of columns. So for column 1, it can be paired

with every other column up to the size of the key, 𝑁 . In addition to these pairings,

if column 1 falls at the end of the row, it will also be paired with the first element of

the next row, which means the digram statistics for column 1 and the columns in the

next row must also be stored.

So for key 𝐾 = (1, 2, 3, 4, 5), the digram frequencies can be calculated as

𝐷 = 𝐷1,2 + 𝐷2,3 + 𝐷3,4 + 𝐷4,5 + 𝐷5,1′ .

where 𝐷5,1′ represents the digram frequencies of column 5 and column 1 of the next

row, which accounts for the wrap around of the text. Generally, this means that

for key (4), the total matrix can be obtained using equation (5). The size of this

structure is then 𝑁 × (𝑁 × 2) × 262.

𝐾 = 𝑘1, 𝑘2, ..., 𝑘𝑛 (4)

𝐷 = 𝐷𝑘1,𝑘2 + 𝐷𝑘2,𝑘3 + ... + 𝐷𝑘𝑛,𝑘′1
(5)

where 𝐷𝑘𝑛,𝑘′1
is the digram matrix of the last column and the following first column.
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Scoring with transposition ciphers is just a matter of computing 𝐷 as mentioned

above and then running the scoring function (1). In order to extend this to simple

substitution ciphers, it is necessary to find an alternative to swapping the rows and

columns of the 𝐷 matrix as described in the Jakobsen algorithm [13]. This can be

done by swapping the columns and rows of the 𝐸 matrix instead. Assume matrix 𝐸

and 𝐷 are both 4 × 4 matrices, where 𝐸 is defined in 6 and 𝐷 is defined in 7.

𝐸 =

⎡⎢⎢⎢⎣
𝑒11 𝑒12 𝑒13 𝑒14

𝑒21 𝑒22 𝑒23 𝑒24

𝑒31 𝑒32 𝑒33 𝑒34

𝑒41 𝑒42 𝑒43 𝑒44

⎤⎥⎥⎥⎦ (6)

𝐷 =

⎡⎢⎢⎢⎣
𝑑11 𝑑12 𝑑13 𝑑14

𝑑21 𝑑22 𝑑23 𝑑24

𝑑31 𝑑32 𝑑33 𝑑34

𝑑41 𝑑42 𝑑43 𝑑44

⎤⎥⎥⎥⎦ (7)

If we swap columns and rows 1 and 3 in (7), we get the matrix 8.

𝐷′ =

⎡⎢⎢⎢⎣
𝑑33 𝑑32 𝑑31 𝑑34

𝑑23 𝑑22 𝑑21 𝑑24

𝑑13 𝑑12 𝑑11 𝑑14

𝑑43 𝑑42 𝑑41 𝑑44

⎤⎥⎥⎥⎦ (8)

The scoring equation would be

𝑓(𝐷′, 𝐸) = |𝑑33 − 𝑒11| + |𝑑32 − 𝑒12| + |𝑑31 − 𝑒13| + |𝑑34 − 𝑒14|

+ |𝑑23 − 𝑒21| + |𝑑22 − 𝑒22| + |𝑑21 − 𝑒23| + |𝑑24 − 𝑒24|

+ |𝑑13 − 𝑒31| + |𝑑12 − 𝑒32| + |𝑑11 − 𝑒33| + |𝑑14 − 𝑒34|

+ |𝑑43 − 𝑒41| + |𝑑42 − 𝑒42| + |𝑑41 − 𝑒43| + |𝑑44 − 𝑒44|

Now if we did the same but with the (6) matrix instead, the updated matrix
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would be matrix 9.

𝐸 ′ =

⎡⎢⎢⎢⎣
𝑒33 𝑒32 𝑒31 𝑒34

𝑒23 𝑒22 𝑒21 𝑒24

𝑒13 𝑒12 𝑒11 𝑒14

𝑒43 𝑒42 𝑒41 𝑒44

⎤⎥⎥⎥⎦ (9)

By scoring with this matrix and an unchanged 𝐷 matrix, we get the following

equation:

𝑓(𝐷,𝐸 ′) = |𝑑11 − 𝑒33| + |𝑑12 − 𝑒32| + |𝑑13 − 𝑒31| + |𝑑14 − 𝑒34|

+ |𝑑21 − 𝑒23| + |𝑑22 − 𝑒22| + |𝑑23 − 𝑒21| + |𝑑24 − 𝑒24|

+ |𝑑31 − 𝑒13| + |𝑑32 − 𝑒12| + |𝑑33 − 𝑒11| + |𝑑34 − 𝑒14|

+ |𝑑41 − 𝑒43| + |𝑑42 − 𝑒42| + |𝑑43 − 𝑒41| + |𝑑44 − 𝑒44|

Comparison of the two equations shows that they are the same and performing the

swap on the 𝐸 or 𝐷 matrices gives us the same result. So by using this new data

structure, we are able to quickly determine the total 𝐷 matrix from the column pair

matrices and also perform the Jakobsen algorithm by manipulating the columns and

rows of the 𝐸 matrix.

Since the 𝐸 matrix is being manipulated, it is necessary to perform the swaps on

the inverse of the key. So in the original attack, the initial key is generated based on

the letter frequencies of the ciphertext and any swap in the key means the column and

rows of the 𝐷 matrix are swapped. With the modified algorithm, this same initial key

will be inverted and the swaps need to be performed on this new key, so at the end of

the attack, the key found is actually the decryption key rather than the encryption

key.

The new attack, shown in algorithm 10, will also maintain changes to the 𝐸

matrix rather than the 𝐷 matrix.
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Algorithm 10 ModifiedJakobsenAlgorithm
1: Let 𝑎 = 1 and 𝑏 = 1.
2: Get initial key based on letter frequencies in the ciphertext.
3: Get decryption key invkey by inverting key.
4: Construct 𝐸 matrix based on English language text encrypted with key.
5: Construct digram data structure based on description above.
6: Score the putative key with 𝑓(𝑡) from equation (1).
7: while 𝑏 ̸= 26 do
8: if 𝑎 + 𝑏 ≤ 26 then
9: Let tempkey = invkey.

10: Let 𝐸 ′ = 𝐸
11: Swap element 𝑎 and 𝑏 in tempkey.
12: Swap rows and columns 𝑎 and 𝑏 in 𝐸 ′.
13: Score with 𝐸 ′.
14: if newscore < score then
15: invkey = tempkey

16: 𝐸 = 𝐸 ′

17: 𝑎 = 1
18: 𝑏 = 1
19: else
20: tempkey = invkey

21: 𝐸 ′ = 𝐸
22: increment 𝑎
23: end if
24: else
25: 𝑎 = 1
26: increment 𝑏
27: tempkey = invkey

28: 𝐸 ′ = 𝐸
29: end if
30: end while

Since this updated attack still performs the same type of swap as the original

algorithm, the work required is still
(︀
26
2

)︀
in the best case scenario and

(︀
26
2

)︀
! in the

worst. Now that this new data structure has been defined, a fast hill climb attack

against columnar transposition ciphers can be developed.
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CHAPTER 4

Transposition Hill Climb Attack

Using the data structure presented in the previous chapter, it is now possible

to quickly perform a hill climb attack on a transposition cipher. As previously men-

tioned, the existing attacks on transposition ciphers requires decryption of the ci-

phertext with each putative key and then calculation of the digram matrix. By using

the data structure, all the possible digrams for any pair of columns is calculated and

stored so for any putative key, and the total digram matrix can be determined based

on these already stored values rather than decrypting the text again.

The attack uses a hill climb approach that is similar to the Jakobsen attack [13].

Initially, a random key needs to be determined. Since this key is a randomly generated

key, it does not have the same performance as the simple substitution attack, which

generated the key based on the letter frequencies in the ciphertext and provided a

good starting point for the hill climb to start. This means that the attack must be

run multiple times with different keys to get the best possible solution.

With an initial key generated, the attack proceeds to swap adjacent pairs, then

pairs of distance 2, pairs of distance 3, and so on. With each key, the digram data

structure is searched based on the current putative key and a 𝐷 matrix is calculated

to be used in the scoring phase against the 𝐸 matrix using (5).

The scoring function (1) is the same as the one used by all of the algorithms

discussed previously. If a better score is found, then this new key is saved and the

algorithm is reset to start by swapping adjacent pairs. Algorithm 11 is run for 𝑚

iterations and after each iteration, the best score is saved.
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Algorithm 11 TranspositionHillClimb
1: Let 𝑎 = 1 and 𝑏 = 1.
2: Randomly generate initial key.
3: Construct 𝐸 matrix based on English language text.
4: Construct digram data structure based on description above.
5: Construct 𝐷 from data structure and key.
6: Score the putative key with 𝑓(𝑡) from equation (1).
7: while 𝑏 ̸= keysize do
8: if 𝑎 + 𝑏 ≤ keysize + 1 then
9: Let tempkey = key.

10: Swap element 𝑎 and 𝑏 in tempkey.
11: Construct 𝐷 from data structure and tempkey.
12: Score with 𝐷.
13: if newscore < score then
14: score = newscore

15: 𝑘𝑒𝑦 = 𝑡𝑒𝑚𝑝𝑘𝑒𝑦
16: 𝑎 = 1
17: 𝑏 = 1
18: else
19: tempkey = key

20: increment 𝑎
21: end if
22: else
23: 𝑎 = 1
24: increment 𝑏
25: tempkey = key

26: end if
27: end while

The amount of work for this transposition attack is made up of the hill climb

component and the number of iterations performed. For a transposition key of size

𝑛, the work factor is
(︀
𝑛
2

)︀
. The total work factor for 50 iterations is then

50 ·
(︂
𝑛

2

)︂
In the worst case scenario, the work factor would be 50 ·

(︀
𝑛
2

)︀
!.
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CHAPTER 5

Simple Substitution-Columnar Transposition Attack

In order to obtain more security from classic ciphers, simple substitution and

columnar transposition ciphers can be combined to provide confusion and diffusion

in the ciphertext. With the simple substitution-columnar transposition cipher, which

will be referred to as the SSCT cipher in the rest of this paper, the key space size

becomes

288 * 𝑛!

where 𝑛 is the number of columns in the transposition cipher. It is obvious that

an exhaustive search would be impossible.

Now using the modified Jakobsen attack and the transposition hill climb attack,

a nested hill climb attack can be performed to find the keys for a ciphertext en-

crypted using simple substitution and transposition ciphers. Algorithm 12 performs

the transposition attack, while algorithm 13 performs the nested Jakobsen attack. For

each swap performed in the transposition attack, the Jakobsen attack is performed

to determine the best simple substitution key for the current putative transposition

key.

For this combination attack, the work factor is made up of the transposition

attack from the previous chapter and the modified Jakobsen attack from chapter 3.

50 ·
(︂
𝑛

2

)︂
·
(︂

26

2

)︂
where 𝑛 is the transposition key size. For the worst case, 50 ·

(︀
𝑛
2

)︀
! ·
(︀
26
2

)︀
!.
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Algorithm 12 SSCT
1: Let 𝑎 = 1 and 𝑏 = 1.
2: Randomly generate initial transkey.
3: Construct 𝐸 matrix based on English language text.
4: Construct digram data structure based on description above.
5: Construct 𝐷 from data structure and transkey.
6: score = SSCTJakobsen(𝐷, subkey).
7: while 𝑏 ̸= keysize do
8: if 𝑎 + 𝑏 ≤ keysize + 1 then
9: Let temptranskey = transkey.

10: Let 𝐸 ′ = 𝐸
11: Swap element 𝑎 and 𝑏 in temptranskey.
12: Construct 𝐷 from data structure and temptranskey.
13: newscore = SSCTJakobsen(𝐷, tempsubkey).
14: if newscore < score then
15: score = newscore

16: transkey = temptranskey

17: subkey = tempsubkey

18: 𝐸 = 𝐸 ′

19: 𝑎 = 1
20: 𝑏 = 1
21: else
22: tempkey = key

23: 𝐸 ′ = 𝐸
24: increment 𝑎
25: end if
26: else
27: 𝑎 = 1
28: increment 𝑏
29: tempkey = key

30: 𝐸 ′ = 𝐸
31: end if
32: end while

Using this attack as a base, the next step is to extend it to attack homophonic

substitution-columnar transposition ciphers.
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Algorithm 13 SSCTJakobsen
Input: 𝐷 matrix
1: Let 𝑎 = 1 and 𝑏 = 1.
2: Get initial key based on letter frequencies in the ciphertext.
3: Get decryption key invkey by inverting key.
4: Construct 𝐸 matrix based on English language text encrypted with key.
5: Construct digram data structure based on description above.
6: Score the putative key with 𝑓(𝑡) from equation 1.
7: while 𝑏 ̸= 26 do
8: if 𝑎 + 𝑏 ≤ 26 then
9: Let tempkey = invkey.

10: Let 𝐸 ′ = 𝐸
11: Swap element 𝑎 and 𝑏 in tempkey.
12: Swap rows and columns 𝑎 and 𝑏 in 𝐸 ′.
13: Score with 𝐸 ′.
14: if newscore < score then
15: invkey = tempkey

16: 𝐸 = 𝐸 ′

17: 𝑎 = 1
18: 𝑏 = 1
19: else
20: tempkey = invkey

21: 𝐸 ′ = 𝐸
22: increment 𝑎
23: end if
24: else
25: 𝑎 = 1
26: increment 𝑏
27: tempkey = invkey

28: 𝐸 ′ = 𝐸
29: end if
30: end while
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CHAPTER 6

Homophonic Subsitution-Columnar Transposition Attack

An extension of the previous cipher is to substitute simple substitution with the

homophonic substitution cipher. By doing so, the key space is

24.7𝑛 × keysize!

By using the concepts from the attack on the SSCT cipher, an algorithm can

be created to perform in much the same way against the homophonic substitution-

columnar transposition cipher, which will be referred to as HSCT in the rest of the

paper. If the simple substitution aspect of the attack is substituted with the homo-

phonic attack, the attack would take far too long to complete. The work factor for

such an attack, where 𝑚 is the tranposition cipher key size and 𝑛 is the homophonic

substitution cipher key size, would be

4000 ·
(︂
𝑚

2

)︂
! ·
(︂

26

2

)︂
·
(︂
𝑛

2

)︂

Some changes need to be made to the SSCT attack to make it more efficient for

the HSCT attack. First, the nested hill climb is swapped so that the transposition

algorithm runs within the homophonic attack. The modified homophonic substitution

attack is shown below in algorithm 14, 15, and 16. To speed up the attack, the

transposition attack is only run at certain points of the attack rather than every

swap in the inner hill climb layer. This is limited to run only when there is no

change in score for a given distance between pairs in the inner hill climb. If the score

changes at any time during a run through of distance 𝑖, then the run is considered a

success and the next distance can be proceeded to. However, if there is no change in
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score, then the run is repeated using the transposition hill climb attack, as shown in

algorithm 17. By doing so, the amount of work can be greatly decreased and make

the attack more manageable and efficient. The transposition attack is also modified

to not reset after a successful swap. This changes the work factor to
(︀
𝑚
2

)︀
in the worst

case scenario.

Due to how the algorithm is structured, the use of row and column swaps have

been removed. The nature of homophonic keys makes it so that any number of

ciphertexts can come from the same plaintext but any of these ciphertexts will always

get back the same plaintext. What this means for the algorithm is that if the same

method used in the SSCT attack is used here by performing swaps on the 𝐸 matrix,

it is not possible to know what the 𝐸 matrix is supposed to encrypt to since there are

multiple possibilities. So the 𝐷 matrix is calculated each time a key must be scored.

However, since the ciphertext does not need to be decrypted in order to determine

this due to the data structure, the I/O operation is removed.

Once a run through the entire attack is complete, the homophonic substitution

attack is performed alone without the transposition attack and then transposition

attack is run alone without the homophonic attack. When the homophonic substi-

tution attack is run alone, the best transposition key is used for the scoring process.

The same process is used for the transposition attack, where the best homophonic

substitution key is used in the scoring process.

The work factor for this entire attack is composed of the nested hill climb as

well as the additional attacks performed afterwards. In the worst case, the nested hill

climb would run for every distance of pairs.

4000 ·
(︂
𝑚

2

)︂
·
(︂

26

2

)︂
·
(︂
𝑛

2

)︂
+ 50 ·

(︂
𝑛

2

)︂
+ 80 ·

(︂
26

2

)︂
·
(︂
𝑛

2

)︂
≈ 4000 ·

(︂
𝑚

2

)︂
·
(︂

26

2

)︂
·
(︂
𝑛

2

)︂
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Algorithm 14 HSCTOuterHillClimb
1: global hsK = bestInithsKey = besthsKey = NULL.
2: global transK = bestInittransKey = besttransKey = NULL.
3: parse ciphertext to determine data structure.
4: Construct 𝐸 matrix based on English language text.
5: initialize 𝑛𝑎, 𝑛𝑏, .., 𝑛𝑧 as in Table 6.
6: (𝑚1,𝑚2, ...,𝑚26) = (𝑛𝑎, 𝑛𝑏, ..., 𝑛𝑧)
7: bestScore = RandomKeyLayer(𝑚1,𝑚2, ...,𝑚26)
8: besthsKey = bestInithsKey

9: besttransKey = bestInittransKey

10: for 𝑖 = 1 to 25 do
11: for 𝑗 = 1 to 26 − 𝑖 do
12: (𝑚′

1,𝑚
′
2, ...,𝑚

′
26) = (𝑚1,𝑚2, ...,𝑚26)

13: OuterSwap(𝑚′
𝑗,𝑚

′
𝑗+𝑖)

14: score = RandomKeyLayer(𝑚′
1,𝑚

′
2, ...,𝑚

′
26)

15: if score < bestScore then
16: (𝑚1,𝑚2, ...,𝑚26) = (𝑚′

1,𝑚
′
2, ...,𝑚

′
26)

17: bestScore = score

18: besthsKey = bestInithsKey

19: besttransKey = bestInittransKey

20: else
21: (𝑚′

1,𝑚
′
2, ...,𝑚

′
26) = (𝑚1,𝑚2, ...,𝑚26)

22: OuterSwap(𝑚′
𝑗+𝑖,𝑚

′
𝑗)

23: score = RandomKeyLayer(𝑚′
1,𝑚

′
2, ...,𝑚

′
26)

24: if score < bestScore then
25: (𝑚1,𝑚2, ...,𝑚26) = (𝑚′

1,𝑚
′
2, ...,𝑚

′
26)

26: bestScore = score

27: besthsKey = bestInithsKey

28: besttransKey = bestInittransKey

29: end if
30: end if
31: end for
32: end for
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Algorithm 15 HSCTRandomKeyLayer
Input: 𝑛𝑎, 𝑛𝑏, ..., 𝑛𝑧
1: bestInitScore = ∞.
2: for 𝑟 = 1 to 𝑅 do
3: randomly initialize 𝐾 = (𝑘1, 𝑘2, ..., 𝑘𝑛) satisfying 𝑛𝑎, 𝑛𝑏, ..., 𝑛𝑧.
4: initScore = InnerHillClimb(𝐾).
5: if initScore < bestScore then
6: (𝑚1,𝑚2, ...,𝑚26) = (𝑚′

1,𝑚
′
2, ...,𝑚

′
26)

7: bestInitScore = initScore

8: bestInithsKey = hsK

9: besttransKey = transKey

10: end if
11: end for
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Algorithm 16 HSCTInnerHillClimb
Input: key 𝐾
1: innerScore = 𝑓(𝑡).
2: for 𝑖 = 1 to 𝑛− 1 do
3: for 𝑗 = 1 to 𝑛− 𝑖 do
4: 𝐾 ′ = 𝐾
5: 𝑠𝑤𝑎𝑝(𝑘′

𝑗, 𝑘
′
𝑗+𝑖)

6: if no change in score for current i then
7: 𝐾 ′ is previous best key.
8: score = HSCTTransposition(𝐾 ′)
9: if score < innerScore then

10: innerScore = score

11: 𝐾 = 𝐾 ′

12: end if
13: else if no change a second time then
14: for 𝑘 = 1 to iterations do
15: 𝐾 ′ is a newly randomized key
16: score = HSCTTransposition(𝐾 ′)
17: if score < innerScore then
18: innerScore = score

19: 𝐾 = 𝐾 ′

20: end if
21: end for
22: else
23: score = 𝑓𝑡
24: if score < innerScore then
25: innerScore = score

26: 𝐾 = 𝐾 ′

27: end if
28: end if
29: end for
30: end for
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Algorithm 17 HSCTTransposition
1: Let 𝑎 = 1 and 𝑏 = 1.
2: Randomly generate initial transkey.
3: Construct 𝐷 from data structure and transkey.
4: score = 𝑓(𝑡).
5: while 𝑏 ̸= keysize do
6: if 𝑎 + 𝑏 ≤ keysize + 1 then
7: Let temptranskey = transkey.
8: Swap element 𝑎 and 𝑏 in temptranskey.
9: Construct 𝐷 from data structure and temptranskey.

10: newscore = 𝑓(𝑡).
11: if newscore < score then
12: score = newscore

13: transkey = temptranskey

14: else
15: tempkey = key

16: increment 𝑎
17: end if
18: else
19: increment 𝑏
20: tempkey = key

21: end if
22: end while
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CHAPTER 7

Results

The modified Jakobsen algorithm, transposition hill climb attack, the combined

simple substitution-columnar transposition, and finally, the homophonic substitution-

columnar transposition algorithms were all tested. They were all written in C in a

UNIX-like environment. All of the tests were performed on a 3.4GHz Intel i7 machine

with 16GB of RAM.

7.1 Modified Jakobsen Algorithm

This was tested to ensure that the modifications did not negatively affect the

results. It was tested over multiple ciphertexts of lengths 100 to 1000 at differences of

100 and 2000 to 10000 at differences of 1000. Based on the percentage of the plaintext

recovered, the results are just as good as with the original algorithm, as can be seen

in figure 2. This confirmed that the data structure is suitable for this attack.

7.2 Transposition Hill Climb Attack

The tests run on the transposition attack was run over transposition key lengths

of 10 to 20 with the same ciphertext lengths used in the previous section. It was also

run using 50 and 100 iterations. Scoring of the key is based on groups of columns.

Due to the nature of the transposition cipher, if the correct columns are grouped

together, then text will be readable as long as there are enough columns within each

group. It is just a matter of rearranging these blocks to get the correct key. The

percentage of the text recovered is based on this concept. As long as the number of

columns is greater than 2, then the text is considered recovered.
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Figure 2: Modified Jakobsen Results
.

Based on the amount of the key recovered, using 100 iterations, figure 3b, pro-

duced similar results to using 50 iterations, figure 3a, with only a slight improvement.

So based on these results, for the combined attack, only 50 iterations are needed. As

can be seen in the graphs, the longer the transposition key to be recovered, the less

success there is. Based on testing, with transposition, having at least 60% of the text

decrypted generates readable text that can be manually decrypted afterwards.

(a) 50 Iterations Results (b) 100 Iterations Results

Figure 3: Transposition Hill Climb Results
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7.3 Simple Substitution-Columnar Transposition

For the SSCT attack, the tests are very similar to the tests done on the trans-

position attack. In this case, the same amounts of ciphertext were tested along with

the same key lengths. The only part added is the fact that the ciphertext is also

encrypted with a simple substitution key. The transposition part of the attack is set

to 50 iterations based on the results obtained in the previous set of tests. In addition

the time to complete was measured to check how much work is involved to execute

the attack.

Based on the time results, figure 4a, for short transposition keys, the algorithm

can be completed in a few minutes. However, as this increases, the time to complete

also sharply increases.

In addition to the time results, the percentage of the text recovered is shown

in figure 4b. The percentage is calculated by determining the blocks of columns

that are recovered using the same method as with the transposition attack and then

the plaintext recovered from these columns. To further break down the results to

determine the effectiveness of the attack, the scores for the individual transposition

keys in figure 4d and simple substitution keys in figure 4c are examined.

With about 600 to 700 characters of ciphertext, simple substitution keys that

decrypt 80% of the ciphertext can be found. And with the same amount of ciphertext,

60% of the text can be decrypted with the transposition keys found. Based on these

results, at least 600 or 700 characters of ciphertext is needed to get at least readable

text and to be able to recover the remainder of both keys.
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(a) Time Results (b) SSCT Results

(c) Simple Substitution Results (d) Transposition Results

Figure 4: SSCT Results

7.4 Homophonic Substitution-Columnar Transposition

The tests performed with the HSCT attack used transposition key sizes of 10 to

20 and homophonic key sizes of 27 to 35. In addition to this, like the SSCT tests,

the time was also recorded. The time to complete increases tremendously as the key

sizes increase for a ciphertext of length 10000, as shown in figure 5a. So for larger

keys, such as the ones used for the Zodiac-340 cipher, the time to complete can take

at least a week.

Just as with the SSCT tests, the percentage of the text recovered is scored based

on the blocks of columns grouped together and the amount of text that is correctly

substituted within these blocks. The results for a ciphertext of 10000 is shown in
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figure 5b. In this case, for transposition keys of greater than 18 and homophonic

keys greater than 30, the scores dip below 60%, meaning that the text is not readable

enough to manual recover the remainder of the keys.

By breaking down the amount of plaintext recovered with the individual keys, the

homophonic key is very close to 100%. However, the transposition key only recovers

about 60% of the text with transposition keys less than 15 and homophonic key less

than 30, which falls in line with the results seen in the combined results.

(a) Time Results (b) HSCT Results

(c) Homophonic Substitution Results (d) Transposition Results

Figure 5: HSCT Results - 10000 Ciphertext Length

Based on the results from using 100 and 1000 ciphertext lengths, figures 6 and 7

respectively, no readable text is recovered. In the 1000 length case, at the very

smallest keys, some text may be recovered but the minimum needed for each key
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is not achieved. Based on the combined results, the text would still be unreadable.

More testing needs to be done to determine the threshold ciphertext length to be able

to recover the homophonic substitution and transposition keys.

(a) Time Results (b) HSCT Results

(c) Homophonic Substitution Results (d) Transposition Results

Figure 6: HSCT Results - 100 Ciphertext Length

7.5 Zodiac-340 Cipher

The Zodiac-340 cipher is an unsolved cipher made up of 62 distinct symbols and

organized in rows of 17. Using these as the key sizes for the HSCT attack, the attack

is run against the cipher to see if can retrieve any readable text. The ciphertext is

shown in Table 8.

The HSCT attack on the cipher took 8.7 days to complete. The homophonic
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(a) Time Results (b) HSCT Results

(c) Homophonic Substitution Results (d) Transposition Results

Figure 7: HSCT Results - 1000 Ciphertext Length

substitution decryption key found is

YTAAKCMSIASTQLDAEAKHNETEXNTHGSVIBUNJITDPHONOEIRVORLREFEOEZPJWX.

The transposition key is

(13, 10, 1, 15, 2, 16, 11, 8, 12, 5, 9, 14, 7, 3, 4, 6, 0).

With these keys, the ciphertext decrypts to the plaintext in Table 9.

This decryption does not provide at any readable text and the time to perform

the attack makes impractical for multiple runs to try to find a better solution. Im-

provements need to be made to both lower the time it takes to complete the attack

and improve the results for lower lengths of ciphertext. Some ideas to do this will be
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Table 8: Zodiac-340 Cipher

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17
18 05 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
20 34 35 36 37 19 38 39 15 26 21 33 13 22 40 01 41
42 05 05 43 07 06 44 30 08 45 05 23 19 19 03 31 16
46 47 37 19 40 48 49 17 11 50 51 09 19 09 52 10 53
05 44 03 07 51 06 23 54 30 17 55 10 51 04 16 25 21
22 50 19 31 56 24 57 16 38 36 58 15 08 28 40 13 11
21 15 16 41 32 49 22 23 19 46 18 27 40 19 59 13 47
17 29 37 19 60 19 39 03 16 51 20 36 34 61 62 52 31
54 40 06 38 08 19 07 41 19 23 05 43 29 51 20 34 54
38 19 03 53 50 48 02 11 25 27 20 05 60 14 37 31 23
16 29 36 06 03 41 11 30 50 14 50 37 28 19 09 20 51
40 62 47 42 34 22 19 18 11 50 51 20 36 21 57 44 03
06 15 51 18 07 32 50 16 50 60 28 36 08 50 48 19 19
34 20 58 12 30 35 52 47 55 02 04 08 38 39 50 54 19
11 36 28 45 40 20 31 21 23 05 07 28 32 37 56 15 16
03 36 14 19 13 50 16 55 29 19 51 06 26 20 11 33 13
19 19 33 26 55 40 26 36 09 23 42 01 14 53 21 33 05
11 51 10 17 26 29 43 48 20 46 27 23 20 30 54 55 36
04 37 25 01 18 05 10 42 40 39 23 44 61 11 31 57 19

presented in Chapter 8.
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Table 9: Zodiac-340 Putative Plaintext

E A K L D A A Q S S T M I Y T A C
B K N S V N I G E T K T X A H H E
H N I E P N Y Q D N U T D H B J K
A K M K A E V K S K K O S O T N C
E I P I R R A K E L R O S I I K V
N A L A A E X L F E O T S K A M C
S K O H P J Q S A Z R E T E D V E
R A I K P I Q P T A D E K N T H O
V I J W X L R U A H G D A E J K K
F C S L H T U G H K P M K F N T K
T A R L I T V J S H K T X T K E V
L J A K I L H H S R G S R A I C H
A R U N E R O J A L X K S P H O E
K L M R V J K S A H D R R C J A I
K Z S D R T F T R A H R E U S T N
A H P I O K D I N M J V T S H E H
Q L Q H S K B N E L J A G A C K R
K B E E N T B L J O K N I K Y N P
J A N S F I E H V T L N H S T E G
K X A S V D E W O T I A P A O Y K
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CHAPTER 8

Conclusion

By utilizing two different types of ciphers, ciphertext can gain the attributes of

confusion and diffusion. Using a homophonic substitution cipher along with a trans-

position cipher, it becomes possible to flatten the letter frequencies in the ciphertext

as well as permute the characters to mix up the digram frequencies. The goal of this

paper is to find a way to crack this type of encryption.

The idea for this attack came from the as of yet unsolved Zodiac-340 cipher.

While it has not been completely ruled out as solely a homophonic substitution cipher,

looking for another possibility for the cipher is the next logical step. And since it is

most likely a homophonic cipher due to the use of over 26 symbols, it must be an

extension of this encryption method rather than a completely new cipher.

This was done by first looking at the simpler combination of simple substitution

and transposition ciphers. With this obtaining readable text, it was possible to replace

simple subsitution with homophonic substitution, albeit with modifications to speed

up the algorithm.

Based on the results of the HSCT attack, the amount of ciphertext required is

much higher than desired to retrieve the keys. Due to this limitation, performing the

attack against the Zodiac-340 cipher results in no readable text. And in addition to

this, due to the large amount of symbols used in the cipher results in a very long

attack time. While the SSCT attack did provide decent results, the complexity of

the homophonic attack causes the attack to take many times longer than the SSCT

attack.
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While this may not have achieved results that can be applied to lower amounts

of ciphertext, future work on the algorithm could improve the speed and effectiveness

of the attack. One way may be to increase the number of iterations performed by

both the random key layer and the transposition layer. By increasing the number

of iterations, better starting points may be obtained. In conjunction with this, the

algorithm can take advantage of parallel computing by performing the same two

layers in parallel since each key is independent from one another. Previous work was

done using the EM algorithm to perform up to a million random starts in a parallel

environment against the homophonic substitution cipher [4]. This paper found that

using a large number of restarts was able to find the homophonic substitution key

for the Zodiac-408 cipher. Using this idea, the algorithm in this paper could also use

a million random keys for both the transposition attack and the homophonic attack

and utilize a parallel GPU environment to have a better chance of finding the best

solution.
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