73 research outputs found

    Security Enhanced Symmetric Key Encryption Employing an Integer Code for the Erasure Channel

    Get PDF
    An instance of the framework for cryptographic security enhancement of symmetric-key encryption employing a dedicated error correction encoding is addressed. The main components of the proposal are: (i) a dedicated error correction coding and (ii) the use of a dedicated simulator of the noisy channel. The proposed error correction coding is designed for the binary erasure channel where at most one bit is erased in each codeword byte. The proposed encryption has been evaluated in the traditional scenario where we consider the advantage of an attacker to correctly decide to which of two known messages the given ciphertext corresponds. The evaluation shows that the proposed encryption provides a reduction of the considered attacker’s advantage in comparison with the initial encryption setting. The implementation complexity of the proposed encryption is considered, and it implies a suitable trade-off between increased security and increased implementation complexity

    Security-analysis of a class of cryptosystems based on linear error-correcting codes

    Get PDF

    Data Reduction by Huffman Coding and Encryption by Insertion of Shuffled Cyclic Redundancy Code

    Get PDF
    Cryptography today is assumed as the study of techniques and applications of securing the integrity and authenticity of transfer of information under difficult circumstances. It uses mathematical techniques related to aspects of information security such as confidentiality, data integrity, entity authentication, and data origin authentication. The encryption here mainly of two types. They are private and public key cryptography

    Optimization of the parity-check matrix density in QC-LDPC code-based McEliece cryptosystems

    Full text link
    Low-density parity-check (LDPC) codes are one of the most promising families of codes to replace the Goppa codes originally used in the McEliece cryptosystem. In fact, it has been shown that by using quasi-cyclic low-density parity-check (QC-LDPC) codes in this system, drastic reductions in the public key size can be achieved, while maintaining fixed security levels. Recently, some proposals have appeared in the literature using codes with denser parity-check matrices, named moderate-density parity-check (MDPC) codes. However, the density of the parity-check matrices to be used in QC-LDPC code-based variants of the McEliece cryptosystem has never been optimized. This paper aims at filling such gap, by proposing a procedure for selecting the density of the private parity-check matrix, based on the security level and the decryption complexity. We provide some examples of the system parameters obtained through the proposed technique.Comment: 10 pages, 4 figures. To be presented at IEEE ICC 2013 - Workshop on Information Security over Noisy and Lossy Communication Systems. Copyright transferred to IEE

    From Quantum Cheating to Quantum Security

    Get PDF
    For thousands of years, code-makers and code-breakers have been competing for supremacy. Their arsenals may soon include a powerful new weapon: quantum mechanics. We give an overview of quantum cryptology as of November 2000.Comment: 14 pages, 4 figures. Originally appeared in Physics Today: . This article may be downloaded for personal use only. Any other use requires prior permission of both the author and the American Institute of Physic

    Symmetric encryption for error correction

    Get PDF
    The article presents applying basis of symmetric encryption (block ciphering) in the area of coding theory, a specially in detecting and correcting errors of various types: bit inversion, insertion and skipping. For the case of bit inversion, it has been formulated the conditions of guaranteed fix for a given number of errors
    corecore