
DATA REDUCTION BY HUFFMAN CODING AND

ENCRYPTION BY INSERTION OF SHUFFLED CYCLIC

REDUNDANCY CODE

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Bachelor of Technology

in

Electronics & Instrumentation Engineering

 By

NILKESH PATRA

And

SILA SIBA SANKAR

Department of Electronics & Communication Engineering

National Institute of Technology

Rourkela

2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ethesis@nitr

https://core.ac.uk/display/53186854?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DATA REDUCTION BY HUFFMAN CODING AND

ENCRYPTION BY INSERTION OF SHUFFLED CYCLIC

REDUNDANCY CODE

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Bachelor of Technology

in

Electronics & Instrumentation Engineering

By

NILKESH PATRA

And

SILA SIBA SANKAR

Under the Guidance of

Prof. G.S.Rath

Department of Electronics & Communication Engineering

National Institute of Technology

Rourkela

2007

National Institute of Technology

Rourkela

CERTIFICATE

This is to certify that the thesis entitled, “Data reduction by huffman coding and

encryption by insertion of shuffled cyclic redundancy code” submitted by Sri Nilkesh Patra

and Sri Sila Siba Sankar in partial fulfillments for the requirements for the award of Bachelor

of Technology Degree in Electronics & Instrumentation Engineering at National Institute of

Technology, Rourkela (Deemed University) is an authentic work carried out by him under my

supervision and guidance.

To the best of my knowledge, the matter embodied in the thesis has not been submitted

to any other University / Institute for the award of any Degree or Diploma.

Date: Prof. G. S. Rath

 Dept. of Electronics & Instrumentation Engg

 National Institute of Technology

 Rourkela - 769008

ACKNOWLEDGEMENT

We would like to articulate our deep gratitude to our project guide Prof. G.S.Rath who

has always been our motivation for carrying out the project. It is our pleasure to refer

Microsoft Word exclusive of which the compilation of this report would have been impossible.

An assemblage of this nature could never have been attempted with out reference to and

inspiration from the works of others whose details are mentioned in reference section. We

acknowledge out indebtedness to all of them. Last but not the least , our sincere thanks to all of

our friends who have patiently extended all sorts of help for accomplishing this undertaking.

 NILKESH PATRA

 SILA SIBA SANKAR

 i

CONTENTS
 Page No

Abstract ii

Chapter 1 GENERAL INTRODUCTION 1

Chapter 2 CONVENTIONAL DATA COMPRESSION 3

 2.1 Introduction 4

 2.2 Lossless vs. lossy compression 5

 2.3 Compression algorithms 6

Chapter 3 CONVENTIONAL DATA ENCRYPTION 10

 3.1 Introduction 11

 3.2 Why encrypting? 12

 3.3 How encryption works? 13

 3.4 Private & public key encryption 13

 3.5 Encryption algorithms 16

Chapter 4 CODING THEORY & CRC CODE 19

 4.1 Introduction 20

 4.2 Source coding 20

 4.3 Channel encoding 21

 4.4 CRC code 22

Chapter 5 ENCRYPTION BY SHUFFLED CRC CODE 25

 5.1 Introduction 26

 5.2 Data compression by Huffman coding 26

 5.3 Insertion of shuffled CRC code 28

Chapter 6 EXPERIMENTATION AND RESULTS 29

 6.1 Source code 30

 6.2 Results 39

 6.3 Conclusion 41

 REFERENCES 42

 ii

ABSTRACT

Introduction

 Cryptography today is assumed as the study of techniques and applications of securing

the integrity and authenticity of transfer of information under difficult circumstances. It uses

mathematical techniques related to aspects of information security such as confidentiality, data

integrity, entity authentication, and data origin authentication. The encryption here mainly of

two types. They are private and public key cryptography.

Steps involved

1. Huffman compression

In information theory, Huffman coding is an entropy encoding algorithm used for

lossless data compression. The term refers to the use of a variable length code table for

encoding a source symbol (such as a character in a file) where the variable-length code

table has been derived in a particular way based on the estimated probability of

occurrence for each possible value of the source symbol

2. Encryption by shuffled CRC

After the text was compressed, CRC is used to detect the error of the code word.

A word is generated using the generator polynomial, which is used to encrypt the

compressed code. Then the CRC will be inserted into the code in a random fashion.

Experimental work

 The above compression and encryption methods have been employed by using high

level language MATLAB. The Huffman compression and shuffled CRC encryption operations

have been implemented using this language.

 1

 Chapter 1

 GENERAL INTRODUCTION

 2

Data compression is known for reducing storage and communication costs. It involves

transforming data of a given format, called source message, to data of a smaller sized format,

called codeword.Data encryption is known for protecting information from eavesdropping. It

transforms data of a given format, called plaintext, to another format, called cipher text, using an

encryption key. The major problem existing with the current compression and encryption

methods is the large amount of processing time required by the computer to perform the tasks.

To lessen the problem, I combine the two processes into one. To combine the two processes, I

introduce the idea of adding a pseudo random shuffle into a data compression process. The

method of using a pseudo random number generator to create a pseudo random shuffle is well

known. A simple algorithm as below can do the trick. Assume that we have a list (x1, x2, ... xn)

and that we want to shuffle it randomly.

for i = n downto 2

{

k = random(1,i);

swap xi and xk;

}

Since we are adding pseudo random shuffles into data compression processes, understanding all

three compression algorithms used is critical in the understanding of our algorithms. Even

though our algorithms are based on random shuffles, our algorithms don’t merely re-ordering

data. Unlike substitution ciphers, our algorithms don’t encrypt plaintext by simply replacing a

piece of data with another equal sized data. Unlike transposition cipher, our algorithms don’t

encrypt plaintext by just playing anagrams. As I will explain in detail, simultaneous data

compression and encryption offers an effective remedy for the execution time problem in data

security. These methods can easily be utilized in multimedia applications, which are lacking in

security and speed.

 3

Chapter 2

 CONVENTIONAL DATA COMPRESSION

 4

2.1 Introduction

 Compression is used just about everywhere. All the images you get on the web are

compressed, typically in the JPEG or GIF formats, most modems use compression, HDTV will

be compressed using MPEG-2, and several file systems automatically compress files when

stored, and the rest of us do it by hand. The neat thing about compression, as with the other

topics we will cover in this course, is that the algorithms used in the real world make heavy use

of a wide set of algorithmic tools, including sorting, hash tables, tries, and FFTs. Furthermore,

algorithms with strong theoretical foundations play a critical role in real-world applications.

In this chapter we will use the generic term message for the objects we want to compress,

which could be either files or messages. The task of compression consists of two components, an

encoding algorithm that takes a message and generates a “compressed” representation (hopefully

with fewer bits), and a decoding algorithm that reconstructs the original message or some

approximation of it from the compressed representation. These two components are typically

intricately tied together since they both have to understand the shared compressed representation.

 We distinguish between lossless algorithms, which can reconstruct the original message

exactly from the compressed message, and lossy algorithms, which can only reconstruct an

approximation of the original message. Lossless algorithms are typically used for text, and lossy

for images and sound where a little bit of loss in resolution is often undetectable, or at least

acceptable. Lossy is used in an abstract sense, however, and does not mean random lost pixels,

but instead means loss of a quantity such as a frequency component, or perhaps loss of noise. For

example, one might think that lossy text compression would be unacceptable because they are

imagining missing or switched characters. Consider instead a system that reworded sentences

into a more standard form, or replaced words with synonyms so that the file can be better

compressed. Technically the compression would be lossy since the text has changed, but the

“meaning” and clarity of the message might be fully maintained, or even improved. In fact

Strunk and White might argue that good writing is the art of lossy text compression.

 Is there a lossless algorithm that can compress all messages? There has been at least one

patent application that claimed to be able to compress all files (messages)—Patent 5,533,051

titled “Methods for Data Compression”. The patent application claimed that if it was applied

recursively, a file could be reduced to almost nothing. With a little thought you should convince

yourself that this is not possible, at least if the source messages can contain any bit-sequence. We

can see this by a simple counting argument. Lets consider all 1000 bit messages, as an example.

 5

There are different messages we can send, each which needs to be distinctly identified by the

decoder. It should be clear we can’t represent that many different messages by sending 999 or

fewer bits for all the messages — 999 bits would only allow us to send distinct messages. The

truth is that if any one message is shortened by an algorithm, then some other message needs to

be lengthened. You can verify this in practice by running GZIP on a GIF file. It is, in fact,

possible to go further and show that for a set of input messages of fixed length, if one message is

compressed, then the average length of the compressed messages over all possible inputs is

always going to be longer than the original input messages. Consider, for example, the 8 possible

3 bit messages. If one is compressed to two bits, it is not hard to convince yourself that two

messages will have to expand to4 bits, giving an average of 31/8bits. Unfortunately, the patent

was granted.

Because one can’t hope to compress everything, all compression algorithms must assume

that there is some bias on the input messages so that some inputs are more likely than others, i.e.

that there is some unbalanced probability distribution over the possible messages. Most

compression algorithms base this “bias” on the structure of the messages – i.e., an assumption

that repeated characters are more likely than random characters, or that large white patches occur

in “typical” images. Compression is therefore all about probability.

2.2 Lossless vs. lossy compression

Lossless compression algorithms usually exploit statistical redundancy in such a way as

to represent the sender's data more concisely, but nevertheless perfectly. Lossless compression is

possible because most real-world data has statistical redundancy. For example, in English text,

the letter 'e' is much more common than the letter 'z', and the probability that the letter 'q' will be

followed by the letter 'z' is very small.

Another kind of compression, called lossy data compression, is possible if some loss of

fidelity is acceptable. For example, a person viewing a picture or television video scene might

not notice if some of its finest details are removed or not represented perfectly (i.e. may not even

notice compression artifacts). Similarly, two clips of audio may be perceived as the same to a

listener even though one is missing details found in the other. Lossy data compression algorithms

introduce relatively minor differences and represent the picture, video, or audio using fewer bits.

 6

Lossless compression schemes are reversible so that the original data can be

reconstructed, while lossy schemes accept some loss of data in order to achieve higher

compression.

However, lossless data compression algorithms will always fail to compress some files;

indeed, any compression algorithm will necessarily fail to compress any data containing no

discernible patterns. Attempts to compress data that has been compressed already will therefore

usually result in an expansion, as will attempts to compress encrypted data.

In practice, lossy data compression will also come to a point where compressing again

does not work, although an extremely lossy algorithm, which for example always removes the

last byte of a file, will always compress a file up to the point where it is empty.

A good example of lossless vs. lossy compression is the following string --

888883333333. What you just saw was the string written in an uncompressed form. However,

you could save space by writing it 8[5]3[7]. By saying "5 eights, 7 threes", you still have the

original string, just written in a smaller form. In a lossy system, using 83 instead, you cannot get

the original data back (at the benefit of a smaller file size).

2.3 Compression algorithms

 As mentioned in the introduction, coding is the job of taking probabilities for messages

and generating bit strings based on these probabilities. In practice we typically use probabilities

for parts of a larger message rather than for the complete message, e.g., each character or word in

a text. To be consistent with the terminology in the previous section, we will consider each of

these components a message on its own, and we will use the term message sequence for the

larger message made up of these components. In general each little message can be of a different

type and come from its own probability distribution. For example, when sending an image we

might send a message specifying a color followed by messages specifying a frequency

component of that color. Even the messages specifying the color might come from different

probability distributions since the probability of particular colors might depend on the context.

We distinguish between algorithms that assign a unique code (bit-string) for each message, and

ones that “blend” the codes together from more than one message in a row. In the first class we

will consider Huffman codes, which are a type of prefix code. In the later category we consider

arithmetic codes. The arithmetic codes can achieve better compression, but can require the

 7

encoder to delay sending messages since the messages need to be combined before they can be

sent.

2.3.1 prefix codes

 A code C for a message set is a mapping from each message to a bit string. Each bit

string is called codeword Acode called a codeword, and we will denote codes using the syntax

C={(S1,W1),(S2,W2),……..(SM,WM)} Typically in computer science we deal with fixed length

codes, such as the ASCII code which maps every printable character and some control characters

into 7 bits. For compression, however, we would like code words that can vary in length based

on the probability of the message. Such variable length codes have the potential problem that if

we are sending one codeword after the other it can be hard or impossible to tell where one

codeword finishes and the next starts. For example- given the code{(a,1),(b,01),(c,101),(d,011)},

the bit-sequence 1011 could either be could either be decoded as aba, ca, or ad. To avoid this

ambiguity we could add a special stop symbol to the end of each codeword (e.g., a 2 in a 3-

valued alphabet), or send a length before each symbol.These solutions, however, requiresending

extra data. A more efficient solution is to design codes in which we can always uniquely

decipher a bit sequence into its code words. We will call such uniquely decodable code

codesuniquelydecodablecodes. A prefix code is a special kind of uniquely decodable code in

which no bit-string is a prefix of another one, for example {(a,1),(b,01),(c,101),(d,011)} 1 01 000

001 . All prefix codes are uniquely decodable sinceonce we get a match, there is no longer code

that can also match.

2.3.2Huffman Codes

Huffman codes are optimal prefix codes generated from a set of probabilities by a

particular algorithm, the Huffman Coding Algorithm. David Huffman developed the algorithm

as a student in a 12 class on information theory at MIT in 1950. The algorithm is now probably

the most prevalently used component of compression algorithms, used as the back end of GZIP,

JPEG and many other utilities.

The Huffman algorithm is very simple and is most easily described in terms of how it

generates the prefix-code tree.

1. Start with a forest of trees, one for each message. Each tree contains a single vertex with

weight W I = P I

 8

2. Repeat until only a single tree remains

• Select two trees with the lowest weight roots (W1 and W2).

• Combine them into a single tree by adding a new root with weight W1 + W2 = C. ", and

making the two trees its children. It does not matter which is the left or right child, but

our convention will be to put the lower weight root on the left if W1 ~= W2 ".

For a code of size n this algorithm will require n-1 steps since every complete binary tree

with n leaves has n-1 internal nodes, and each step creates one internal node. If we use a priority

queue with O(log n) time insertions and find-mins (e.g., a heap) the algorithm will run in O(n log

n) time.

The key property of Huffman codes is that they generate optimal prefix codes. We show

this in the following theorem, originally given by Huffman.

2.3.3 Arithmetic Coding

Arithmetic coding is a technique for coding that allows the information from the

messages in a message sequence to be combined to share the same bits. The technique allows the

total number of bits sent to asymptotically approach the sum of the self information of the

individual messages (recall that the self information of a message is defined as log 2(1/pi)

To see the significance of this, consider sending a thousand messages each having

probability 0.999 . Using a Huffman code, each message has to take at least 1 bit, requiring 1000

bits to be sent.

On the other hand the self information of each message is log 2(1/pi) = 0.00144 bits, so

the sum of this self-information over 1000 messages is only 1.4 bits. It turns out that arithmetic

coding will send all the messages using only 3 bits, a factor of hundreds fewer than a Huffman

coder. Of course this is an extreme case, and when all the probabilities are small, the gain will be

less significant. Arithmetic coders are therefore most useful when there are large probabilities in

the probability distribution.

The main idea of arithmetic coding is to represent each possible sequence of P messages by

a separate interval on the number line between 0 and 1, e.g. the interval from .2 to .5. For a

sequence of messages with probabilities p1, p2….p n , the algorithm will assign the sequence to

an interval of size ∏
n

i=1 pi, by starting with an interval of size 1 (from 0 to 1) and narrowing the

interval by a factor of pi on each message i'. We can bound the number of bits required to

 9

uniquely identify an interval of size s, and use this to relate the length of the representation to the

self information of the messages.

In the following discussion we assume the decoder knows when a message sequence is

complete either by knowing the length of the message sequence or by including a special end-of-

file message. This was also implicitly assumed when sending a sequence of messages with

Huffman codes since the decoder still needs to know when a message sequence is over.

We will denote the probability distributions of a message set as {p(1),p(2),….p(m)} , and

we define the accumulated probability for the probability distribution as

 j -1

f(j) = Σ p(i) (j= 1, 2, ….., m)

 i =1

Arithmetic coding assigns an interval to a sequence of messages using the following recurrences

 Where ln is the lower bound of the interval and sn is the size of the interval, i.e. the

interval is given by [ln , ln +sn] ×We assume the interval is inclusive of the lower bound, but

exclusive of the upper bound. The recurrence narrows the interval on each step to some part of

the previous interval. Since the interval starts in the range [0, 1), it always stays within this

range. An important property of the intervals generated by the above Equation is that all unique

message sequences of length n will have non overlapping intervals. Specifying an interval therefore

uniquely determines the message sequence. In fact, any number within an interval uniquely

determines the message sequence. The job of decoding is basically the same as encoding but

instead of using the message value to narrow the interval, we use the interval to select the

message value, and then narrow it. We can therefore “send” a message sequence by specifying a

number within the corresponding interval.

 10

Chapter 3

 CONVENTIONAL DATA ENCRYPTION

 11

3.1 Introduction

 Security and privacy have long been important issues forming the basis of numerous

democracies around the world. In the digital age, securing personal information and ensuring

privacy pose to be issues of paramount concern. At first glance, one might find it gratifying that

an online website greets the person by their first name, sends them emails when goods of their

taste are added, or recommends goods services based on their demographic profile, previous

visits, etc. An astute surfer though will also see the privacy drawbacks in such services. Who else

is being provided this information? Is there a way to ensure the security of this information?

What happens with the information if the company meets financial diffuculties and has to

liquidate its assets? Where does all that "private information" go?

Many studies over the last few years have suggested that a majority of consumers are

concerned about when, what and how their personal information is being collected, how this

information is being used and whether it is being protected. They want to know whether the

information is being sold or shared with others, and if so with whom and for what purposes.

They also want to have control over their privacy in today's digital age where strides in

telecommunicaiton, storage and software technologies have made monitoring a person's

activities effortless.

The Internet, once a research tool has grown into a mammoth educational, entertainment

and commercial implementation. The advent of commerce on the Internet exposed the lack of

security over this public network. The incorporation of encryption (especially strong 128 bit

encryption) into Internet browsers and web servers quelled this concern to a certain extent. There

was still the matter of storing the information sent over the Internet in a safe manner. Firewalls

and encryption software evolved to ensure that the computers and data on the Internet were safer.

What can be done regarding these important issues? Part of the solution is to secure

important data - more specifically, using strong encryption. Educating end users and corporations

on the use of email and file encryption software, data encryption during transmission using

VPNs, password encryption on public interfaces and use of encryption software like PGP, F-

Secure and 128 bit version of IE/NS will lead us closer to the end goal of a safer Internet.

The growth of the worldwide Internet user base and with Internet based transactions

believed to reach well over a trillion dollars in the next three years, it makes sense for the parties

involved to secure the Internet. Haphazard handling of financial and personal information can

 12

lead to the Internet being constantly associated with fraud and privacy abuses instead of being a

viable commerce medium.

3.2 Why encrypting?

 As organizations and individuals have connected to the Internet in droves, many have

begun eyeing its infrastructure as an inexpensive medium for wide-area and remote connections.

The Internet is an international network consisting of individual computers and computer

networks that are all interconnected by many paths. Unlike Local Area Networks where access is

physically restricted to authorized users, the Internet is a public network and can be accessed by

anyone. Now more than ever, moving vast amounts of information quickly and safely across

great distances is one of our most pressing needs. The basic idea of cryptography is to hide

information from prying eyes. On the Internet this can be your credit card numbers, bank account

information, health/social security information, or personal correspondence with someone else.

History of Encryption

Encryption pre-dates the Internet by thousands of years. Looking back in history we find

that Julius Caesar was an early user of cryptography. He sent messages to his troops in a simple

but ingenious method. A letter in the alphabet was replaced by one say 5 positions to the right.

So, an "A" would be replaced by an "E", "B" by "F" and so on. Hence RETURN would become

VJYZVS. But as it can be seen, this cipher can be easily broken by either figuring out a pattern,

by brute force or by getting ones hands on a plaintext and cipher text combination to deduce the

pattern.

Users of Encryption

A few decades ago, only governments and diplomats used encryption to secure sensitive

information. Today, secure encryption on the Internet is the key to confidence for people wanting

to protect their privacy, or doing business online. E-Commerce, secure messaging, and virtual

private networks are just some of the applications that rely on encryption to ensure the safety of

data. In many companies that have proprietary or sensitive information, field personnel are

required to encrypt their entire laptops fearing that in the wrong hands this information could

cause millions of dollars in damage.

 13

3.3 How encryption works?

 The concept behind encryption is quite simple - make the data illegible for everyone else

except those specified. This is done using cryptography - the study of sending 'messages' in a

secret form so that only those authorized to receive the 'message' be able to read it.

The easy part of encryption is applying a mathematical function to the plaintext and

converting it to an encrypted cipher. The harder part is to ensure that the people who are

supposed to decipher this message can do so with ease, yet only those authorized are able to

decipher it. We of-course also have to establish the legitimacy of the mathematical function used

to make sure that it is sufficiently complex and mathematically sound to give us a high degree of

safety.

The essential concept underlying all automated and computer security application is

cryptography. The two ways of going about this process are conventional (or symmetric)

encryption and public key (or asymmetric) encryption.

3.4.1 Private key encryption

 Private Key encryption also referred to as conventional, single-key or symmetric

encryption was the only available option prior to the advent of Public Key encryption in 1976.

This form of encryption has been used throughout history by Julius Caesar, the Navaho Indians,

and German U-Boat commanders to present day military, government and private sector

applications. It enquires all parties that are communicating to share a common key.

A conventional encryption scheme has five major parts:

Plaintext - this is the text message to which an algorithm is applied.

Encryption Algorithm - it performs mathematical operations to conduct substitutions and

transformations to the plaintext.

Secret Key - This is the input for the algorithm as the key dictates the encrypted outcome.

Cipher text - This is the encrypted or scrambled message produced by applying the algorithm to

the plaintext message using the secret key.

Decryption Algorithm - This is the encryption algorithm in reverse. It uses the ciphertext, and the

secret key to derive the plaintext message.

When using this form of encryption, it is essential that the sender and receiver have a way

to exchange secret keys in a secure manner. If someone knows the secret key and can figure out

the algorithm, communications will be insecure. There is also the need for a strong encryption

 14

algorithm. What this means is that if someone were to have a ciphertext and a corresponding

plaintext message, they would be unable to determine the encryption algorithm.

There are two methods of breaking conventional/symmetric encryption - brute force and

cryptanalysis. Brute force is just as it sounds; using a method (computer) to find all possible

combinations and eventually determine the plaintext message. Cryptanalysis is a form of attack

that attacks the characteristics of the algorithm to deduce a specific plaintext or the key used.

One would then be able to figure out the plaintext for all past and future messages that continue

to use this compromised setup.

3.4.2 Public key encryption

 1976 saw the introduction of a radical new idea into the field of cryptography. This idea

centered around the premise of making the encryption and decryption keys different - where the

knowledge of one key would not allow a person to find out the other. Public key encryption

algorithms are based on the premise that each sender and recipient has a private key, known only

to him/her and a public key, which can be known by anyone. Each encryption/decryption process

requires at least one public key and one private key. A key is a randomly generated set of

numbers/ characters that is used to encrypt/decrypt information.

A public key encryption scheme has six major parts:

Plaintext - this is the text message to which an algorithm is applied.

Encryption Algorithm - it performs mathematical operations to conduct substitutions and

transformations to the plaintext.

Public and Private Keys - these are a pair of keys where one is used for encryption and the other

for decryption.

Ciphertext - this is the encrypted or scrambled message produced by applying the algorithm to

the plaintext message using key.

Decryption Algorithm - This algorithm generates the ciphertext and the matching key to produce

the plaintext.

 15

Selecting the Public and Private Keys

1. Select large prime numbers p and q and form n = pq.

2. Select an integer e > 1 such that GCD(e, (p - 1)(q - 1)) = 1.

3. Solve the congruence, ed ≡ 1 (mod (p - 1), (q - 1)) for an integer d where 1 < d < p - 1)(q

- 1).

4. The public encryption key is (e,n).

5. The private encryption key is (d,n).

The Encryption Process

• The process of encryption begins by converting the text to a pre hash code. This code is

generated using a mathematical formula.

• This pre hash code is encrypted by the software using the senders private key. The private key

would be generated using the algorithm used by the software.

• The encrypted pre hash code and the message are encrypted again using the sender's private

key.

• The next step is for the sender of the message to retrieve the public key of the person this

information is intended for.

• The sender encrypts the secret key with the recipient's public key, so only the recipient can

decrypt it with his/her private key, thus concluding the encryption process.

1. Lookup the user's public key (e , n).

2. Make sure that the message M is an integer such that 0 £ M £ n.

3. Compute, M ^ e º C (mod n) where 0 £ C £ n.

4. Transmit the integer C.

The Decryption Process

• The recipient uses his/her private key to decrypt the secret key.

 16

• The recipient uses their private key along with the secret key to decipher the encrypted pre hash

code and the encrypted message.

• The recipient then retrieves the sender's public key. This public key is used to decrypt the pre

hash code and to verify the sender's identity.

• The recipient generates a post hash code from the message. If the post hash code equals the pre

hash code, then this verifies that the message has not been changed en-route.

Use your private key (d , n).

1. Receive the integer C, where 0 £ C £ n.

2. Compute, C ^ d º R (mod n) where 0 £ R £ n.

3. R is the original message.

3.5 Encryption algorithms

Different encryption algorithms use proprietory methods of generating these keys and are

therefore useful for different applications. Here are some nitty gritty details about some of these

encryption algorithms. Strong encyrption is often discerend by the key length used by the

algorithm.

RSA

In 1977, shortly after the idea of a public key system was proposed, three

mathematicians, Ron Rivest, Adi Shamir and Len Adleman gave a concrete example of how

such a method could be implemented. To honour them, the method was referred to as the RSA

Scheme. The system uses a private and a public key. To start two large prime numbers are

selected and then multiplied together; n=p*q.

If we let f(n) = (p-1) (q-1), and e>1 such that GCD(e, f(n))=1. Here e will have a fairly

large probability of being co-prime to f(n), if n is large enough and e will be part of the

encryption key. If we solve the Linear Diophantine equation; ed congruent 1 (mod f(n)), for d.

The pair of integers (e, n) are the public key and (d, n) form the private key. Encryption of M can

be accomplished by the following expression; Me = qn + C where 0<= C < n. Decryption

 17

would be the inverse of the encryption and could be expressed as; Cd congruent R (mod n) where

0<= R < n. RSA is the most popular method for public key encryption and digital signatures

today.

DES/3DES

The Data Encryption Standard (DES) was developed and endorsed by the U.S.

government in 1977 as an official standard and forms the basis not only for the Automatic Teller

Machines (ATM) PIN authentication but a variant is also utilized in UNIX password encryption.

DES is a block cipher with 64-bit block size that uses 56-bit keys. Due to recent advances in

computer technology, some experts no longer consider DES secure against all attacks; since then

Triple-DES (3DES) has emerged as a stronger method. Using standard DES encryption, Triple-

DES encrypts data three times and uses a different key for at least one of the three passes giving

it a cumulative key size of 112-168 bits.

BLOWFISH

Blowfish is a symmetric block cipher just like DES or IDEA. It takes a variable-length

key, from 32 to 448 bits, making it ideal for both domestic and exportable use. Bruce Schneier

designed Blowfish in 1993 as a fast, free alternative to the then existing encryption algorithms.

Since then Blowfish has been analyzed considerably, and is gaining acceptance as a strong

encryption algorithm.

IDEA

International Data Encryption Algorithm (IDEA) is an algorithm that was developed by

Dr. X. Lai and Prof. J. Massey in Switzerland in the early 1990s to replace the DES standard. It

uses the same key for encryption and decryption, like DES operating on 8 bytes at a time. Unlike

DES though it uses a 128 bit key. This key length makes it impossible to break by simply trying

every key, and no other means of attack is known. It is a fast algorighm, and has also been

implemented in hardware chipsets, making it even faster.

 18

SEAL

Rogaway and Coppersmith designed the Software-optimized Encryption Algorithm

(SEAL) in 1993. It is a Stream-Cipher, i.e., data to be encrypted is continuously encrypted.

Stream Ciphers are much faster than block ciphers (Blowfish, IDEA, DES) but have a longer

initialization phase during which a large set of tables is done using the Secure Hash Algorithm.

SEAL uses a 160 bit key for encryption and is considered very safe.

RC4

RC4 is a cipher invented by Ron Rivest, co-inventor of the RSA Scheme. It is used in a

number of commercial systems like Lotus Notes and Netscape. It is a cipher with a key size of

up to 2048 bits (256 bytes), which on the brief examination given it over the past year or so

seems to be a relatively fast and strong cypher. It creates a stream of random bytes and 'XORing'

those bytes with the text. It is useful in situations in which a new key can be chosen for each

message.

 19

Chapter 4

 CODING THEORY & CRC CODE

 20

4.1 Introduction

 Coding theory is a branch of mathematics and computer science dealing with the error-

prone process of transmitting data across noisy channels, via clever means, so that a large

number of errors that occur can be corrected. It also deals with the properties of codes, and thus

with their fitness for a specific application.

There are two classes of codes.

1. Source coding (Data compression).

2. Channel coding (Forward error correction).

The first, source encoding, attempts to compress the data from a source in order to

transmit it more efficiently. We see this practice every day on the Internet where the common

"Zip" data compression is used to reduce the network load and make files smaller. The second,

channel encoding adds extra data bits, commonly called redundancy bits, to make the

transmission of data more robust to disturbances present on the transmission channel. The

ordinary user may not be aware of many applications using channel coding. A typical music CD

uses a powerful Reed-Solomon code to correct for scratches and dust. In this application the

transmission channel is the CD itself. Cell phones also use powerful coding techniques to correct

for the fading and noise of high frequency radio transmission. Data modems, telephone

transmissions, and of course NASA all employ powerful channel coding to get the bits through.

A cyclic redundancy check (CRC) is a type of hash function, which is used to produce a

small, fixed-size checksum of a larger block of data, such as a packet of network traffic or a

computer file. The checksum is used to detect errors after transmission or storage. A CRC is

computed and appended before transmission or storage, and verified afterwards by the recipient

to confirm that no changes occurred in transit. CRCs are popular because they are simple to

implement in binary hardware, are easy to analyze mathematically, and are particularly good at

detecting common errors caused by noise in transmission channels.

4.2 Source coding

Entropy of a source is the measure of information. Basically source codes try to reduce

the redundancy present in the source, and represent the source with a fewer bits that carry more

information.

 21

Data compression which explicitly tries to minimize the entropy of messages according

to a particular probability model is called entropy encoding.

Various techniques used by source coding schemes try to achieve the limit of Entropy of

the source. C(x) ≥ H(x), where H(x) is entropy of source (bit rate), and C(x) is the bit rate after

compression. In particular, no source coding scheme can be better than the entropy limit of the

symbol. Example: Facsimilie transmission uses a simple run length code.

4.3 Channel encoding

The aim of channel encoding theory is to find codes which transmit quickly, contain

many valid code words and can correct or at least detect many errors. These aims are mutually

exclusive however, so different codes are optimal for different applications. The needed

properties of this code mainly depend on the probability of errors happening during transmission.

In a typical CD, the impairment is mainly dust or scratches. Thus codes are used in an

interleaved manner. The data is spread out over the disk. Although not a very good code, a

simple repeat code can serve as an understandable example. Suppose we take a block of data bits

(representing sound) and send it three times. At the receiver we will examine the three repetitions

bit by bit and take a majority vote. The twist on this is that we don't merely send the bits in order.

We interleave them. The block of data bits is first divided into 4 smaller blocks. Then we cycle

through the block and send one bit from the first, then the second, etc. This is done three times to

spread the data out over the surface of the disk. In the context of the simple repeat code, this may

not appear effective. However, there are more powerful codes known which are very effective at

correcting the "burst" error of a scratch or a dust spot when this interleaving technique is used.

Other codes are more appropriate for different applications. Deep space communications

are limited by the thermal noise of the receiver which is more of a continuous nature than a

bursty nature. Likewise, narrowband modems are limited by the noise present in the telephone

network and is also modeled better as a continuous disturbance. Cell phones are troubled by

rapid fading. The high frequencies used can cause rapid fading of the signal even if the receiver

is moved a few inches. Again there are a class of channel codes that are designed to combat

fading.

 22

The term algebraic coding theory denotes the sub-field of coding theory where the

properties of codes are expressed in algebraic terms and then further researched. Algebraic

Coding theory, is basically divided into two major types of codes

1. Linear block codes

2. Convolutional codes

It analyzes the following three properties of a code -- mainly:

• code word length

• total number of valid code words

• the minimum Hamming distance between two valid code words

4.4 CRC Code

A CRC "checksum" is the remainder of a binary division with no bit carry (XOR used

instead of subtraction), of the message bit stream, by a predefined (short) bit stream of length n +

1, which represents the coefficients of a polynomial with degree n. Before the division, n zeros

are appended to the message stream.

CRCs are based on division in the ring of polynomials over the finite field GF (2) (the

integers modulo 2). In simpler terms, this is the set of polynomials where each coefficient is

either zero or one (a single binary bit), and arithmetic operations wrap around. For example:

Note that 2x becomes zero in the above equation because addition of coefficients is performed

modulo 2:

Multiplication is similar:

We can also divide polynomials mod 2 and find the quotient and remainder. For example,

suppose we're dividing x
3
 + x

2
 + x by x + 1. We would find that

 23

In other words,

The division yields a quotient of x
2
 + 1 with a remainder of -1, which, since it is odd, has a last

bit of 1.

Any string of bits can be interpreted as the coefficients of a message polynomial of this

sort, and to find the CRC, we multiply the message polynomial by x
n
 and then find the remainder

when dividing by the degree-n generator polynomial. The coefficients of the remainder

polynomial are the bits of the CRC.

In the above equations, x
2
 + x + 1 represents the original message bits 111, x + 1 is the

generator polynomial, and the remainder 1 (equivalently, x
0
) is the CRC. The degree of the

generator polynomial is 1, so we first multiplied the message by x
1
 to get x

3
 + x

2
 + x.

In general form:

Here M(x) is the original message polynomial and G(x) is the degree-n generator

polynomial. The bits of are the original message with n zeros added at the end. R(x)

is the remainder polynomial, which is the CRC 'checksum'. The quotient polynomial Q(x) is

uninteresting. In communication, the sender attaches the n bits of R after the original message

bits of M and sends them out (in place of the zeros). The receiver takes M and R and checks

whether is divisible by G(x). If it is, then the receiver assumes the received

message bits are correct. Note that is exactly the string of bits the sender

sent; this string is called the codeword.

A CRC is a checksum in a strict mathematical sense, as it can be expressed as the

weighted modulo-2 sum of per-bit syndromes, but that word is generally reserved more

specifically for sums computed using larger moduli, such as 10, 256, or 65535.

 24

CRCs can also be used as part of error-correcting codes, which allow not only the

detection of transmission errors, but the reconstruction of the correct message. These codes are

based on closely related mathematical principles.

 25

Chapter 5

 ENCRYPTION BY SHUFFLED CRC CODE

 26

5.1 Introduction

In cryptography, encryption is the process of obscuring information to make it

unreadable without special knowledge, sometimes referred a scrambling. Encryption has been

used to protect communications for centuries, but only organizations and individuals with

extraordinary privacy and/or secrecy requirements had bothered to exert the effort required to

implement it. In the mid-1970s, strong encryption emerged from the preserve of secretive

government agencies into the public domain, and is now used in protecting many kinds of

systems, such as the Internet e-commerce, mobile telephone networks and bank automatic teller

machines.

Encryption can be used to ensure secrecy and/or privacy, but other techniques are still

needed to make communications secure, particularly to verify the integrity and authenticity of a

message; for example, a message authentication code (MAC) or digital signatures. Another

consideration is protection against traffic analysis.

Encryption or software code obfuscation is also used in software copy protection against

reverse engineering, unauthorized application analysis, cracks and software piracy used in

different encryption or obfuscating software.

5.2 Data compression by huffman coding

The technique works by creating a binary tree of nodes. These can be stored in a regular

array, the size of which depends on the number of symbols(N). A node can be either a leaf node

or an internal node. Initially, all nodes are leaf nodes, which contain the symbol itself, the weight

(frequency of appearance) of the symbol and optionally, a link to a parent node which makes it

easy to read the code (in reverse) starting from a leaf node. Internal nodes contain symbol

weight, links to two child nodes and the optional link to a parent node. As a common convention,

bit '0' represents following the left child and bit '1' represents following the right child. A

finished tree has N leaf nodes and N−1 internal nodes.

 27

A linear-time method to create a Huffman tree is to use two queues, the first one

containing the initial weights (along with pointers to the associated leaves), and combined

weights (along with pointers to the trees) being put in the back of the second queue. This assures

that the lowest weight is always kept at the front of one of the two queues.

Creating the tree:

1. Start with as many leaves as there are symbols.

2. Enqueue all leaf nodes into the first queue (by probability in increasing order so that the

least likely item is in the head of the queue).

3. While there is more than one node in the queues:

• Dequeue the two nodes with the lowest weight.

• Create a new internal node, with the two just-removed nodes as children (either

node can be either child) and the sum of their weights as the new weight.

• Enqueue the new node into the rear of the second queue.

4. The remaining node is the root node; the tree has now been generated.

It is generally beneficial to minimize the variance of codeword length. For example, a

communication buffer receiving Huffman-encoded data may need to be larger to deal with

especially long symbols if the tree is especially unbalanced. To minimize variance, simply break

ties between queues by choosing the item in the first queue. This modification will retain the

mathematical optimality of the Huffman coding while both minimizing variance and minimizing

the length of the longest character code.

After creating the tree next step is to find the codeword of each character of the text

.This is obtained by taking the bits from the leaf node of that character to the root node of the

tree. By using this code words the full text can be compressed to a bit pattern or final code word.

 28

5.3 Insertion of shuffled CRC code

Here comes the most important step of the project, which is nothing but encryption. The

encryption is done by taking the same CRC code or the generator polynomial used for the error

detection. So, this method is quite advantageous as the error detection and the encryption is done

with the same CRC code.

After the text was compressed using Huffman coding, we will get the code word. This

code word is taken for error detection using CRC code. So, a generator polynomial of length P is

used. Let the code word length is N. Then we will get the remainder of length P-1. This

remainder will be attached with the code word and it will be sent to the receiver. Before that,

encryption will be done.

In this method the length of the code word (N) will be divided with the length of the

generator polynomial (P). The nearest prime number of the quotient will be taken, which will be

multiplied with the generator polynomial. The resulted bit pattern will be used for encryption.

Let this pattern is of length m. These m bits will be XORed with the last m bits of the code word.

The same operation will be done again with the previous m bits. The process is going on until the

last bit pattern of the code word, whose length is less than m. They will be left unoperated.

The encryption process will be much more strengthened by using the CRC code again.

These CRC bits will be shuffled with the N bit code word using a random number generation. A

series of random numbers are generated, which will be more than zero and less than N. These

numbers are the positions, where the bits of the CRC code will be introduced into the code word.

The number of random numbers is same as the number of bits of the CRC code.

In this way the text will be coded and encrypted with the shuffled CRC code. The

encrypted word will be sent to the receiver, where decryption will be done in the reverse manner

of the encryption process. So, we will get the same code word again, XOR of XOR of a number

is the same number. Then the code word will be checked for error. For that, the code word with

the CRC code will be divided with the same generator polynomial. If the remainder will be zero,

then no error. Otherwise error is present. Then some error correction method will be used to

remove the error.

 29

Chapter 6

 EXPERIMENTATION & RESULTS

 30

6.1 Source code

 The code is written in MATLAB. It consists of seven phases. These are

• Starting of the code with inputting the text file

• Formation of Tree

• Encoding

• Error detection with CRC

• Encryption with shuffled CRC

• Decryption

• Decoding

Starting phase

clc;

clear all;

k=input('Enter the file name :','s');

fid = fopen(k,'r');

F = fread(fid);

img = char(F');

mx=255;

[x y z]=size(img);

h(1:mx)=0;

for i=1:y

 iy=img(i);

 val=double(iy);

 h(val)=h(val)+1;

 end

end

%Probability calculating phase started

i=1:mx;

p(i)=h(i)/(x*y);

j=1;

for i=1:mx

 if(p(i)~=0)

 lst(j)=i;

 lst(j+1)=p(i);

 j=j+2;

 end

 end

[tt,mx]=size(lst);

%sorting phase started

for i=2:2:mx

 for j=i:2:mx

 if (lst(i)>lst(j))

 31

 temp1=lst(i-1);

 temp2=lst(i);

 lst(i-1)=lst(j-1);

 lst(i)=lst(j);

 lst(j-1)=temp1;

 lst(j)=temp2;

 end

 end

end

fhtree1(lst,img);

Formation of Tree

function HT=fhtree1(lst,img)

[p,q]=size(lst);

[tt,mx]=size(lst);

sz1=q;

xx=1;

k1=0;

prt=0;

while (k1<1)

 k1=lst(2)+lst(4);

 prt=prt-1;

 lstn(xx)=lst(1);

 lstn(xx+1)=0;

 lstn(xx+2)=prt;

 xx=xx+3;

 lstn(xx)=lst(3);

 lstn(xx+1)=1;

 lstn(xx+2)=prt;

 xx=xx+3;

 lst(1)=prt;

 lst(2)=k1;

 lst(3)=99;

 lst(4)=99;

for i=2:2:mx

 for j=i:2:mx

 if (lst(i)>lst(j))

 temp1=lst(i-1);

 temp2=lst(i);

 lst(i-1)=lst(j-1);

 lst(i)=lst(j);

 lst(j-1)=temp1;

 lst(j)=temp2;

 end

 end

end

end

 32

lstn(xx)=lst(1);

lstn(xx+1)=lst(2);

lstn(xx+2)=lst(3);

fhcode1(lstn,img);

Encoding

function HC=fhcode1(lstn,img)

[lm,ln]=size(lstn);

ntt=ln-1;

[im,in]=size(img);

t=0;

idd=input('Enter destination huffman code file name : ','s');

tab='table.m';

tb = fopen(tab,'w+');

idd=fopen(idd,'w+');

fst1='';

fst2='';

ed=0;

din=0;

for i=1:in

 k=img(i);

 ftemp=img(i);

 a=0;

 for j=1:3:ln

 if(lstn(j+2)==99)

 break;

 end

 if(lstn(j)==k)

 a=a+1;

 ary(a)=lstn(j+1);

 k=lstn(j+2);

 end

 end

 % Reversing the reverse Huffman Code%

 for b=a:-1:1

 t=t+1;

 hc(t)=ary(b);

 fprintf(idd,'%d',ary(b));

 fst1=int2str(ary(b));

 fst2=strcat(fst2,fst1);

 end

 %Building Huffman Table for Decoding%

 din=0;

 for z=1:ed

 if dict(z)==ftemp

 din=1;

 end

 end

 33

 if din==0

 ed=ed+1;

 dict(ed)=ftemp;

 fprintf(tb,'%c',' ');

 fprintf(tb,'%c',ftemp);

 fprintf(tb,'%s',fst2);

 end

 fst1='';

 fst2='';

end

fclose(tb);

fclose(idd);

disp('Generated Compressed file');

error1(hc);

Error detection using CRC

function ERR=error1(hc)

hc1=hc;

g=input('enter the generator polynomial g=');

[m,n]=size(hc1);

[o,p]=size(g);

 for i=n+1:n+p-1

 hc1(i)=0;

 end

 a=zeros(1,p);

 b=zeros(1,p);

 r=zeros(1,p-1);

 for i=1:p

 a(i)=hc1(i);

 end

 b=xor(a,g);

 j=p+1;

 d=zeros(1,p);

 while(j<=n)

 a=zeros(1,p);

 for i=1:p-1

 a(i)=b(i+1);

 end

 a(p)=hc1(j);

 j=j+1;

 if(a(1)==1)

 b=xor(a,g);

 else

 b=xor(a,d);

 end

 end

 for i=1:p-1

 r(i)=b(i+1);

 34

 end

 encrypt1(hc,g,r);

Encryption with shuffled CRC

function ENC=encrypt1(hc,g,r)

[m,n]=size(hc);

hc2=hc;

hc3=zeros(1,n);

hc3=hc;

n1=n;

[o,p]=size(g);

a=rem(n,p);

n=n-a;

a=n/p;

a=a+1;

t=0;

%finding a nearest prime number

while(a>0)

for i=2:a-1

 if(rem(a,i)~=0)

 t=0;

 else

 t=1;

 break;

 end

end

if(t==0)

 break;

end

a=a+1;

end

%finding the encryptimg word

[o,p]=size(g);

s=0;

for j=1:p

 s=s+g(j)*(2^(p-j));

end

b=a*s;

i=1;

while(b>0)

 c(i)=rem(b,2);

 b=b-c(i);

 b=b/2;

 i=i+1;

end

[e,f]=size(c);

for i=1:f

 d(i)=c(f+1-i);

 35

end

%encryption phase

h=n-rem(n,f);

h=h/f;

for i=1:h

 k=1;

 for j=n+1-i*f:n-(i-1)*f

 hc(j)=xor(hc(j),d(k));

 k=k+1;

 end

end

%encryption of remainder

[u,v]=size(r);

w(1)=1;

w(2)=2;

for i=3:v

 if(rem(i,2)~=0)

 w(i)=w(i-1)+2;

 else

 w(i)=w(i-1)+1;

 end

end

w

[m,n]=size(hc);

for i=1:v

 k=w(i);

 if(k==1)

 hc=[r(i) hc];

elseif(k==2)

 hc=[hc(1) r(i) hc(2:n)];

else

 hc=[hc(1:k-1) r(i) hc(k:n)];

end

n=n+1;

end

idd=input('Enter destination file name for encrypted text : ','s');

id=fopen(idd,'w+');

for i=1:n

 fprintf(id,'%d',hc(i));

end

fclose(id);

disp('encrypted file generated')

decrypt1(hc,hc3,g);

Decryption

function DEC=decrypt1(hc,hc3,g)

w=input('enter the random number matrix w=');

[m,n]=size(hc);

 36

[u,v]=size(w);

for i=v:-1:1

 k=w(i);

if(k==2)

 hc=[hc(1) hc(3:n)];

elseif(k==1)

 hc=[hc(2:n)];

else

 hc=[hc(1:k-1) hc(k+1:n)];

end

 n=n-1;

end

[m,n]=size(hc);

hc2=hc;

[o,p]=size(g);

a=rem(n,p);

n=n-a;

a=n/p;

a=a+1;

t=0;

%finding a nearest prime number

while(a>0)

for i=2:a-1

 if(rem(a,i)~=0)

 t=0;

 else

 t=1;

 break;

 end

end

if(t==0)

 break;

end

a=a+1;

end

%finding the encryptimg word

[o,p]=size(g);

s=0;

for j=1:p

 s=s+g(j)*(2^(p-j));

end

b=a*s;

i=1;

while(b>0)

 c(i)=rem(b,2);

 b=b-c(i);

 b=b/2;

 i=i+1;

 37

end

[e,f]=size(c);

for i=1:f

 d(i)=c(f+1-i);

end

%decryption phase

[m,n]=size(hc);

h=n-rem(n,f);

h=h/f;

for i=1:h

 k=1;

 for j=n+1-i*f:n-(i-1)*f

 hc(j)=xor(hc(j),d(k));

 k=k+1;

 end

end

hc=hc3;

[s,t]=size(hc);

nme=input('Enter the destination file name :','s');

id = fopen(nme,'w+');

for i=1:8:t

 ck=t-i+1;

 if(ck>8)

 tp=(hc(i:i+7));

 num=8;

 else

 tp=(hc(i:t));

 num=ck;

 end

 temp1=b2d(tp,num);

 temp2=char(temp1);

 fprintf(id,'%c',temp2);

end

fclose(id);

return

Decoding

clc;

clear all;

nme=input('Enter the file name : ','s');

id = fopen(nme,'r');

a = fscanf(id,'%c',inf);

fclose(id);

[m,n]=size(a);

k=1;

for i=1:n

 b(i)=double(a(i));

end

 38

for i=1:n

 c = dec2bin(b(i),8);

 for j=1:8

 d(k)=c(j);

 k=k+1;

 end

end

nme2='table.m';

id2 = fopen(nme2,'r');

a2=fscanf(id2,'%c',inf);

fclose(id2);

[m1,n1]=size(a2);

chk=0;

cnt=1;

str='';

temp=0;

for j=1:n1

 if chk==1 & a2(j)~=' '

 str=strcat(str,a2(j));

 cd2{cnt-1}=str;

 end

 if temp==1

 cd1(cnt)=a2(j);

 cnt=cnt+1;

 chk=1;

 temp=0;

 str='';

 end

 if a2(j)==' '

 temp=1;

 chk=0;

 if j>1

 if a2(j-1)==' '

 chk=1;

 temp=0;

 str='';

 end

 end

 end

end

[m2,n2]=size(d);

[m3,n3]=size(cd2);

% Enter a file name to deliver the decoded output

nme=input('Enter the file name (to produce output) :','s');

id = fopen(nme,'w+');

comp='';

 39

tap=0;

disp('Decompression starts.........');

for i=1:n2

 cnt=0;

 z1=d(i);

 m=num2str(z1);

 for j=1:n3

 k=strcmp(m,cd2(j));

 if(k==1 & tap==0)

 fprintf(id,'%c',cd1(j));

 comp='';

 cnt=1;

 end

 end

 if(cnt==0)

 comp=strcat(comp,num2str(z1));

 tap=1;

 for j=1:n3

 m=cd2(j);

 k=strcmp(comp,cd2(j));

 if(k==1)

 cd1(j);

 fprintf(id,'%c',cd1(j));

 comp='';

 tap=0;

 end

 end

 end

 end

disp('Decompression Over');

fclose(id);

return

6.2 Results

Input text :-

 We have completed the project

"data compression by huffman coding & encryption by shuffled crc code"

under the guidance of prof. G. S. Rath

Dept of Electronics & Communication Engg

NIT Rourkela

 40

Compressed output:-

111001010001011000011010010101000010101111100001010110111111100000110001000110

100111000000010101101110111100010101100000111001110111111000100111010110001110

100011110101010111110000101011011101100011110011110010011110001001011110111010

111101100000110010010100100010111010010010101111100100011001101001111011010101

001010000100011111011010111011010011100111100010010111101110101111011111001000

001100100101001011111100010001101011111011011110101111100100010001110101111110

001000110001001000100011011101001110000000101111101011001001110001110100100011

100010111001001010101101110111100100100101101011110000001011010111100111010110

101111010011010001110000111110001001110001100001101001110111001001010111101101

111110000111001111011110001001001101111111001010101001011110001011000010100101

011000100100110111110100011100111100010010111101100100111101111101111110001001

110011011100001111001001011110100110001100110110101011100011111111010

Generator Polynomial used:-

[1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 0 1 1 0 1 1 1]

Encrypted output:-

101001011110000101010111100010100111000001001110000110100101010000100101001001

011010101111010110111011001110110001010111100101001100110100101010110100011101

101101110101100100000010010101100001000101010000001010110001001100011100000000

111110011100111111101010001100110001011001010001001011110110011111101011101011

010111110001000101000110010010110010110110011100011001000010100111001001110011

001000001100011101111110001010000110111111101001000100000000100110111100001100

110110000100100110000011011110111111100010101100111001111000010011001110111100

100101101010111011111101011111100011000001111110111000101101110010100100101101

001010001011001101111100000011010000001111110000100000001101011001000001100101

111000000011110011001000010101100001010000111100110111001100100100000000101010

001101110111110101101011000110111010011010111101110110101010111000110010100110

100001001010101001100100011001011000001011000001001001001010010100000001010011

10101110010101000100010

 41

Decoded output:-

We have completed the project

"data compression by huffman coding & encryption by shuffled crc code"

under the guidance of prof. G. S. Rath

Dept of Electronics & Communication Engg

NIT Rourkela

6.3 Conclusion

 We implemented successfully the data reduction by huffman coding and encryption by

insertion of shuffled cyclic redundancy code.

 42

REFERENCES

1. R. Merkle, “Secure communication over an insecure channel,” submitted to

Communications of the ACM.

2. D. Kahn, The Codebreakers, The Story of Secret Writing. New York: Macmillan, 1967.

3. C. E. Shannon, “Communication theory of secrecy systems,” Bell Syst. Tech. J., vol. 28,

pp. 656–715, Oct. 1949.

4. M. E. Hellman, “An extension of the Shannon theory approach to cryptography,” submitted

to IEEE Trans.

5. Helen Fouché Gaines, "Cryptanalysis", 1939, Dover. ISBN 0-486-20097-3 .

6. Abraham Sinkov, Elementary Cryptanalysis: A Mathematical Approach, Mathematical

Association of America, 1966. ISBN 0-88385-622-0

