19 research outputs found

    Solid State Circuits Technologies

    Get PDF
    The evolution of solid-state circuit technology has a long history within a relatively short period of time. This technology has lead to the modern information society that connects us and tools, a large market, and many types of products and applications. The solid-state circuit technology continuously evolves via breakthroughs and improvements every year. This book is devoted to review and present novel approaches for some of the main issues involved in this exciting and vigorous technology. The book is composed of 22 chapters, written by authors coming from 30 different institutions located in 12 different countries throughout the Americas, Asia and Europe. Thus, reflecting the wide international contribution to the book. The broad range of subjects presented in the book offers a general overview of the main issues in modern solid-state circuit technology. Furthermore, the book offers an in depth analysis on specific subjects for specialists. We believe the book is of great scientific and educational value for many readers. I am profoundly indebted to the support provided by all of those involved in the work. First and foremost I would like to acknowledge and thank the authors who worked hard and generously agreed to share their results and knowledge. Second I would like to express my gratitude to the Intech team that invited me to edit the book and give me their full support and a fruitful experience while working together to combine this book

    Signaling in 3-D integrated circuits, benefits and challenges

    Get PDF
    Three-dimensional (3-D) or vertical integration is a design and packaging paradigm that can mitigate many of the increasing challenges related to the design of modern integrated systems. 3-D circuits have recently been at the spotlight, since these circuits provide a potent approach to enhance the performance and integrate diverse functions within amulti-plane stack. Clock networks consume a great portion of the power dissipated in a circuit. Therefore, designing a low-power clock network in synchronous circuits is an important task. This requirement is stricter for 3-D circuits due to the increased power densities. Synchronization issues can be more challenging for 3-D circuits since a clock path can spread across several planes with different physical and electrical characteristics. Consequently, designing low power clock networks for 3-D circuits is an important issue. Resonant clock networks are considered efficient low-power alternatives to conventional clock distribution schemes. These networks utilize additional inductive circuits to reduce power while delivering a full swing clock signal to the sink nodes. In this research, a design method to apply resonant clocking to synthesized clock trees is proposed. Manufacturing processes for 3-D circuits include some additional steps as compared to standard CMOS processes which makes 3-D circuits more susceptible to manufacturing defects and lowers the overall yield of the bonded 3-D stack. Testing is another complicated task for 3-D ICs, where pre-bond test is a prerequisite. Pre-bond testability, in turn, presents new challenges to 3-D clock network design primarily due to the incomplete clock distribution networks prior to the bonding of the planes. A design methodology of resonant 3-D clock networks that support wireless pre-bond testing is introduced. To efficiently address this issue, inductive links are exploited to wirelessly transmit the clock signal to the disjoint resonant clock networks. The inductors comprising the LC tanks are used as the receiver circuit for the links, essentially eliminating the need for additional circuits and/or interconnect resources during pre-bond test. Recent FPGAs are quite complex circuits which provide reconfigurablity at the cost of lower performance and higher power consumption as compared to ASIC circuits. Exploiting a large number of programmable switches, routing structures are mainly responsible for performance degradation in FPAGs. Employing 3-D technology can providemore efficient switches which drastically improve the performance and reduce the power consumption of the FPGA. RRAM switches are one of the most promising candidates to improve the FPGA routing architecture thanks to their low on-resistance and non-volatility. Along with the configurable switches, buffers are the other important element of the FPGAs routing structure. Different characteristics of RRAM switches change the properties of signal paths in RRAM-based FPGAs. The on resistance of RRAMswitches is considerably lower than CMOS pass gate switches which results in lower RC delay for RRAM-based routing paths. This different nature in critical path and signal delay in turn affect the need for intermediate buffers. Thus the buffer allocation should be reconsidered. In the last part of this research, the effect of intermediate buffers on signal propagation delay is studied and a modified buffer allocation scheme for RRAM-based FPGA routing path is proposed

    Nanoscale Memristive Devices for Memory and Logic Applications.

    Full text link
    As the building block of semiconductor electronics, field effect transistor (FET), approaches the sub 100 nm regime, a number of fundamental and practical issues start to emerge such as short channel effects that prevent the FET from operating properly and sub-threshold slope non-scaling that leads to increased power dissipation. In terms of nonvolatile memory, it is generally believed that transistor based Flash memory will approach the end of scaling within about a decade. As a result, novel, non-FET based devices and architectures will likely be needed to satisfy the growing demands for high performance memory and logic electronics applications. In this thesis, we present studies on nanoscale resistance switching devices (memristive devices). The device shows excellent resistance switching properties such as fast switching time ( 10^6), good data retention (> 6 years) and programming endurance (> 10^5). The studies suggest that the nonvolatile resistance switching in a nanoscale a-Si resistive switch is caused by the formation of a single conductive filament within 10 nm range near the bottom electrode. New functionalities, such as multi-bit switching with partially formed filaments, can be obtained by controlling the resistance switching process through current programming. As digital memory devices, the devices are ideally suited in the crossbar architecture which offers ultra-high density and intrinsic defect tolerance capability. As an example, a high-density (2 Gbits/cm^2) 1kb crossbar memory was demonstrated with excellent uniformity, high yield (> 92%) and ON/OFF ratio (> 10^3), proving its promising aspects for memory and reconfigurable logic applications. Furthermore, we demonstrated that properly designed devices can exhibit controlled analog switching behavior and function as flux controlled memristor devices. The analog memristors can be used in biology-inspired neuromorphic circuits in which signal processing efficiency orders of magnitude higher than conventional digital computer systems can be reached. As a prototype illustration, we showed Spike Timing Dependent Plasticity (STDP), one of the key learning rules in biological system, can be realized by CMOS neurons and nanoscale memristor synapses.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/75835/1/josung_1.pd

    Low Loss Plasmon-Assisted Integrated Photonics

    Get PDF
    Photonic integrated circuits (PICs), semiconductor chips with both photonic and electronic elements, are seeing rapid development and have the potential to transform several industries, such as autonomous driving, computing, telecommunication and quantum networks. However, realization and wide adoption of PICs across the various fields faces a key challenge – soze disparity between electronic (~0.01 um) and photonic components (~100’s of um). Plasmonics, a technology which confines light to the interface of metals and dielectrics, has a potential to address challenges. In particular, it has been shown to led to smaller devices (~10 um or less), enabling higher density optical circuits and devices on-chip. However, the technology is limited by quite extraordinarily high off-state transmission, wherein ~10% of an input signal makes it out of the device. This is simply too high to be practical. This thesis addresses this size disparity, while maintaining high speeds (100’s of GHz), low losses (\u3c 1dB) and high energy efficiency (~ 100 fJ/bit), through the concept of plasmon-assisted devices. The plasmon-assisted design philosophy is based on engaging and disengaging the lossy plasmonic component based on when active modulation is needed. As will be shown, the use of the plasmon-assisted approach generates proposed devices that have the potential to exhibit record performance, significantly elevating the capabilities of integrated photonic devices while greatly reducing the size disparity. For example, the all-oxide modulator can exhibit resistive-capacitive (RC) limited speeds of up to 333 GHz with a sub 0.2 dB insertion loss (IL), while the hybrid polymer-based modulator can exhibit RC limited speeds of 700 GHz but with narrow linewidth. The NOEM based devices can operate with record low energy consumption, down to a few 100 aJ/bit. In addition, this record-breaking performance can be achieved with device that are less than 40 um2 in size

    Commercialization of low temperature copper thermocompression bonding for 3D integrated circuits

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2008.Includes bibliographical references (p. 84-87).Wafer bonding is a key process and enabling technology for realization of three-dimensional integrated circuits (3DIC) with reduced interconnect delay and correspondingly increased circuit speed and decreased power dissipation, along with an improved form factor and portability. One of the most recent novel and promising wafer bonding approaches to realizing 3DIC is Low Temperature Thermocompression (LTTC) bonding using copper (Cu) as the bonding interface material. This thesis investigates the LTTC bonding approach in terms of its technological implications in contrast to other conventional bonding approaches. The various technological aspects pertaining to LTTC are comprehensively explored and analyzed. In addition to this, the commercialization potential for this technology is also studied and the economic viability of this process in production is critically evaluated using suitable cost models. Based on the technological and economic outlook, the potential for commercialization of LTTC is gauged.by Raghavan Nagarajan.M.Eng

    Self-Aligned 3D Chip Integration Technology and Through-Silicon Serial Data Transmission

    Get PDF
    The emerging three-dimensional (3D) integration technology is expected to lead to an industry paradigm shift due to its tremendous benefits. Intense research activities are going on about technology, simulation, design, and product prototypes. This thesis work aims at fabricating through-silicon vias (TSVs) on diced processor chips, and later bonding them into a 3D-stacked chip. How to handle and process delicate processor chips with high alignment precision is a key issue. The TSV process to be developed also needs to adapt to this constraint. Four TSV processes have been studied. Among them, the ring-trench TSV process demonstrates the feasibility of fabricating TSVs with the prevailing dimensions, and the whole-through TSV process achieves the first dummy chip post-processed with TSVs in EPFL although the dimension is rather large to keep a reasonable aspect ratio (AR). Four self-alignment (SA) techniques have been investigated, among which the gravitational SA and the hydrophobic SA are found to be quite promising. Using gravitational SA, we come to the conclusion that cavities in silicon carrier wafer with a profile angle of 60° can align the chips with less than 20 ”m inaccuracies. The alignment precision can be improved after adopting more advanced dicing tools instead of using the traditional dicing saws and larger cavity profile angle. Such inaccuracy will be sufficient to align the relatively large TSVs for general products such as 3D image sensors. By fabricating bottom TSVs in the carrier wafer, a 3D silicon interposer idea has been proposed to stack another chip, e.g. a processor chip, on the other side of the carrier wafer. But stacking microprocessor chips fabricated with TSVs will require higher alignment precision. A hydrophobic SA technique using the surface tension force generated by the water-to-air interfaces around the pads can greatly reduce the alignment inaccuracy to less than 1 ”m. This low-cost and high throughput SA procedure is processed in air, fully-compatible with current fabrication technologies, and highly stable and repeatable. We present a theoretical meniscus model to predict SA results and to provide the design rules. This technique is quite promising for advanced 3D applications involving logic and heterogeneous stacking. As TSVs' dimensions in the chip-level 3D integration are constrained by the chip-level processes, such as bonding, the smallest TSVs might still be about 5 ”m. Thus, the area occupied by the TSVs cannot be neglected. Fortunately, TSVs can withstand very high bandwidths, meaning that data can be serialized and transmitted using less numbers of TSVs. With 20 ”m TSVs, the 2-Gb/s 8:1 serial link implemented saves 75% of the area of its 8-bit parallel counterpart. The quasi-serial link proposed can effectively balance the inter-layer bandwidth and the serial links' area consumption. The area model of the serial or quasi-serial links working under higher frequencies provides some guidelines to choose the proper serial link design, and it also predicts that when TSV diameter shrinks to 5 ”m, it will be difficult to keep this area benefit if without some novel circuit design techniques. As the serial links can be implemented with less area, the bandwidth per unit area is increased. Two scenarios are studied, single-port memory access and multi-port memory access. The expanded inter-layer bandwidth by serialization does not improve the system performance because of the bus-bottleneck problem. In the latter scenario, the inter-layer ultra-wide bandwidth can be exploited as each memory bank can be accessed randomly through the NoC. Thus further widening the inter-layer bandwidth through serialization, the system performance will be improved

    Physical Aspects of VLSI Design with a Focus on Three-Dimensional Integrated Circuit Applications

    Get PDF
    This work is on three-dimensional integration (3DI), and physical problems and aspects of VLSI design. Miniaturization and highly complex integrated systems in microelectronics have led to the 3DI development as a promising technological approach. 3DI offers numerous advantages: Size, power consumption, hybrid integration etc., with more thermal problems and physical complexity as trade-offs. We open this work by presenting the design and testing of an example 3DI system, to our knowledge the first self-powering system in a three-dimensional SOI technology. The system uses ambient optical energy harvested by a photodiode array and stored in an integrated capacitor. An on-chip metal interconnect network, beyond its designed role, behaves as a parasitic load vulnerable to electromagnetic coupling. We have developed a spatially-dependent, transient Green's Function based method of calculating the response of an interconnect network to noise. This efficient method can model network delays and noise sensitivity, which are involved problems in both planar and especially in 3DICs. Three-dimensional systems are more susceptible to thermal problems, which also affect VLSI with high power densities, of complex systems and under extreme temperatures. We analytically and experimentally investigate thermal effects in ICs. We study the effects of non-uniform, non-isotropic thermal conductivity of the typically complex IC material system, with a simulator we developed including this complexity. Through our simulations, verified by experiments, we propose a method of cooling or directionally heating IC regions. 3DICs are suited for developing wireless sensor networks, commonly referred to as ``smart dust.'' The ideal smart dust node includes RF communication circuits with on-chip passive components. We present an experimental study of on-chip inductors and transformers as integrated passives. We also demonstrate the performance improvement in 3DI with its lower capacitive loads. 3DI technology is just one example of the intense development in today's electronics, which maintains the need for educational methods to assist student recruitment into technology, to prepare students for a demanding technological landscape, and to raise societal awareness of technology. We conclude this work by presenting three electrical engineering curricula we designed and implemented, targeting these needs among others

    Development and Packaging of Microsystems Using Foundry Services

    Get PDF
    Micro-electro-mechanical systems (MEMS) are a new and rapidly growing field of research. Several advances to the MEMS state of the art were achieved through design and characterization of novel devices. Empirical and theoretical model of polysilicon thermal actuators were developed to understand their behavior. The most extensive investigation of the Multi-User MEMS Processes (MUMPs) polysilicon resistivity was also performed. The first published value for the thermal coefficient of resistivity (TCR) of the MUMPs Poly 1 layer was determined as 1.25 x 10(exp -3)/K. The sheet resistance of the MUMPs polysilicon layers was found to be dependent on linewidth due to presence or absence of lateral phosphorus diffusion. The functional integration of MEMS with CMOS was demonstrated through the design of automated positioning and assembly systems, and a new power averaging scheme was devised. Packaging of MEMS using foundry multichip modules (MCMs) was shown to be a feasible approach to physical integration of MEMS with microelectronics. MEMS test die were packaged using Micro Module Systems MCM-D and General Electric High Density Intercounect and Chip-on-Flex MCM foundries. Xenon difluoride (XeF2) was found to be an excellent post-packaging etchant for bulk micromachined MEMS. For surface micromachining, hydrofluoric acid (HF) can be used

    Plasma interaction with low – k Silsesquioxane materiels

    Get PDF
    Low – Îș dielectric materials play a very important role in the fabrication of integrated circuits (IC). Materials with a very low dielectric constant are necessary for use as inter layer dielectrics (ILDs), because they increase the efficiency of the ICs by reducing the resistance capacitance delays and power consumption of the circuits. This thesis presents the deposition and characterisation of Silsesquioxane (SSQ) materials, particularly Methyl Silsesquioxane (MSQ) and Poly Phenyl Methyl Silsesquioxane (PMSQ) thin films by spin coating and subsequent annealing. The changes to the film post plasma exposure were studied using a wide range of characterisation techniques such as spectroscopic ellipsometry, stylus profilometry, FTIR, TGA, water contact angle measurement, XPS, AFM, SEM, EDX, AFM, dielectric constant measurement of the thin films, etc. The study on MSQ films were carried out to have a better understanding of film deposition, processing, and characterisation techniques as these studies are widely reported in literature because of its use as an ILD material. The deposited MSQ thin films had a Îș - value of ~ 2.6 ± 0.1. Significant increase in the Îș - value was observed upon exposure of these films to SF6 and O2 plasmas due to the deteriorating effect of the plasma on the films. Deposited PMSQ thin films had a Îș - value of ~ 2.7 ± 0.1 and they did not show any considerable variation in their Îș - value upon exposure to SF6 and O2 plasmas, even though significant erosion of the PMSQ film was observed during the exposure of the film to SF6 plasma. Modern day electronics require materials with very low dielectric constants for optimal performance. Several approaches are used commercially to further reduce the Îș – value of dielectric materials used for ILD applications. Porosity was introduced into the vi PMSQ thin films by sacrificial porogen technique to further reduce the dielectric constant of the thin films using Heptakis (2,3,6-tri-O-methyl)-ÎČ-cyclodextrin (tCD) as the porogen material. Changes in the PMSQ films due to the introduction of porosity were studied which showed a reduction in the density and the Îș – value of the film. A reduction of ~ 25% in density was observed in the XRR measurements of the porous films and the Îș – value of the films were reduced by ~ 20% from Îș = 2.7 ±0.1 to Îș = 2.2 ±0.1 by the introduction of porosity. The effect of plasma exposure on the porous PMSQ films resulted in an increase in the dielectric constant of the porous material. The thesis also analyses the expected variations in the film density and Îș-value and compares it with the observed density and Îș-value. It also calculates a rough estimate of the change in the surface area of the film as a result of porosity integration. Experimental demonstrations of a novel method to pattern the dielectric film surface namely Nano sphere Lithography is presented in the final section of this thesis
    corecore