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ABSTRACT

Wafer bonding is a key process and enabling technology for realization of three-dimensional
integrated circuits (3DIC) with reduced interconnect delay and correspondingly increased circuit
speed and decreased power dissipation, along with an improved form factor and portability. One
of the most recent novel and promising wafer bonding approaches to realizing 3DIC is Low
Temperature Thermocompression (LTTC) bonding using copper (Cu) as the bonding interface
material. This thesis investigates the LTTC bonding approach in terms of its technological
implications in contrast to other conventional bonding approaches. The various technological
aspects pertaining to LTTC are comprehensively explored and analyzed. In addition to this, the
commercialization potential for this technology is also studied and the economic viability of this
process in production is critically evaluated using suitable cost models. Based on the
technological and economic outlook, the potential for commercialization of LTTC is gauged.

Thesis Supervisor: Carl V. Thompson II
Title: Stavros Salapatas Professor of Materials Science and Engineering
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CHAPTER 1

1. INTRODUCTION TO 3D INTEGRATED CIRCUITS

1.1 NEED FOR 3D INTEGRATED CIRCUITS

The electronics industry has been undergoing significant growth in the past four decades. This is

spurred by the need for more sophisticated devices with higher computational power, increased

data storage capacities, higher speed, lower power dissipation, increased portability and greater

functionality. All these demands have led to rapid miniaturization of electronic devices all the

way to the 45 nm technology that we have today. Further downscaling of devices has however

become increasingly difficult given that we are approaching the lithographic limits' and the gate

oxide layer2 in the transistor has been reduced to just 1-2 monolayers of SiO 2.As a result, further

downscaling, if attempted may cause very high tunneling currents across the gate oxide that may

lead to high power dissipation which is undesirable from a circuit reliability viewpoint 2. In

addition to this, as interconnect widths shrink to the order of 1-10 nm, the effective resistivity of

copper metallization has been increasing due to grain boundary and side wall surface scattering

effects thereby nullifying the resistivity advantage that Cu earlier had'. Given this situation,

researchers in the semiconductor industry have been looking into alternative ways of further

miniaturization in the past few years. One of the effective ways is to fabricate ICs not just on a

planar platform but to extend it to the +z direction. This vertical integration scheme is called 3D

Integrated Circuits (3DIC) 3.

Another motivation for research interest in 3DIC is the ability to integrate different heterogeneous

device technologies together without making any modifications to the existing optimized

processes for each of these technologies. Heterogeneous integration of devices4 can be used to

realize optoelectronic integrated circuits (OEICs) and System-on-Chip (SoC) architectures with

adequate reliability as illustrated in Fig 1.1.



Wafmer 3-D Chip

Fig 1.1: Heterogeneous integration of devices on a 3D IC layout platform to make SoC4.

1.2 ADVANTAGES OF 3D INTEGRATED CIRCUITS

The advent of 3D integration offers many advantages compared to the conventional 2D platforms

for device fabrication that was adopted in the past. Table 1.1 lists out the various advantages of a

3DIC platform3' 5. Fig 1.2 illustrates the reduced average distance between transistors due to the

3DIC architecture that helps enhance circuit speed and frequency of operation5. The logarithmic

reduction in the number of interconnect segments for all lengths of interconnects is revealed by

the graph6

Table 1.1: Various advantages due to implementation of 3D Integrated Circuits3 ' 5

ADVANTAGES of 3DIC

* Heterogeneous integration of devices to realize OEIC and SoC.
* Reduced distance of global interconnects -- Enhanced speed.
* Higher integration density -+ more portable devices.
* Higher form factor (capacity / volume ratio).
* Cheaper than further downscaling beyond lithographic limits.
* Faster access between memory and logic device modules.
* Reduced overall resistance -- lower joule heating and heat dissipation.
* Reduced packaging cost.
* Reduced power -+ fewer I/O pins to be driven.
* Higher fault resistance.

1.3 APPROACHES TO 3D INTEGRATION

There are various approaches to realizing 3D integration. Each of these approaches has their own

advantages and limitations. These have been highlighted in Table 1.27, 8, 9, 10, 11, 12 below. Based on

the analysis presented in Table 1.2, the motivation for use of wafer bonding as a technique to 3D

integration is clearly evident as it enables integration with a high density of interconnection and



does not disturb the existing optimized process technology sequence used for each of the

individual wafers. Fig 1.3 illustrates the various wafer bonding techniques"3 mentioned in

Table 1.2.

Number of
Interconnect

Segments

Segment
Length

Fig 1.2: Reduction of global interconnect length and density of interconnects for 3D IC layout' 6.

Table 1.2: Various techniques that may be used to realize 3D Integrated Circuits.

Technique Advantages / Limitations

K BEAM RECRYSTALLIZATION7'8  (-) High temperature during melting of polysilicon
(recrystallization) - cannot be sustained by 3D
devices 7' 8.

Deposition of a second level polysilicon layer on

top of an oxidized Si wafer in order to fabricate Si
based thin film transistors on it. Need for intense (-) Lack of con deposited, lower grain size variations in
electron or laser beam to induce recrystallization compared to single crystal silicon, effects of

compared to single crystal silicon, effects ofand remove grain boundaries in polysilicon. unintentional doping.

1 SILICON EPITAXIAL GROWTH9 (-) High temperature of epitaxy growth (1000 0C)

Etch a hole through a passivated Si wafer and affects device quality in lower Si device layers9
epitaxially grow single crystal Si through the
etched hole using the whole base Si as the seed (-) Not suitable when metallization layers present
layer. Si epitaxy involves vertical growth of Si under the dielectric since T = 10000C can cause Allayer. Si epitaxy involves vertical growth of Si metal lines to melt and Cu to substantially self-through the etched hole followed by lateral diffuse9.overgrowth on the passivation dielectric.



1 SOLID PHASE CRYSTALLIZATION'o' , (+) Localized crystallization, low thermal budget
(500 - 6000C)'.

Low temperature growth of amorphous silicon on (+) Lateral crystallization, dopant activation,
oxidized Si substrate and subsequent lLateral crystallization, dopant activation,

crystallization induced on the amorphous Si layer even when metallization layers are present 11
to form polysilicon using Ge seeding or Ni metal
catalysts. (-) Slow process.

5 PACKAGE LEVEL 3D INTEGRATION'2
(+) Simple & high yield process.

Vertical stacking of dies or packaged chips using Low density of interconnection. Wires could(-) Low density of interconnection. Wires couldwire bonding or solder balls as interconnects to short each other in a large MCM.short each other in a large MCM.make multi-chip modules (MCM).

(+) Optimized processes for individual wafers
B WAFER BONDING remain undisturbed.

Fabricate devices and interconnects on individual (+) Higher density of interconnection.
wafers and physically bond them after each wafer
has been fully processed vertically for any level of (-) Issues of bond adhesion quality due to thermal
stacking. induced strain, patterned wafer alignment issues,

wafer bowing and warping.

+ Seoding

, G#AnOowth

.. 14.. l l l lI,

to d

Fig 1.3: Various bonding techniques for 3D integration - (a) Beam recrystallization, (b) & (c) Solid phase
crystallization, (d) Processed wafer bonding. 13
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CHAPTER 2

2. COPPER THERMOCOMPRESSION BONDING - OVERVIEW

2.1 TECHNIQUES OF WAFER BONDING

In order to stack wafers vertically on top of each other and bond them vertically, various bonding

techniques have been explored in the past. Some of the more prominent techniques are listed in

Table 2.1 along with a critical assessment of their advantages and limitations. Based on the

analysis in Table 2.1, it is evident that thermocompression bonding (TCB) could be a good

technique to adopt since the bonding metal layer serves the dual purpose of a mechanical as well

as an electrical contact. In the other bonding techniques, further processing would be required for

electrical interconnection thereby making the process more complex and reducing the yield.

Table 2.1: Various wafer bonding techniques and comparison of advantages (+) and limitations (-).

5 DIRECT BONDING

Bonding (fusion) of two contacting wafer surfaces
at room temperature without any intermediate layer.

Materials bonded: Si-Si' 4, Si-SiO215. Formation of
van der Waals or hydrogen bonds.

Subsequent bond strengthening by annealing at
elevated temperatures.

Surface activation bonding (SAB) 16 - oxygen
plasma pre-treatment for wafers before bonding +
RCA wet clean to enhance bond quality.

(-) High annealing temperatures - (700 - 1000 0C) -
cannot be sustained by metallization layers.
Thermal expansion coefficient mismatch induced
residual stresses 5.

(-) High annealing temperature may need to be
compromised with ultra-high vacuum (UHV) levels
and bonding duration -+ lower bonding throughput.

(-) SAB increase surface roughness 17 degrading
bond quality. High sensitivity to wafer bow,
warpage and patterns. Bond only serves as a
mechanical contact.

(+) Best alignment accuracy among all bonding
methods (since bonding done at room
temperature)1S.



R SOLDER I/ EUTECTIC BONDING"9

Use of a low melting temperature
temperature) alloy as an intermediate
facilitate bonding between wafers.

(eutectic
layer to

Eutectic alloys used - Au-Si, Au-Ge, Au-Sn.

* ANODIC BONDING 21' 22

Application of an electric field (100 - 1000V)
between an insulating substrate (e.g. glass) and
conducting substrate to enhance bonding strength
through electrostatic attraction.

Materials - Silicon / metals with glass at
T = 300 - 4000C.

I THERMOCOMPRESSION BONDING

Traditionally refers to application of an external
high pressure load and high temperature in order
to bond the wafers by plastic deformation.

Materials - Si24, glass, eutectic, Cu25, Au 26.

(+) Low temperature process (280 - 3600C). Less
sensitive to surface roughness, topology and
particulates20.

(+) Conductive eutectic alloys serve as mechanical
and electrical contact for the bonded wafers.

(-) Eutectic material may experience dewetting
close to the eutectic temperature leading to low
bond adhesion. Voids / non-uniformity at the
bonding interface 9.

(-) Spontaneous oxide formation of Sn, Ge or Si
under ambient condition hinders bonding 9.

(+) Less sensitive to surface roughness and
particulates2 1' 22

(-) Thermal expansion coefficient mismatch
induced residual stresses. Outgassing of glass at
room temperature 23

(+) High temperature requirement may be relaxed
through high applied load and plasma activation.
Bond serves electrical and mechanical contact2 .

(+) For metallic TCB, high thermal conductivity of
metals compared to polymers or oxides makes it a
thermal conduit ensuring effective release of heat
from joule heating25.

(-) Thermal expansion coefficient mismatch
induced residual stresses. Oxidation of bonding
surfaces impedes good bond quality. Highly
sensitive to surface cleanliness and roughness 25.



I ADHESIVE BONDING

Use of a polymer adhesive on one or both wafer
surfaces and application of pressure to enforce
wafer contact through the intermediate adhesive
layer (Fig 2.1)27.

Adhesive Material - Benzocyclobutene (BCB).

(+) Relatively low bonding temperature. Insensitive
to the topology and surface contaminants on the
wafer surface. Compatibility with standard CMOS
process. Any two materials may be bonded 28.

(+) Simple, robust & low-cost process. No CMP,
surface activation or wafer cleaning needed 28

(-) Temperature instability of polymer (need for
high glass transition temperature), mechanical
instability, Outgassing of polymer during bonding
could cause void formation. Low creep resistance
and high moisture uptake27

I Pressre
Polymerreain I I I II I I I I I I II

Adhesive preparation +
water alignment

Adhesive interdiffusion Fully crosslinked adhesive
with heat or UV light - Sold, stable

Fig 2.1: Adhesive bonding process using polymers such as BCB as intermediate glue layer27

2.2 BONDING ARCHITECTURE

Various architectural aspects may be explored in the process of wafer bonding and stacking. They

differ in the sequence of processes used (via-first / via-last)29 or the sequence of the interfaces

being bonded (face-to-face [F2F] - back-to-back [B2B] / face-to-back [F2B]) 30 or the elemental

blocks involved in the bonding (chip-to-chip [C2C], chip-to-wafer [C2W] and wafer-to-wafer

[W2W]) 31.Let us explore each of these in greater detail.

2.2.1 VIA-FIRST & VIA-LAST PROCESS

In the process of bonding 3D devices, the through-silicon via (TSV) via interconnecting the

metallization layers of different wafers could be fabricated in two sequences. One sequence is

where the via could be formed before bonding so that the TSV are bonded upon wafer contact.

This is called the VIA-FIRST approach 29. The other sequence is where the dielectric passivation

layers of the wafers are bonded together and this is followed by etching high aspect ratio holes to

form TSV and interconnect the device layers of the various wafers. This is called the VIA-LAST

"111\34
| | | | | • •



approach 29. Table 2.2 provides a brief comparison of these two approaches of TSV fabrication29,
32. Based on the various wafer bonding techniques described in Table 2.1, direct, anodic, eutectic
and adhesive bonding are all compatible only with the via-last approach where the bonding is
initiated between any two material interfaces and through-silicon via interconnections formed
after the bonding process. Metal thermocompression bonding is however compatible for both via-
first and via-last approaches.

Table 2.2: Comparison of the Via-First and Via-Last approaches to TCB bonding.

VIA-FIRST Approach

* TSV formed on individual wafers prior to
bonding. Here the material of contact during
bonding is the Cu via.

* Aspect ratio requirement for TSV is lower since
TSV is formed on each individual wafer prior to
bonding32.

* High signal bandwidth between device layers and
higher interconnection density.

VIA-LAST Approach

* TSV fabricated after the individual wafers are
bonded. Here the material of contact during
bonding is the top-most dielectric passivation
layer or other material layers (such as adhesives)
coated on each wafer.

* Aspect ratio requirement for TSV is high since
TSV is formed through the bonded thick stack of
Si substrate32

* Lower signal bandwidth and lower
interconnection density since the aspect ratio of
TSV achievable is limited by DRIE as well as the
DRIE trench tapering angle.

2.2.2 F2F-B2B / F2B-F2B BONDING

The bonding interfaces for stacked wafers could be alternating face-to-face (F2F) and back-to-

back (B2B) or consistently face-to-back (F2B) for every interface as illustrated by Fig 2.2 for the

case of copper thermocompression bonding30 where "face" refers to the back-end-of-line (BEOL)

metallization layers of a processed wafer while "back" refers to the bulk Si substrate on which

front-end device transistors are grown. It has been suggested that it is more favorable to bond

wafers in an F2F-B2B configuration as compared to a F2B-F2B configuration since every

alternating F2F interface enables a very high density of inter-wafer interconnections 3° and every

alternating B2B segment may be used to fabricate integrated microchannels 33 in the Si substrate

regions where through-silicon via (TSV) does not exist to enable efficient device cooling and

effective 3D heat extraction through microfluidic flow. If an F2B-F2B configuration is used, then

high density of interconnections cannot be achieved between any two bonding interfaces thus

limiting the device functionality and performance. All the wafer bonding techniques in Table 2.1

are compatible for both F2F-B2B and F2B-F2B bonding interfaces.

;- - -----
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Fig 2.2: TCB achieved either by B2F bonding or alternative F2F-B2B bonding strategies30

2.2.3 C2C - C2W - W2W BONDING

The elemental blocks of a bond could be either a chip or the entire wafer. This brings about three

possible combinations of structures - chip-to-chip (C2C), chip-to-wafer (C2W) and wafer-to-

wafer (W2W) bonding31. The differences between these bonding schemes are highlighted in

Table 2.3. Based on the comparison provided, from a mass scale production perspective, where

high throughput and yield are both required, W2W bonding seems to be the best approach to

bonding and this is indeed the technique adopted by most companies that have developed novel

electronic devices using 3D integration since it requires minimal investment in acquirement or

modification of existing processing equipments (most standard fabrication equipments in a fab

are for wafer-scale processing) for the additional 3D processes. All the bonding techniques in

Table 2.1 are compatible for C2C, C2W and W2W stacked structures.

back-to-face
bond

back-to-face
bond
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Table 2.3: Comparing and contrasting the three different bonding approaches - C2C, C2W and W2W 3

C2C Bonding

* Very low throughput.

* Traditional manufacturing
and packaging methods
such as die attach and wire
bonding required.

* More serious reliability
concerns in the case of
high density wire bonding
interconnection as these
wire bonds could short
each other affecting circuit
functionality32 .

* Highest yield if "known
good die (KGD)" are
identified and bonded.

C2W Bonding

* Stacking of dies of different
sizes such as a 12" logic
device Si wafer with a 4"
RF device GaAs wafer -
less efficient use of larger
wafer.

* Usually lower throughput
than W2W bonding.
Throughput is very
sensitive to the number of
chips per wafer.

* Bonding with "known good
die (KGD)" ensures higher
overall yield than W2W.

* Bonding of multiple dies on
a base wafer - formation of
via after bonding is difficult
- via-first bonding
approach is preferred.

* Need to adjust the center of
force while permanently
bonding all the chips to the
wafer base when some die
on the base wafer are not
KGD and therefore not
bonded to any chip on top.

* Limited substrate back-
thinning capability due to
presence of non-uniform
unbonded vacant sites on
base wafer.

* Flexible chip size, reduced
design cost, shorter time to
market.

* Less stringent alignment
requirements than W2W
bonding.

W2W Bonding

* Very high throughput as all
chips in the wafers are
bonded at once.

* Increased flexibility of
using existing fab
equipment for further
processing.

* Need for temporary
bonding of thin wafers with
carrier wafers using
adhesives to enable wafer
thinning prior to bonding.

* Chips of each stacking level
need to be of the same size.

* Very stringent alignment
requirements; yield is
highly sensitive to
alignment. Relatively lower
yield process.



2.3 FUNDAMENTALS OF THERMOCOMPRESSION BONDING

Thermocompression bonding (TCB) typically involves bonding of the metal layers on the bonded

wafers. There are various process parameters and physical factors that affect the metal-metal

bond toughness. All these factors need to be controlled and optimized in order to achieve a good

bond quality. The most prominently used material for TCB is copper (Cu) since it is also the

material of choice for the current generation of nano-interconnects. Table 2.4 lists out the key

factors that influence the bond quality25, 33.

From Table 2.4, it is evident that good bonding can be achieved with a high applied load and

CMP polished surface along with either a high temperature bonding or with high vacuum

condition at low temperature. This argument brings us to two distinct modes of TCB namely high

temperature thermocompression (HTTC) and low temperature thermocompression (LTTC). The

distinct features of these two bonding approaches is presented next.

Table 2.4: Various process parameters andfactors affecting quality of thermocompression bonding.

PARAMETERS EFFECTS

* High temperature bonding at around 400 - 5000C is typically used for Cu bonding

as these high temperatures cause decomposition of CuxO if any formed25.
BONDING

TEMPERATURE * Low temperature bonding (<I000C) would be desirable so as to minimize the
thermal mismatch induced residual stresses in the fabricated device and
metallization layers33.

ANNEALING * Post-bond annealing at moderate temperatures helps in enhancing grain growth and
TEMPERATURE inter-diffusion and forming a good bond interface 25

* To prevent surface re-oxidation of Cu and minimize presence of surface
VACUUM contaminants during the bonding process, an ultra-high vacuum (UHV) level of

LEVEL about 10-10 Torr is desirable. Current wafer bonders however are not equipped with
this facility and vacuum levels around 10'5 Torr is the current standard33.



MATERIAL

GEOMETRY

PROCESSING

APPLIED
PRESSURE

BONDING
DURATION

* Although Cu is the standard material of choice for TCB, Au may also be an
attractive option. Bond quality depends on the yield stress and work hardening
index. Since these two material properties are lower for Au as compared to Cu, the
true contact area of bonding for Au could be higher than Cu, leading to a low
resistance contact although resistivity of Au is higher than Cu25.

* Oxidation of Au is kinetically not very feasible as compared to the spontaneous non
self-passivating oxidation process in Cu. Oxide coated metal bonding leads to very
low bond quality depending on the number of oxide monolayers formed2s5.

* Processing issues associated with Au limit its applicability and it also introduces
deep donor trap levels in the forbidden bandgap of Si affecting performance of
minority carrier devices.

* Bond quality affected by thickness of bonding metal layers. Thicker layers undergo
increased plastic deformation and enhance bond quality34.

* Higher surface roughness of wafers is detrimental to a good bond quality. Reduction
of surface roughness requires chemical mechanical polishing (CMP)25.

* Smaller pattern feature sizes increase bond strength since load pressure is inversely
proportional to the area of the feature.

* Orientation of the features with respect to any crack initiation sites also affects the
bond integrity. If crack is oriented perpendicular to the features, then fracture
resistance is higher since multiple crack initiation and nucleation events would be
necessary for complete bond fracture35.

* Bonding surface pattern density and non-uniformity in pattern density across wafer
have an effect on bond quality.

* Surface pre-bond cleaning using acetic acid or HCI or RCA and reducing gas (N2 /
H2) purge in the bonding chamber to remove any native oxide helps enhance bond
toughness. Plasma activation of surface (SAB)' 6 improves bond quality.

* Post-bond annealing in order to facilitate grain growth, atomic self-diffusion and
recrystallization at the metal bonding interface that helps increase bond toughness 25.

* Higher applied pressure enables elastic deformation of bowed wafers and enhances
bond quality as a result 25.

* Bond duration is an important criterion especially for low temperature bonding
where sufficient time is required for grain growth and atomic interdiffusion when
the kinetics is unfavorable.



2.3.1 HIGH TEMPERATURE THERMOCOMPRESSION (HTTC)

High temperature thermocompression (HTTC) bonding involves bonding of metal coated wafers

at relatively high temperatures of around 400 - 5000C at moderate vacuum levels of about 10-5

Torr25. The high temperature causes the metal layer to have a low yield stress and undergo

substantial plastic deformation to form a good interface and strong metallic bond under a

moderate to high applied load. A typical scheme for HTTC could be to have a pre-bond chamber

for wafer cleaning and alignment at a very low vacuum of 10-3 Torr, followed by a high vacuum

bonding chamber at 10-6 Torr and subsequently a post-bond annealing chamber also at a low

vacuum of 10-3 Torr as illustrated in Fig 2.3. This kind of a scheme is currently being

implemented by Tezzaron® and EV Group® 36.

There are various problems associated with the HTTC process. The large thermal expansion

coefficient mismatch induces differential expansion of various material layers in the processed

device wafers causing high residual stresses to be developed that could cause the wafers to bow

or warp. This could degrade the performance characteristics of the fabricated devices. Therefore,

use of high temperature is to be avoided.

2.3.2 LOW TEMPERATURE THERMOCOMPRESSION (LTTC)

The problems associated with the use of a high temperature may be resolved by using a low

temperature (possibly room temperature) process. However, at low temperatures, since oxide

decomposition is unfavorable, other suitable measures need to be taken that include use of UHV

to avoid an oxidizing ambient as far as possible and in-situ pre-bond cleaning of the wafer surface

using acetic acid and reducing gas purge (H2 / N2) as well as plasma activation for enhancement

of bonding33. As indicated in Fig 2.3, the vacuum levels needed for LTTC could be as high as

10-10 Torr33. All the bonding processes including cleaning and alignment are performed at 10-10

Torr without any break in the vacuum. The use of LTTC has not been adopted in the industry yet

and it is a topic of current research at various research institutions and universities, including

MIT, US and Institute ofMicroelectronics (IME), Singapore.
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Fig 2.3: Typical bonding process sequence for HTTC and LTTC bonding technology.

2.3.3 ISSUES WITH LTTC TECHNOLOGY

The commercializing potential of the LTTC technology depends on the yield and throughput of
this new process as well as the additional costs involved in using UHV vacuum pumps and
chambers to maintain the bonding chambers at 10"10 Torr. Moreover, the yield and throughput of
this new technology remains a major issue of concern. Unlike the HTTC process where the high
temperature enables good and fast bonding due to favorable kinetics that facilitates grain growth

and diffusion, the LTTC process is not thermally activated and therefore a longer bonding
duration would be required for good adhesion to be achieved although recrystallization of copper
can take place even at room temperature since Cu has an intrinsic high grain boundary mobility at
room temperature37. This in turn translates to a lower throughput for LTTC thus requiring more
LTTC bond chambers and vacuum pumps to cater to the production rate in the industry. All these
concerns are addressed in a later chapter which presents a cost model comparing the LTTC and
HTTC technologies from an economic perspective. Table 2.5 summarizes some of the key
differences between the HTTC and LTTC technologies described above.
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Table 2.5: Comparison of the HTTC and LTTC bonding technologies for TCB25' 33

HTTC Bonding LTTC Bonding

* Bonding temperature - 400 - 5000C --+ favorable *Bonding temperature < 1000C (or room
kinetics for good bonding in a shorter duration as temperature) -- kinetics not very favorable for
copper oxide decomposition is favored at these bonding. Longer duration needed to achieve good
high temperatures. Higher throughput. adhesion. Lower throughput.

* Higher thermal expansion coefficient mismatch * Minimal thermal induced stresses. Device
induced residual stresses. Device performance performance unaffected33.
affected33.

* UHV vacuum of 10-10 Torr required. Surface
* Lower vacuum levels needed. Surface activation activation or plasma treatment may be helpful 33.

or plasma treatment may not be required.
* Yield is highly sensitive to the vacuum level

* Yield is affected by the high CTE mismatch achieved and bond duration.
induced residual stresses.

* Need for UHV systems incurs extra expenditure.
* Already commercialized3 8. Still in research phase.

2.3.4 PROCESS SEQUENCE FOR TCB

There are various processing steps needed to realize Cu TCB. After the wafers have been fully

processed including front-end-of-line (FEOL) as well as back-end-of-line (BEOL) (devices and

interconnects fabricated) using their corresponding sequence of processes, Cu leads that protrude

out of the wafer surface need to be fabricated. This involves a sequence of additional process

steps as listed in Table 2.639. This is just one of the possible process flows that could be

considered. Other process sequences may also be acceptable. It is necessary to ensure during

these process steps that the temperature is kept low to avoid affecting the device performance.

Fig 2.4 shows a schematic of the process sequence used for a two-wafer F2F bonding where the

passivating oxide layer is recessed to expose the Cu patterns on the bonding surfaces 40 .

Table 2.6: Typical process sequence for Cu TCB39.

PROCESS SEQUENCE for TCB

1. LITHOGRAPHY - The regions on the processed passivated wafer surface where etching is to be
carried out for deposition of through-silicon via (TSV) needs to be defined.



2. DRIE ETCHING - The standard DRIE BOSCH® process (SF6 / CF 4 chemistry) which is used in
MEMS processing is to be used here for etching high aspect ratio (AR) holes or trenches for TSV via.

3. COPPER SEED LAYER DEPOSITION - A seed layer of Cu is to be deposited at the high AR
trench bottom to enable subsequent electroplating of Cu to fill the TSV trench.

4. COPPER ELECTRODEPOSITION - Having etched the TSV holes, blanket electrodeposition of
copper is performed to form Cu filled TSV and additional Cu blanket films on the surface of the
wafer.

5. CHEMICAL MECHANICAL PLANARIZATION (CMP) - A CMP process is used to flatten the
wafer surface prior to bonding and polish away the extra Cu films on the wafer surface.

6. OXIDE ETCH - Etch away a small layer of inter-metal dielectric (IMD) on the surface of the wafer
to cause the TSV Cu leads to protrude.

7. WAFER CLEANING - Use RCA or acetic acid solution to clean the wafer and strip out any
intrinsic metal oxide layers formed.

8. SURFACE ACTIVATION - Use 02 or Ar plasma to activate the surface prior to bonding. This step
is however optional.

9. ALIGNMENT - Ensure precise alignment of the wafers with minimal alignment errors.

10. BONDING - Bring the wafers into contact and apply sufficient load to so as to cause plastic
deformation of the contacting metal surfaces and enable metallic bonding to take place.

11. ANNEALING - After bonding, perform a moderate temperature anneal (500 0C) to allow for grain
growth, Cu interdiffusion and creation of a good adhesion bond interface.

2.3.5 PROCESSING ISSUES IN TCB

There are various processing issues to be considered during the thermocompression bonding

process. These issues need to be tackled effectively in order to achieve a high bonding yield and

sufficient true contact area of the bond. Some of the key issues are discussed below:

DISHING - In patterned Cu lines to be bonded, the use of CMP for polishing these lines prior to

actual bonding could result in "dishing" effects as shown in Fig 2.525. As a result of dishing, the

true contact area of patterned wafers that are bonded is very low thus resulting in poor bonding

quality. Even large applied loads may not be helpful in minimizing dishing effects much since the

depth of these dished pits can be as high as around 50 nm.



Fig 2.4: Typical process sequence for F2F TCB patterned Cu layer bonding - Steps - (1) FEOL + BEOL;
(2) oxide layer deposition, patterning and Cu pad formation; (3) oxide layer recess to expose Cu pads; (4)
F2F alignment; (5) Thermocompression bonding; (6) CMP to back grind top wafer and (7) lithography
and patterning for TSV and probe-pads4 0

31



Cu Lines

I -- A1.4.AA- --- :I:: a~n il

Fig 2.5: Illustrating the dishing effects observed in patterned Cu lines due to CMP25.
Thefigure on the right is the actual profilometer image used to determine the depth of a Cu dish surface.

GLOBAL BONDING NON-UNIFORMITY - While dishing effects account only for local

bonding non-uniformities for patterned Cu lines, global non-uniformities30 in the bonding area

could also exist due to wafer bow and warping induced by the FEOL and BEOL processing of the

wafers and insufficient elastic deformation at the edges of the bowed wafers to achieve good

contact. These bowing effects are detrimental to bond quality on a global wafer scale. An

additional source of global bonding non-uniformity could be the non-uniform density of pattern

features and wrong center of gravity for the applied load resulting in non-uniform pressures at

different locations of the bonding wafers.

CARRIER WAFERS - The substrate bulk layer of the wafers that are bonded need to be

thinned in order to stack more levels of wafers. Substrate thinning and TSV fabrication after

bonding could be detrimental to the bond quality and therefore, it is usually carried out before the

bonding process. It is difficult to handle thin wafers for bonding as they are brittle and tend to

warp or bow easily. Temporary bonding of thin substrates to carrier wafers is a useful approach to

enable good bonding.

The sequence followed for temporary bonding and debonding is shown in Fig 2.6"3 . The device

wafer is first bonded to a carrier wafer using an adhesive layer with the device layer face down in

contact with the adhesive layer. This is followed by wafer thinning and subsequent bonding of the

carrier supported thinned wafer with another wafer. Finally, after bonding, when the carrier

support is no longer required, appropriate temperature or UV light or chemical solutions are used

to detach the carrier wafer finally resulting in a successful thinned wafer bonding.
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Fig 2.6: Process sequence for wafer bonding involving use of carrier wafer to handle thin substrates3 .

WAFER ALIGNMENT - For sub-micron high density pattern features to be bonded, the

alignment of the wafers prior to and during the bonding period needs to be very precise.

However, there are limits to the accuracy achievable in alignment. There are two methods of

alignment - direct and indirect. Direct alignment involves direct live IR imaging of alignment

keys on the wafer prior to bonding while indirect alignment involves the use of an external

reference positioning system.

Devices with low interconnection density can tolerate alignment errors around 2 pm while in the

case of high interconnect density, alignment accuracy in the sub-micron range would be

required 31.Alignment errors could arise either prior to bonding during the alignment phase due to

the performance limitation of the aligning equipment or during bonding due to temperature and

pressure non-uniformity that could cause bowing or warping and increase misalignment errors.

Statistical process control (SPC)31 is required in order to minimize alignment errors as far as

possible.

2.3.6 ELECTRONIC IMPLICATIONS OF TCB

It is necessary to examine the effects of wafer bonding on the electrical device and circuit

performance parameters. Some of the electronic implications of TCB based wafer bonding are

I
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discussed in Table 2.7". Although not specific to TCB, in general, all wafer bonding based 3D

integration schemes have similar implications on the electrical device performance

characteristics.

Table 2.7. Implications of TSV based Cu TCB on electrical device performance13.

IMPLICATIONS OF TCB on ELECTRICAL DEVICE PERFORMANCE

1. POWER - 3D integration results in a smaller wire length distribution as compared to 2D with the
largest reduction observed for the longest paths. Shorter wires imply lower average load resistance and
capacitance and decrease the number of repeaters needed for long wires thereby causing less power
loss. Compared to 2D, 3D ICs are expected to improve the wire efficiency by 15% and reduce total
active power by more than 10%.

2. NOISE - Shorter wires in 3D have lower wire-to-wire capacitance resulting in less noise coupling
between signal lines. Reduced number of repeaters also ensures lower noise and higher signal integrity.
Moreover, electromagnetic interferences such as interconnect crosstalk, wire-substrate coupling and
inductance effects are much lower in the case of 3D IC.

3. FAN-OUT - Since 3D ICs have a lower wiring load, a greater number of logic gates may be driven
implying higher fan-out.

4. INTERCONNECTS - As interconnects (Cu) in the 2D circuits are further downscaled and the barrier
layer thickness (Ta) unable to be proportionately downscaled, surface scattering effects of electrons
become dominant in addition to the electron bulk scattering mechanisms such as phonon scattering.
This increases the effective resistivity of Cu nano-interconnects significantly thereby motivating the
need for 3D ICs so that further downscaling of interconnects can be avoided and yet performance
improvement achieved due to lower total global interconnect length in a 3DIC. Increases in
interconnect temperature due to joule heating effects also cause the resistivity of Cu to increase.
Avoiding further downscaling in 2D by moving to a 3D layout prevents further aggravation of joule
heating.

5. INDUCTANCE - Reduction of wire length helps reduce inductance and presence of second substrate
close to the global wires might also help lower the inductance by providing shorter current return paths
provided the substrate resistance is sufficiently low.



CHAPTER 3

3. PHYSICS & MECHANICS OF WAFER BONDING

3.1 PHYSICS & MECHANICS OF WAFER BONDING

Having looked at wafer bonding and its classifications, techniques, associated process sequence,

process and material issues, failure mechanisms and its effects on the electrical device

performance, it is necessary to take a physical perspective and analyze the bond strength of

bonded wafers with respect to various factors that would impact it. This requires development of

a mechanics-based model to quantify bond strength. This chapter presents the model developed to

characterize the bond strength of bonded wafers.

Wafer bonding is accomplished by bringing the wafers into contact with each other so that

chemical bonds could be formed at the interface. Since the forces of attraction are short range,

sufficient load is to be applied to bring the rough (non-flat) surfaces into contact. Since the wafers

are typically bowed as illustrated by Fig 3.1, we can model the bonding process such that the

wafers come into contact at the centre and then the applied load causes elastic deformation of the

wafers and the bond front propagates from the centre towards the edge34. As the bonds are

formed, the surface energy is lost and interface energy is gained. In addition, elastic energy is also

stored when bowed wafers are bent for bonding to be initiated.

'Taking the surface energy for wafers I and 2 to be yj and y2 and the interfacial energy to be Y12,

the net change of energy due to the formation of the bonded interface is known as Dupre work of

adhesion (W) and is expressed as in (2). This work of adhesion refers to the energy available per

unit area to bond two surfaces. The requirement for a successful bonding to take place is that the

work of adhesion must be sufficient to cause the wafers to deform elastically to a common shape.

W = Y1 7 Y2 - Y12 (1)

Given that the two wafers being bonded each have a width (B), the total energy in the system, UT

as a function of bond front position, a, is given by (2) where the first term, UE is the elastic energy

accumulated in the wafers as they conform to one another and is a function of the bond front

position. The second and third terms refer to the total interface and surface energies of the bonded

and unbonded regions of the bond face respectively 34.

U, = UE + Y, - [aB]+(,y +;2).-[(L-a). B] (2)



The system attains equilibrium when the total system energy is minimized. Therefore, the bond

front would propagate until the equilibrium condition in (3) is satisfied, where A is the area of the

bonding interface when wafer bonding is considered in 3-D.

dUT o - w dUE
da dA

(3)

As long as the inequality condition in (3) is satisfied, the bond front of the bonding interface will

continue to progress from the centre towards the edge of the wafer. The quantity dUE/dA refers to

the strain energy accumulation rate and it is a function of the wafer geometry and the material

properties.
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(a) A typical force separation curve for two surfaces. The area under
the curve represents the work of adhesion. (b) The change in system energy
as two surfaces are bonded. Surface energy (YI ,72) is lost, interface energy
(712) and strami energy (UE) are gained as a increases..

Fig 3. 1: Force-separation curve for two wafer surfaces and illustration of the bondfront for bonding of
bowed wafers34

Surface imperfections in the wafer will affect the quality of the bond adhesion and these

imperfections may be categorized into three types - (a) wafer bow at the global wafer scale due to

residual stresses that arise upon thin film deposition; (b) surface waviness (warping) at the
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millimeter scale and (c) surface roughness at the nanometer scale. Let us first analyze the effect

of wafer bow on the bonding success.

3.1.1 EFFECT OF WAFER BOW34

Fig 3.2 shows the case of two bowed wafers with initial curvatures, KA and KB, thicknesses hA and

hB, elastic moduli EA and EB and a common Poisson ratio (u) where the bond front has propagated

up to r = a and another length of (b-a) remains to be bonded. Given this bonding situation, the

strain energy, UEi for each wafer may be modeled in terms of the wafer curvature and the other

parameters as given by (4) making use of the linear plate theory. In (4), Kf refers to the final

wafer curvature after bonding.

U, E, h3.(I_ . iv,).[b2(l+v,)+a2(l(v,) 
(4)

Using (5) where the total nominal bonding area A = na 2 and summing up the strain energy

accumulation rates for both the wafers being bonded, the overall strain energy accumulation rate

may be given by (6) where UE = UE1 + UE2. This parameter dUE/dA may now be compared with

the work of adhesion (W) to determine the extent to which the bowed wafer surfaces would bond

and how successful the bonding would be.

dUE _ dUEl da
dA da dA

dUE -1 EAEBh , hB 2 (1+v) 1= - 63.( -CB 2)2 (6)
dA 6 A BE, hB+Eh (1 -v) [(1 + v)+R2(v

Note from Eq. (4) that the strain energy, UE, scales as the bond front propagates. The effect of

wafer bow (curvature) on the extent of bonding may be determined from (6) and by comparing it

with (1).

3.1.2 EFFECT OF PATTERNING34

In most cases, the Cu films on the wafers to be bonded by TCB are not blanket wafers. Instead,

they consist of patterned Cu lines that protrude out from the processed wafers. When bonding

patterned lines, since the nominal surface area of contact is now only a fraction of the overall

wafer surface area, the energy available to deform the wafers elastically is reduced. As a result,

successful bonding becomes more difficult to achieve. Given that the fraction of patterned wafer

area in contact during bonding is pa, then using (5), the modified expression for dUE/dA is given



by (7), As seen, since the strain energy accumulation rate [dUE/dA] for patterned features is

larger, bonding is more difficult to achieve for a fixed W (determined based on the material of

bonding of the two wafers).

A =pa (2)= Pa -A I = ; p, <1 (7)A .=P -dA patterned Pa blanket

It should however be noted that when the patterned wafers have large areas of region etched out,

the stiffness of the wafer to be bonded might be reduced thus making it slightly easier for bonding

to be achieved. The reduced stiffness makes it easier for the wafers to deform elastically thereby

resulting in better bond quality. Such reductions in stiffness are possible only when the etched

pits are very deep which is only the case for MEMS fabrication.

r----- ------- - -----

Schematic of bonding two bowed wafers showing assumed geom-
etry and notation used. As shown, Ka is a positive curvature and Kg is a
negative curvature.

Fig 3.2: Illustration of the bonding of two bowed wafers with different curvatures and the
bondfront propagation

3.1.3 EFFECT OF MATERIAL & DIMENSIONAL PARAMETERS 34

From Eq. (6), it may be deduced that the strain energy accumulation rate (dUE/dA) depends

linearly on the elastic modulus, square of the curvature and the cube of the thickness. It is

however, insensitive to the Poisson's ratio. The strong dependence of dUE/dA on the thickness

suggests that wafer thickness must be precisely controlled and variations in the thickness on

rough wafers could be detrimental to a good bonding. Also, bonding of thicker materials will



require better flatness control. The thickness ratio of the two wafers to be bonded also determines

the quality of the bond formed as illustrated by Fig 3.3. Based on Fig 3.3, in order to keep

dUE/dA low, it is always better to have one of the wafers being bonded very thin.

Fig 3.4 shows the change in dUE/dA as bonding occurs for bowed wafers and the bond front

propagates. As seen, for blanket bonding, bonding becomes easier as the bond front propagates

while the opposite effect is observed for wafers with large area of non-contactable patterned area.

0.1 I
hA/ha

Fig 3.3: Reduction in strain energy accumulation rate for wafers A & B with very different thicknesses34

3.1.4 EFFECT OF SURFACE ROUGHNESS & APPLIED LOAD 41

As mentioned earlier, there are three ranges of surface imperfections wherein the largest of them

is the bowing of wafers while the smallest are the nanometer scale surface roughness effects. The

surfaces of the wafers to be bonded are never perfectly flat and would always be subjected to

surface roughness which can only be partially minimized by CMP. Given the surface roughness,

the actual true area of contact between wafer surfaces would be different from the nominal

circular area of the wafer. The quality of the bonded wafer is likely to be dependent on the "true"

contact area (AT) and not the nominal contact area (denoted here as AN) 41.

A Ad-
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Fig 3.4: Variation of strain energy accumulation rate as the bond front propagates for blanket and
patterned wafer bonding34.

Leong et al.4 1 have developed a true contact area model that helps analyze the effects of surface

roughness as well as applied load (L) on the true contact area. The wafer surface is modeled to be

consisting of asperities with a certain asperity density (ir), mean asperity radius (R ) and standard

deviation of the asperity summit heights (sY). The asperity deformation model has been used

accounting for the effects of elastic and plastic deformation components and the work hardening

(x) and yielding (Y) effects involved in metal-metal bonding. The analysis revealed that the

predominant component of the deformation is plastic and elastic contributions to contact area

formation are negligible assuming the wafers are not bowed. The applied load and true contact

area are described by expressions (8) and (9) respectively. In these expressions, d refers to the

mean interfacial separation of the two wafers to be bonded and <p(z) refers to the standardized

normal distribution.

L=3(2)
L = 3 -(2) l AN - R • Y .0.2 xI .J ,-+" (p(z)dz (8)

-- z-d
A, = 2iAN. -R -cr, f p(z)dz (9)

d / a,

The equations above apply for the case of blanket wafer bonding. However, in the case of

patterned wafers, assuming the asperity density to be uniform across the whole wafer, the



nominal and true contact areas may both be assumed to be scaled down by the fraction of nominal

wafer area being bonded (p) as shown in (10).

AT= AT "P (10)
A'N = AN *P

Fig 3.5 shows the materials used for Cu bonding. The purpose of using Ta is to act as an

intermediate adhesion layer between Cu to SiO2 and to prevent Cu diffusion into SiO 2 and Si.

Fig 3.6 shows the wafer bonding map with the range of yield values for different combinations of

the values for a, and applied load. It was found and verified that the true contact area of bonding

is less than 1% of the nominal contact area and that for a given applied load, the impact of surface

roughness (as) on the true contact area decreases for increasing surface roughness. Fig 3.7 shows

the monotonic relationship between dicing yield and the true contact area, where the dicing yield

is taken to be indicative of the bond quality.

From the figures, it is evident that irrespective of the surface roughness, a high applied load

would always be sufficient in achieving a large true contact area that could result in - 100%

dicing yield. The dicing yield appears to suddenly saturate when a threshold true contact area is

reached. In the case of patterned wafer bonding, the model presented above overestimates the

dicing yield. It is to be noted that all the data in these graphs pertains to HTTC bonding at T =

3000C. The temperature dependent parameters in the above model are the yield stress (Y) and

work hardening index (x) both of which increase with decreasing temperature thereby suggesting

that a much higher applied load and improved surface flatness would be very critical for a

successful bond for LTTC.
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Fig 3.5: Various material interfaces present during Cu TCB bonding" .
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Fig 3.7: Relating the true contact area between bonded metal layers to the dicing yield".

The true contact area model presented has some limitations which need to be addressed in order

to make it more robust. It does not account for the temperature dependent kinetics of grain growth

and atomic diffusivity across the bonding interface which could help improve the bonding area of

contact. The effect of bond duration is very important as it would need to be large enough for

unfavorable kinetic conditions at low temperatures for LTTC in order to achieve a well bonded

interface. However, this is not included in the model. The vacuum levels used in the bonding
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chamber have a large effect on the number of oxide monolayers formed on the Cu surface. The

number of monolayers of CuxO formed will determine the bond quality. The decomposition of

CuxO also depends on the bonding temperature. These vacuum level effects need to be considered

in future models. The true contact area model does not explicitly account for the wafer bow

effects. Instead it assumes that the applied load is sufficient enough and the wafers are compliant

enough to be flattened. Finally, the overestimation of yield is thought to be due to the effects of

dishing, which was discussed earlier, which reduces the true contact area drastically. These

dishing effects also require further analysis.

3.1.5 EFFECT OF SURFACE QUALITY & TEMPERATURE33

It is to be noted that the work of adhesion as given by (1) is not a constant material property.

Instead, it is dependent on the temperature since surface energy of a material depends on the

temperature. Moreover, the work of adhesion is also affected by the applied load which

contributes to an extra energy component corresponding to plastic deformation33 . Unlike previous

approaches, the quality of bonding could also be assessed from a fracture mechanics perspective.

The maximum thermodynamic work of adhesion between two identical Cu surfaces is given by

(11) where cu and YGB refer to the surface energy and grain boundary energy of Cu. At room

temperature, for bulk Cu, W - 3 J/m2.

W = 2yc, - YGB (11)

Fracture tests have been performed to determine the work of adhesion (W) under different

conditions. Fig 3.8(a) shows the variation of W with an atomic force microscopy (AFM)

cantilever tip induced applied force for work of adhesion measurement at room temperature and

UHV (LTTC conditions)42. It is seen that when the applied force is close to 0.7 pN, the measured

W approaches that of bulk Cu implying that two ultra-clean Cu surfaces under controlled ambient

can be as strong as bulk metal, even at room temperature. Fig 3.8(b) shows the variation of W

with temperature under UHV (oxide-free clean Cu surface) and oxidized Cu surface conditions42.

It may be deduced that for clean Cu surfaces, room temperature bonding is sufficient to obtain the

desired W target of 3 J/m 2 while for oxidized Cu surfaces, the same W is achievable only at

HTTC conditions of T = 3000C. This illustrates the significance of having UHV conditions

around 10-10 Torr in order to prevent oxidation and surface contamination (typically by

hydrocarbons residing in the process chambers).
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CHAPTER 4

4. RELIABILITY OUTLOOK & FAILURE MECHANISMS

4.1 FAILURE MECHANISMS IN TCB

Past research investigations have revealed that there are various failure mechanisms observed in

the bonded wafers. Some of these are yield-related failure mechanisms implying that they usually

occur prior to product shipment while others are reliability-related failure mechanisms. Table 4.1

lists out some of the common failure mechanisms that have been observed.

Table 4.1: Common failure mechanisms observed in TCB wafers.

FAILURE MECHANISMS for TCB WAFERS

1. VOID NUCLEATION & GROWTH43 - Voids exist at
the bonded interface due to local surface / interface
contamination and surface roughness. These voids are
mobile and may diffuse along grain boundaries. Upon
grain growth, since the grain boundary area decreases, the
voids diffuse to triple points where their motion is
impeded and void growth occurs (Fig 4.1).

Another source of voids is the high vacancy concentration
in Cu layers. Vacancies absorbed at grain boundaries also
accumulated to form voids. These interfacial voids are
typically formed to accommodate for the high tensile
stresses induced when the bonded material is cooled down
to room temperature (thermal stress relaxation) (Fig 4.2).
This happens because the thermal stresses in Cu layer (800
- 1200 MPa) cooled to room temperature after bonding
(from 300 - 4000C) is more than the yield stress (262
MPa).

Presence of tensile stress and annealing condition enhances
dislocation climb resulting in emission of vacancies that
migrate and coalesce to form voids.

Yield-related failure mechanism.

2. CORROSION / OXIDATION 44 - Exposure of bonding
surfaces to oxygen causes a few monolayers of CuxO to
grow thereby degrading the metallic bond quality. Air in
the gap between patterned Cu lines leads to corrosion
(depletion of metal and formation of voids).

Yield-related failure mechanism.

SOLUTION

* Bonding
minimize
induced in

at low temperature to
thermal tensile stress

the Cu layer.

* CMP process to lower
roughness.

surface

* Anneal Cu layer in inert N2 ambient
before bonding so as to enable grain
growth and drive vacancies to free
surface for self-annihilation.

* Use UHV vacuum to keep partial
pressure of 02 as low as possible.

* Use RCA / acetic acid clean to etch out
any initial native oxide on the Cu
surface.
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3. ELECTROMIGRATION (EM) - Although
electromigration and associated joule heating effects could
favor diffusion at the bond interface 25 and help improve
true contact area and bond quality, considering the TSV as
an interconnect line, the anode end of the TSV on one end
of the wafer would be subjected to compressive stresses
and extrusion failures while the cathode end could
experience voiding to accommodate the tensile stresses.

EM may not be an issue in TSV with thick dimensions as
the current density could be quite low. However, for
narrow TSV, EM could pose a problem.

Reliability-related failure mechanism.

4. STRESS MIGRATION (SM) - Considering the TSV as
any other via in an interconnect structure, high temperature
processing and subsequent cooling could result in stress-
induced voiding (SIV) failures due to CTE mismatch
induced residual stresses45.

Yield-related failure mechanism.

5. FRACTURE - Presence of cracks in the metal feature
lines or dielectric layers to be bonded could cause the
cracks to propagate and eventually lead to fracture. The use
of a large applied load during bonding could cause the
low-K inter-metallic dielectrics (IMD) to crack and cause
Cu-low-K TDDB failures.

Yield / Reliability related failure mechanism

6. THIN FILM DELAMINATION - Presence of voids at
the metal bonded interface could accumulate laterally and
cause the thin film to delaminate44.

Reliability-related failure mechanism

* Use a short TSV if feasible such that
the critical length and jL Blech product
is not exceeded. This would require
substantial wafer thinning.

* Alloying of Cu with Mn to improve
EM resistance.

* Use low temperature processing and
bonding.

* Patterned lines improve fracture
resistance as crack nucleation and
growth at every new pattern is
energetically unfavorable.

* Reduce applied load during bonding to
avoid low-K dielectric failures.

* Bonding at low temperature to
minimize thermal tensile stress
induced in the Cu layer so that driving
force for void nucleation, growth and
coalescence is minimized.
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Fig 4.1: Void nucleation and growth in a Cu TCB at a bonding temperature of 300C. Void growth is
caused by grain boundary diffusion, vacancy annihilation and stress gradient induced driving force43
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4.2 PACKAGING & HEAT DISSIPATION FOR 3D IC TCB DEVICES

In the case of 3D integration, since packaging is done only after all the dies are vertically stacked

on top of each other, the packaging cost could be lower as compared to conventional chip

stacking techniques such as system-in-package (SiP) [chip stack multi-chip module (MCM)] or

package-on-package (PoP) which involves stacking of SiP using flip-chip bonding techniques. In

these packing technologies, the chips in the package communicate through off-chip signaling. In

SiP and PoP each chip is packaged separately and then integrated from the outside (Fig 4.3)46

This incurs much more packaging cost as compared to having a single package for the overall 3D

IC chip.

3D stacking SIP
... ,•l•,!,~iiiiiii~iiii•ii /Aiili ! ,.... • I

3D IC

WB memories+logic SOC
2 rhin-' Qnhtitinn

Fig 4.3: Various packaging technologies for a 3DIC46.

For a 3D IC with multiple stacking levels, heat dissipation is a major concern since heat is

released from each of the stacked dies. For the same chip area, a 3D device when compared to a

2D device has a larger interconnect cross-section enabling the interconnect resistance to be

lowered thereby enhancing the frequency of operation. Since dynamic power dissipation is

proportional to the frequency as indicated in (11), a large amount of heat is dissipated in 3D ICs.

P, a = CV2f f c, (11)

The presence of interconnect joule heating can also increase the peak temperature in 3D ICs due

to strong thermal coupling with the neighboring interconnects and the active layers giving rise to

higher interconnect temperatures that result in lower electromigration resistance. Fig 4.4

illustrates the heat dissipation in 2D and 3D ICs assuming a single source of heat sink through the

package at the bottom of the stack. An analytical model of the heat flow for the case of a 3DIC

suggests that the temperature rise varies linearly with power density and varies as the square of

the number of active layers, n 3 .

I
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Fig 4.4: Modeling the increased heat dissipation in 3D ICs as compared to conventional 2D ICs 3.

Various strategies may be implemented to enable effective heat sinking from the 3D IC. One of

the approaches is to make dummy vias which are insulated from the actual electrical circuitry

wherein these thermal vias help in conducting heat away. The other approach is to create

integrated microchannels in the B2B bonding layers in between the TSV so that coolants can be

pumped through these microchannels to remove heat and reduce the overall thermal resistance of

the 3D circuit as shown in Fig 4.5. These approaches however limit the density of TSV

interconnection achievable.

integrated
microchannels for
3D heat extraction

: Use of integrated microchannels30Fig 4.5: Use of integrated microchannels for effective 3D heat extraction
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CHAPTER 5

5. MICROSTRUCTURE ANALYSIS OF BONDED INTERFACE

To determine the quality of the bond, two techniques could be adopted. Either the bonded wafers

could be subjected to fracture tests and the bond toughness quantitatively determined using

fracture mechanics or the microstructure of the bonded interface could be observed using TEM to

qualitatively assess the adhesion strength. Fig 5.1 shows the microstructure of two Cu bonded

samples47. The sample on the right has more defects some of which include twinning defects,

voids and dislocations. It is clear by observation that the bond adhesion for the sample on the left

is better than the one on the right. The uniform distribution of the defects is indicative of a

homogeneously bonded layer.

Fig 5.1: Microstructural defects observable at the Cu bonded interface47.

Strong grain growth occurs during the bonding and annealing phases. Analysis of the

microstructure reveals that the grain growth stops after sufficient post-bonding anneal and the

copper grain structure evolves to the one shown in Fig 5.1. During the initial bonding process, a

(220) abnormal grain growth (AGG)48 is observed. Upon annealing, the preferred grain

orientation of the entire film shifts from (111) to (220). The effects of yielding and biaxial strain /

surface energy minimization have been cited as possible reasons for the evolution of this

preferred grain orientation. The Cu grains are subjected to in-plane stresses due to the presence of

biaxial strains when these Cu leads are attached to the thick non-compliant Si substrate. The

yielding stress of (220) grains is much lower than (111) and hence yielding occurs in (220) grains

first causing them to grow faster and making them the preferred orientation. This AGG

phenomenon is undesirable since electromigration (EM) resistance is sensitive to the

crystallographic texture and a (220) texture is known to be less resistive to EM than the original



(Ill11) texture when the wafers were unbonded for Cu. Note that not all grains become (220) after
annealing. However, the grain size as well as the fraction of grains with (220) texture saturate
during the annealing phase only 48.

Fig 5.2(a) shows the microstructure desired for a successful bonding where the interface is no
longer observable. The bond adhesion in Fig 5.2(b) is the case where the grain growth and atomic
diffusion have been insufficient to get rid of the interface. Since the grain structures at the

interface are distinctive and have not interacted, the bond toughness in this case is very low.

Fig 5.2: Microstructure of a (a) well-bonded interface and a (b) poorly bonded interface47

Fig 5.3 depicts the three kinds of microstructures observable after bonding a Cu-Cu bonded

interface. In (a), sufficient grain growth and diffusion have occurred such that a uniform

microstructure is formed where the interface is no longer seen. The microstructure in (b) is very

similar to (a) except that the grain growth here is more phenomenal such that single through-

thickness Cu grains are formed. As for (c), the bonding is not successful as evidenced by the

observable interface and the larger number of void defects.

Cu tWro~~ughtckns

Fig 5.3: Various possible microstructures in a bonded Cu interface49
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Fig 5.4 shows a morphology and strength map for Cu TCB at different bonding temperatures and

annealing durations for a given vacuum level and applied load49. As mentioned earlier, annealing

is required to ensure that the bonding interface is removed through grain growth and diffusion

across it. Bonding at lower temperatures is therefore increasingly difficult although it is

achievable under UHV conditions.

(C)

Bonding
(No anneal)

Short Anneal Long Anneal10

Fig 5.4: Morphology and strength map for copper wafer bonding under
different bonding temperatures and conditions49





CHAPTER 6

6. YIELD & RELIABILITY MODELING APPROACH FOR 3DIC

6.1 IMPORTANCE OF YIELD & RELIABILITY MODELING

Any new technology being developed in its research phase may seem very attractive in a lab

setup. However, when commercialization of the incumbent technology is considered, there are

various factors to be looked into that may limit its feasibility. Some of these include

reproducibility of the process, cost implications, throughput, manufacturing yield, process flow

modifications and operational reliability. All these factors need to be favorable in order to

successfully commercialize a technology. Yield, reliability, throughput and other factors all have

an indirect implication on the cost. The semiconductor industry has always been pushing forward

to improve yield as much as possible as it has a major cost implication and it is also used as a

yardstick to gauge the manufacturing competency of a company. Yield is all the more an

important consideration for 3D integration since this is one of the last stages in the process line

and low yield at this stage would have heavy cost implications since the scrapped wafers have

been through the complete process line. For a new technology, there is insufficient information on

the possible yield and it is therefore very necessary to develop a yield modeling approach to

characterize the expected yield of the process.

The aim of this chapter is to develop a yield model (included in the Appendix) from a statistical

perspective and make use of the physical model of wafer bonding presented earlier so that the

yield of the LTTC process could be predicted for different process parameter conditions. Recent

studies in statistical literature suggest that the early life reliability of a device could also be

predicted based on the yield information thereby nullifying the earlier requirement to perform

accelerated life tests on a certain sample of data and subsequent extrapolation which could be

time-consuming, expensive and inaccurate too. Predicting the early life reliability for a new

technology is also important since it provides information on the expected field returns and the

associated warranty cost implications. The warranty period to be set for a new technology based

device is determined based on these early life reliability predictions.

6.2 FACTORS AFFECTING LTTC YIELD

Before looking into the statistical yield model to be developed for 3D ICs, it is worth analyzing

the various factors that impact the yield of a wafer stacking process. Table 6.1 below lists out

these factors5 .



Table 6.1: Factors affecting the yield of 3DICs5 .

FACTORS AFFECTING YIELD OF 3DIC

1. DIE AREA - Yield is a function the die area. The larger the die area, the higher the probability of
finding a killer defect which could cause chip failure51 . 3D IC technology helps reduce the die area on
each wafer level stack and therefore improves yield of each individual stacked die. However, it is to be
noted that on each die, extra space is to be reserved for fabricating TSV and this additional space
accommodation is expected to cause yield to be affected.

2. VIA SIZE & DENSITY - Wafer 3D stacking requires TSV interconnects to bond B2B wafers. The
circuit functionality determines the density of TSV and their size. The larger the density and smaller the
dimensions of the TSV, the more difficult it is to achieve precise alignment. More stringent alignment
requirements result in lower yield as temperature affects alignment accuracy owing to wafer bowing
effects induced by the thermal residual stresses during alignment and bonding. The number of vias to be
implemented is dependent on the circuit design although the stacking method defines an upper limit to
their density.

3. CIRCUIT DENSITY - Use of 3D IC has helped reduce the circuit density and the need for aggressive
scaling. The denser the circuitry, the smaller the feature size, the greater the chance for a defect to be a
"killer" defect.

4. NO. OF MASKING STEPS - 3D technology helps reduced the number of mask levels needed for
each die / wafer in the stack. Use of every additional mask increases the chances of error, contamination
and breakage.

5. PROCESS MATURITY - The more mature a process is, the higher its yield is likely to be. Wafer
level stacking is a well-researched and established process in the MEMS community which is now
being adopted for 3D IC. Therefore, the yield of the stacking process is likely to be quite high.

6. EXTRA PROCESSING STEPS - There are additional lithography, etching, DRIE, Cu
electrodeposition and other steps needed for realizing TSV as highlighted in Table 2.6. These additional
steps could be detrimental to the yield.

7. CONTAMINATION - Foreign particles caught between the wafers during bonding cause voids,
peeling and delamination thereby affecting bond integrity and resulting in a lower yield. As mentioned
earlier, these contaminants could be avoided by using UHV in the bonding chamber and outgassing the
chamber prior to any bonding so that any hydrocarbon residual particles in the chamber walls areremoved. The source of these hydrocarbon particles is the oil vacuum pumps used for creating UHV.

8. EDGE EFFECTS - Wafers are typically bowed such that the inter-wafer gap is larger at the edgesthan at the center causing the bond strength around the edges of the wafer to be weaker, making themvulnerable to chipping, peeling and delamination. As a result, stacked dies cut out from wafer edges arelikely to be of lower yield. Therefore, there is a certain spatial failure distribution for 3D bonded ICs ona wafer. However, take note that there are nanoscale spatial variations in surface roughness that alsolocally impact the yield in a region of the wafer.



9. CHIP DESIGN - Flexible and good circuit design maximizes process separation and optimization,
adds robustness and employs redundancy / repair schemes for the circuit thus helping in yield
enhancement.

10. TRUE CONTACT AREA 25 - The higher the true contact area, the higher the expected yield of the
stacked wafers. True contact area depends on the surface roughness, applied load and many other
factors discussed above. The lower the surface roughness and higher the applied load, the better the
yield as revealed by Fig 3.6 and Fig 3.7.

6.3 STATISTICAL YIELD MODEL

The complete details of the yield model developed have been included in the Appendix. Please

refer to Appendix for the procedure and details of the model developed. It is to be noted that this

model has not been verified and is intended just to give the reader an overview of the approach to

adopt while modeling yield for a new device technology.





CHAPTER 7

7. COMMERCIALIZATION POTENTIAL - LTTC TECHNOLOGY

The analysis in the previous chapters focused on the technical, physical and manufacturing

aspects of Cu TCB bonding where the various bonding techniques, their process and material

issues, physical mechanisms modeling the bond quality and a statistical outlook for bonding yield

estimation were discussed. A technology can be considered successful if and only if it crosses the

research phase and gets commercialized and implemented in the industrial process line. Many

new technologies investigated tend to show positive results in a lab setup but fail to be repeatable

or end up being too expensive or difficult to control and optimize. Such technologies do not have

any impact on the industry or society and simply remain a research topic of interest without

practical use. There are various factors to be considered when analyzing a new technology and

substituting it for an earlier one. These factors shall be examined for our LTTC technology in this

chapter. We shall compare the LTTC bonding approach with other conventional approaches

currently adopted in the industry.

Imam-- -
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Fig 7.1: Popular applications for 3D ICs based on the technology generation46

7.1 DEVICE APPLICATIONS OF 3DIC

Various devices have been or will be fabricated and implemented using the 3DIC concept. Some
of these include a variety of stand-alone memories (DRAM, cache memories), CMOS image
sensors (for digital signal processing applications), FPGAs, mixed signal ASICs,
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processor/memory stacks, NAND flash, RF and optical MEMS devices etc... Some of these

applications are listed in the 3D technology timeline given in Fig 7.146.

7.2 APPLICATION OF FOCUS FOR LTTC TECHNOLOGY

Although various device applications exist for 3DIC, the most impactful one in terms of

immediate need and economic potential needs to be chosen for implementing the LTTC approach

in it. From Fig 7.1, a near-term focus indicates that a high capacity DRAM device is the current

application that is hyped about and has a promising potential for 3D implementation. Fig 7.2

clearly indicates that Cu bonding and TSV based 3DIC will find large scale mass production for

DRAM compared to all other applications for the next few years46. Given these market trends,

3D-DRAM has been chosen as the application of focus for the LTTC bonding approach that we

are investigating.

As indicated by Fig 7.3, although DRAM devices are available in various storage capacities, the

one Gigabit (1 Gb) DRAM is the current generation of DRAM devices with a worldwide market

demand amounting to about 1.5 billion in 200852. As our intention is to look into the near term

future technology where LTTC could be applied, we shall assume that in a few years time, a 4 Gb

DRAM would be the most demanded with the same annual demand of 1.5 billion.

In order to develop a cost model and consider the implications of vertical stacking and compare

various 3D integration technologies in terms of the fabrication costs, we consider fabrication of a

4 GB (Gigabyte) DRAM device which consists of eight 4Gb DRAM chips [1 byte - 8 bits]

stacked on top of each other. A comprehensive cost model has been developed considering the

various cost implications for the two predominant competing technologies viz. HTTC and LTTC.

The following section provides a summary of the fabrication cost components and the net

production cost per 4 GB device for the two alternative technologies.
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7.3 COST ANALYSIS

7.3.1 COMPONENTS OF COST MODEL

There are various costs involved in the fabrication of a device. Some of these are fixed costs such

as real estate, clean room foundry establishment, equipments and technology design. Others such

as power consumption, material cost, processing cost, packaging, testing (burn-in), labor etc...
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are variable costs. All these cost components need to be considered in determining the effective

cost incurred in fabricating the device.

Table 7.1 summarizes the costs involved in making a 4GB DRAM device for the three bonding

technologies for the case of a well established company which is expected to have a high market

share of around 20%. It also provides some other general information with their industry standard

values.

Table 7.1: Various cost factors and process information considered in development of the cost model'.

INFORMATION VALUE

Estimated Market Share* 20%

Initial cost of unprocessed wafer" $50/wafer

Processed cost of an 8" wafer (after standard CMOS process)' $3000/wafer

Global market size for DRAM devices52  1.5 billion

Process defect density' 0.1/cm 2

Size of a 4 Gb DRAM chip (70 nm technology) 0.80 cm2

Wafer yield 53  99.5%

Die yield on good wafer 53  91.9%

Cost of fab setup (equipments + maintenance + real estate)5 3  $1 billion

Creation of mask set53  $1 million

Cost of chip design53  $0.4 billion

Standard CMOS process cost per 4 Gb chip+  $10 /chip

Testing cost per chip* $0.0025/chip

# of chips stacked' 8

Expected market price of 4GB DRAM (in 2011)* $125.00

Cost Component Wire Bond HTTC LTTC

Packaging (3D technology) cost' $0.44/chip $0.25/module $0.38/module

Assumed Bonding Yield * 95% 95% 98%

Threshold Yield Required for Breakeven+  97.9% 94.6% 95.4%

Overall Yield' 86.9% 86.9% 89.6%

Throughput (wafer/hr) (WPH) 3.2 10 2'

Total processing cost of 4GB DRAM +  $144.45 $120.77 $97.29

Expected market price for 4GB DRAM (2011) $125 $125 $125

Time to Breakeven (years) + oo (LOSS) 2.35 0.15

Note: + (Computed result); * (Estimation).



7.3.2 ANALYSIS & JUSTIFICATION OF COST MODEL

Based on the information provided above, it is apparent that for the future 4GB DRAM that is

stacked using eight 4 Gb DRAM chips, the manufacturing cost is found to be the lowest for

LTTC. This is predominantly because we have assumed the yield for the LTTC technology to be

as high as 98% when compared to HTTC for which we consider the yield to be relatively lower at

95%.

The high yield for LTTC in comparison to HTTC and wire bonding may be justified as follows.

Since LTTC is performed at close to room temperature, the residual stresses induced by this

process is very minimal and hence global and local wafer bowing and warping effects on the

bonding wafers is very limited. As a result, the alignment for LTTC is expected to be very good.

The low residual stress also implies that thin film delamination and stress-induced voiding (SIV)

failures are less likely to occur in LTTC. Moreover, since pure electrodeposited Cu can

recrystallize at room temperature3 7 and has a high intrinsic grain boundary mobility54, good Cu

bonded interfaces may be achieved at low temperatures itself and high temperature bonding to

enhance kinetic feasibility at the expense of induced residual stresses may not really be necessary.

As long as the applied load is sufficiently high, a good yield bond can be achieved 25. Based on

these arguments, we may conclude that LTTC process is expected to have a much higher yield as

compared to HTTC.

As for wire bonding, although this established process has had a high yield of close to 99.2% 55,

when the density of interconnection is high in the case of 3D DRAM devices, the wiring could

get shorted and lead to degradation in the yield. Hence, we have assumed that wire bonding yield

drops to 95% in the case of high interconnection density. Cost of wire-bonded packaging is found

to be much higher than LTTC and HTTC based packaging.

As for throughput considerations, although LTTC has a much lower throughput than HTTC, since

the cost of wafer bonders and UHV equipments that are additionally required for LTTC process

are insignificant as compared to other standard equipments such as DRIE, CMP, lithography

etc..., LTTC still ends up to be much cheaper than HTTC owing to its higher expected yield

which offsets the additional equipment acquirement expenditures. Since wire bonding involves

chip stacking instead of wafer stacking and also since every wire bond needs to be serially

processed, the wire bond process has a very low throughput as indicated by Table 7.1. Therefore,

wire bonding is not cost-effective and may not be a viable option for future 3D DRAM devices.



The cost analysis and its justification presented above reveals that an established company such

as Samsunge with more than 20% market share56 for DRAM memory devices would be able to

breakeven earliest if the LTTC technology were to be adopted as opposed to either the wire

bonding or HTTC technologies. Therefore, there is a clear motivation from an economic

perspective for a large scale manufacturing plant to adopt the LTTC approach to TCB bonding

and Cu 3D integration so that the production cost per chip is low.

7.3.3 SENSITIVITY ANALYSIS, THRESHOLD YIELD & THROUGHPUT

Fig 7.4 shows the sensitivity of the fabrication cost of a 4GB DRAM device for different

throughput and bonding yield values for the LTTC technology. As revealed by this figure, the

fabrication cost is largely insensitive to the throughput until a threshold throughput of 1

wafer/hour below which the number of UHV bonders required is large enough to affect the

overall effective fabrication cost of the DRAM device significantly. Also, it may be seen that the

fabrication cost is highly sensitive to the bonding yield. This high sensitivity is justified by

Eq. (12) below where the overall yield (Y3DIC) of a 3D stacked device is proportional to the

bonding yield (Ycu BOND) raised to the power of (N-1) where N is the number of die stacking

levels (N = 8 in our case). This large power of N causes the bond yield to affect the overall 3D

device yield significantly which in turn reflects in the high fabrication cost sensitivity for small

variations in yield.

For an assumed market price of close to $120, in order to achieve breakeven, we require a

threshold yield for LTTC of 95.4%. In the case of HTTC, the threshold yield is found to be much

lower at 94.6%. Therefore, in the event that the LTTC threshold of 95.4% is not met, then the

current HTTC technology would continue to have its commercial viability. However, based on

our analysis of the various failure mechanisms that may be avoided by the use of low temperature

bonding, we may confidently presume that the LTTC threshold yield would be easily achievable.

y (1 y(12)3DIC = (wafer Ydie (YCubond -  (12)

Although the threshold yield values for LTTC and HTTC look close, it should be noted that based

on Eq. (12) where the bond yield is raised to the power exponent of (N-1), a difference of 1% in

threshold yield could have a very large impact on the overall yield due to this exponent. Hence,

the difference in threshold yield of 94.6% (HTTC) and 95.4% (LTTC) is to be considered

significantly different.
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7.3.4 MANUFACTURING COST ANALYSIS FOR A START-UP

Table 7.2. Cost implications of setting up a new foundry for LTTC TCB for a new start-up with
low market share.

Cost Components for a Start-Up Value
Market price for 4GB DRAM $125/module

Estimated market share 0.1%
Estimated start-up yield 96%

Initial cost of unbonded processed DRAM chips $90/module
Cost of bonding per 4GB DRAM stack $32.19/module
Total processing cost of 4 GB DRAM $122.19/module

Annual Profits $6.33 million

Time to Breakeven (years) 3.25

If a new start-up company were to implement the LTTC technology, then the cost considerations
and the decisions to be taken could differ. As a new start-up company which is assumed to buy
planar processed DRAM wafers from large scale manufacturers and perform only bonding and
3D integration, an optimistic market share could only be around 0.1%. As shown in Table 7.2, the
time to breakeven for a new start-up company specializing in LTTC bonding alone could be
around 3 - 4 years for an estimated market price of $125/module with an annual profit of $6.33
million for a starting yield of 96%. Although this looks attractive, it is to be noted that in a start-
up company, it is hard to achieve yields above 90% for the initial few periods of operation as
compared to established firms which can ramp up the yield to high levels within a short span of
time. Therefore, the estimate of profit made here could be quite optimistic. Given the uncertainty
in achieving the desired yield, investment in a manufacturing start-up would be a high risk - high
return idea.

An alternative avenue to explore would be to file a patent for the LTTC technology and license it
out to the established DRAM manufacturers for a royalty or licensing fee. Filing a patent is a
critical process that requires careful analysis and examination of the intellectual property (IP)
landscape to ensure that there are no previous patents filed by others on a technology that is very
similar to ours so that risks of patent infringement are avoided (in order to avoid legal litigation
issues which are expensive and time-consuming). Let us now explore the IP landscape in brief.



7.4 IP LANDSCAPE

Table 7.3 presents the details of some of the closest patents to LTTC that have been filed and

approved in the past57" 62. A detailed insight into the claims in these patents reveals that none of

them talk about Cu bonding at room temperature specifically. The patents on Cu bonding involve

high temperatures of 200 - 4000C (HTTC) while the patents on low temperature bonding are for

Si and SiO 2 based direct bonding. Also, these patents have not specifically looked at application

of Cu 3D technology for DRAM stacking.

Since the principles of the LTTC technology proposed is very much different from those that

have been patented so far, there is minimal risk of any patent infringement and therefore, a patent

may be filed for the LTTC enabled Cu 3D device integration. This enables acquirement of some

portion of the IP landscape in this field that could be utilized for economic gains by licensing and

royalties as mentioned earlier.

We may suggest that MIT can file a patent on this LTTC technology in the United States as well

as in other countries such as Korea and Germany where the major DRAM manufacturers

(Samsung®, Hynix', Qimonda ® etc...) have setup their fabrication plants. The patent, once

applied, goes through a comprehensive review and typically takes about 3 years to get approved.

Given the extremely low risk of any patent infringement, a good opportunity would be to license

out the patent to the semiconductor giants all around the world and make money through

licensing fees and royalties. This would be an interesting strategy to pursue provided the

companies can be convinced about the novelty, attractiveness and benefits of adopting and

shifting over to our new LTTC 3D bonding technology. This should be possible as our analysis

shows that the LTTC technology is a boon from both the technological as well as the economic

perspective.



Table 7.3: List of the patents that are similar to LTTC technology and yet quite distinct and different in
their scope. The scope of these patents is highlighted in the last column.

PATENT No. PATENT TITLE PATENTSCOPE OF CLAIMSISSUE DATE

Method of forming a multi-layer

0099796 Al57  semiconductor structure having a , 2006 Temperature (250 - 4000C).
seam-less bonding interface. May 11,2006 Bonding material = Cu.

(R.Reifet al., MIT)

Microelectromechanical System * Temperature = 4000C.
using Thermocompression * Hermetic sealed cavity by ring-shaped6, 853, 067 B158  Bonding. Feb 8, 2005 bonding interface at the border.
(M.B.Cohn & J.T.Kung) bonding interface at the border.

(Microassembly Tech. Inc., CA) * Bonding material = Cu, Pt, Pd, Ir.

Method of Thermocompression * Temperature = (280 - 320)oC.

4, 444, 35259 Diffusion Bonding Together * Load = 1500 - 5000 psi.
Metal Surfaces Apr 24, 1984 Bonding material = Cu, Au, Ag.

(H.H.Glascock et al., GE, NY) * Patterned Cu line bonding.

* Room temperature to 1000C.
Method for low temperature * Chemical bonding of materials such as

7,335, 572 B260  bonding and bonded structure. Si, Si0 2, Si 3N4.(Tong, Q.Y. et al.) Feb 26, 2008 * Ammonia based cleaning.
(Ziptronix Inc., NC, US) * Bond strength - (500 - 2000) mJ/m2

* Grinding and polishing prior to
bonding.

* Low bonding temperature, annealing at
5000C.

* Make wafer bonding surface
Nitrogen based low temperature hydrophilic and reactive by use of NH 3

5, 503, 70461 direct bonding. Apr 2, 1996 plasma and / or HF.
(Bower R.W. et al.) * Material - Nitride deposited Si, Ti,

(University of California) Si0 2, GaAs, InP.
* Application - III-V on Si

optoelectronic integrated circuits
(OEIC).

Method and Equipment for Wafer * Single chamber for cleaning, in-situ
0287264 A162 Bonding Dec 13, 2007 surface activation, alignment and

(Rogers, T.) bonding.



Based on the analysis of the key global industry players in 3DIC, the following licensing plan

(patent portfolio) may be adopted as shown in Table 7.4. Based on the collective market share of

the above listed companies in the 3D DRAM market, royalties can be obtained from up to 50% of

the global sales in 3D DRAM. The overall 3D DRAM market sales amounts to an average of $10

billion and a 0.1% royalty fee on annual sales would easily generate an income from licensing of

about $5 million / year which is a significant income given the low initial investment of about

$20,000 for filing and getting each patent approved. This is a low risk-good return strategy as

high risk initial investments such as foundry setup etc... are avoided and breakeven time is very

short.

Table 7.4: Patent portfolio showing the filing and subsequent licensing (royalty) plans in
different countries.

COUNTRY of COMPANY TO LICENSE TO LICENSING FEE / ROYALITIES
PATENT FILING

United States Micron ®  0.1% of 3D-DRAM sales

Germany Qimonda® 0.1% of 3D-DRAM sales

Korea Samsung®, Hynix®  0.1% of 3D-DRAM sales

7.5 SUPPLY CHAIN PERSPECTIVE

As discussed earlier, the LTTC bonding process does not disturb the existing process lines of any

technology. It comes into the process line and supply chain only after each technology's

processing is completely done (FEOL processes + BEOL processes) as illustrated in Fig 7.5. As

an example, the processed wafers from LOGIC, MEMORY, PHOTONICS and MEMS

technologies are each taken and stacked up vertically in the 3D integration stage of the supply

chain. This vertical integration is then followed by dice sawing using a diamond cutter in order to

break the stacked wafer down into its stacked blocks of chips followed by packaging, shipping

and final distribution to customers. We place ourselves in this supply chain at the 3D integration

stage where the license for our LTTC patent will be sold for royalty fees.
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Fig 7.5: Supply chain modelfor 3D IC integration. Licensing oflP is performed at the
3D integration stage.

7.6 HYPE FACTOR

As far as 3D IC is concerned, there is a lot of hype about it in the recent past given the significant

advantages that it offers in terms of better device performance, speed, lower packaging cost etc...

Fig 7.563 shows a Gantt chart which illustrates the stages of the 3D technology in various

companies. Companies such as Tezzaron® and IBM® were the first to venture into 3DIC

commercial production in 2006 - 2007. This was followed by popular DRAM makers, Samsung®

and Hynix® which have entered 3D technology while other giants such as Intel, Micron and

Toshiba are still currently in the research phase.

The real scenario in the industry today for 3DIC is even more positive and encouraging than what

is reflected in Fig 7.6 as some of the companies which are shown to be in the research phase are

in actual fact already producing commercial products using 3D technology64. This includes

Ziptronix Inc. which has filed many patents in 3DIC and is making chip-to-wafer (C2W) based

system-on-chip (SoC) devices. Amkor has already begun commercial production of 3D chip

packaged devices 64 and Zycube is using wafer-to-wafer stacking approach to make 3D devices

with injection glue bonding, buried W or polysilicon vias and "micro-bump" connectors 64.

The increasing interest in 3D-IC amongst most players in the semiconductor industry is clearly

evident. This is indicative of the hike in hype that currently exists for this technology and its

I~I~I+Y~ZI

L MAP4
PROCESS

PROCESS UNE 4

40*AAL \1'11ývl_ I MAT&AL I



possible implications on the attractive licensing fees and royalties that could be expected as a

result.

7.7 FUNDING PERSPECTIVE

Our initial fundamental research activities were funded by the Singapore-MIT Alliance (SMA)

since the year 2003. Having come to a phase close to commercialization, it is necessary to look

out for other funding agencies which include venture capitalist funding, MIT Technology

Licensing Office (LTO), SEMATECH (United States) and the MOE (Ministry of Education),

A*STAR (Singapore).

With continued funding, we hope to be able to work further towards improving the throughput of

the LTTC process by suitably tuning the process parameters or redesigning the bonding system

accordingly. Throughput is one of the major and only stumbling blocks that we need to overcome

for a more successful and expedited commercialization of the LTTC technology. Further efforts

need to be channeled towards improving throughput for the LTTC technology.
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Fig 7.6: Technology timeline for the 3DIC technology in some of the major semiconductor companies
around the world63 .
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7.8 WOOING LICENSEES (CUSTOMERS)

To be able to achieve significant financial gain, it becomes necessary to attract semiconductor

companies towards the LTTC technology and get them to be our licensees so as to benefit from

the royalty fee. It is necessary to go through suitable avenues in order to communicate to the

industry, the need for adopting the LTTC bonding process as a replacement of the existing

integration processes. The possible avenues include journal papers, industry conferences,

affiliations with industrial consortiums such as EMC3D (Semiconductor 3D Equipments and

Materials Consortium) as well as filing of more patents pertaining to the LTTC technology.

There are some unique selling points required to get the industry to embrace this new technology.

Some of them could include the relatively high yield of this process, use of room temperature for

bonding, potential to stack even more wafers vertically (due to minimal wafer bow effects), high

profit margins when high market share can be achieved, fast time to breakeven etc... As a

licensing start-up company, it would be necessary to get listed in the press often so as to make

others in the industry feel our presence and necessity.

7.9 STRATEGY TO ADOPT

Based on the analysis presented, it is found that setting up a non-manufacturing start-up with

licensing LTTC technology as the main strategy is a low risk - high return solution. Therefore,

we recommend this approach to be the most suitable if MIT decides to commercialize the LTTC

technology.



CHAPTER 8

8. COMPARISON WITH COMPETING TECHNOLOGIES

Having analyzed the LTTC technology from various perspectives, it is necessary to summarize

the findings of the work presented so far, to look at the advantages and disadvantages of LTTC in

comparison to other competing technologies and to provide certain yardsticks that would indicate

what conditions need to be achieved in order to commercialize LTTC with sustainable profit

margins.

Table 8.1: Comparison of various features of the different wafer bonding technologies.

Process & Sensitivity to
BOTECHNIQUENG Alignment YiExpected Throughput Equipment pBon di  Lied

TECHNIQUE Yield CoIstSr Load"Cost Surface

LTTC Good Good Low High High Large

HTTC Poor'" Poor High Moderate High Large

Direct Good'" Good High Low High Low

Anodic Moderate Moderate High Low Moderate Low

Eutectic Good Good High Moderate Low Low

Adhesive Good Good High Moderate Low Low

Table 8.1 presents a general comparison of the various bonding technologies in terms of features

such as alignment, expected yield, throughput, processing cost, sensitivity to surface features and

applied force required. It may be seen that LTTC is a favorable technique when considering the

alignment and yield. As discussed earlier, alignment is good because of the low temperature

process that minimizes residual stresses and yield is enhanced as a consequence. However, its

throughput is quite low since pumping of UHV systems takes long and bonding duration also

needs to be kept high to facilitate substantial interface diffusion of Cu atoms at these kinetically

unfavorable low temperatures. LTTC has higher equipment costs due to a low throughput and

also the additional requirement for UHV pumps and chambers. Since the bonding interface in

LTTC is a hard metal surface with no viscosity, surface roughness plays a significant role in

determining the quality of the bond formed. To cause considerable elastic and plastic deformation

of the hard metal bonding interface and facilitate good adhesion, high applied loads are also

necessary. Although application of a large applied force is possible, there could be limitations to

it since low-K dielectric materials in the BEOL layers which have weak mechanical integrity

could easily crack upon high loading stress.



Based on the cost model presented in the previous chapter, we may present some useful

yardsticks required for various factors in order for LTTC to be successfully commercializable and

replace the current HTTC technology. It is found that a minimum yield of 95.4% would be

required if LTTC is to replace HTTC. This yield has been observed in a laboratory setup and our

arguments in the previous chapter also strongly indicate that achieving this yield would not be an

issue. As for alignment accuracy, a value of 0.25 ýim would be required. This should hopefully be

achievable for LTTC in the near future since there is minimal thermal expansion induced

mismatch affecting any alignment and there are more advanced instrumentation tools available

for accurate alignment31 . As far as the throughput is concerned, since the cost of UHV systems

and wafer bonders is relatively small compared to the cost of other standard fab equipments, the

overall cost is found to be not very sensitive to the bonding throughput.



CHAPTER 9

9. CONCLUSION

This work looked at the low temperature thermocompression (LTTC) bonding technology for

wafers using Cu as the bonding interface material in order to realize high performance

heterogeneous system-on-chip (SoC) and DRAM devices that enable better developments in the

near future for the microelectronics industry. The ability to commercialize the LTTC technology

has been investigated from various perspectives including technology, science, manufacturing,

cost, supply chain, intellectual property (IP), etc... Based on the comprehensive and in-depth

analysis, the LTTC technology is found to be favorable from most dimensions. Our investigations

reveal that manufacturing as a new start-up for this technology could be favorable but is a high

risk strategy. Rather, an alternative approach to setup a new licensing company with zero

manufacturing initiative is found to be low risk - high return favorable strategy.

Some risk factors do exist that could hinder our efforts to woo companies to adopt the LTTC

technology for DRAM. One of them is the recent downfall in DRAM prices as a result of excess

supply and high inventory stocking. Also, the low throughput of LTTC could be a major

hindrance in convincing companies to consider adopting this technology although our cost model

reveals that the overall processing cost is not very sensitive to the bonding throughput.

Our continued focus will be on 3D technology research for the near-term and future, focusing

specifically on LTTC. There are still various avenues to be further studied and explored in LTTC

that will help enhance our understanding of this technology. Some of these are listed in Table 9.1.

A summary of our strategy is provided in the form of a flowchart in Fig 9.1. Given the benefits of

adopting LTTC, we shall be licensing out our patents to the semiconductor 3D giants across the

world and achieving economic success through licensing fees and royalties.

Table 9. 1: Further research to be carried out to comprehensively understand the L7TTC technology.

FURTHER RESEARCH AVENUES TO EXPLORE

YIELD - Based on the yield model presented in the Appendix, yield optimization needs to be
performed in order to determine the best set of process parameters that would optimize the bonding
yield. Consistency in yield requires the use of statistical process control (SPC) with a drive towards the
60 process.



I PURSUE LTTC TECHNOLOGY NOW I

DO NOT MANUFACTURE
HIGH RISK LOW RETURNS

LOW MARKET SHARE AS A START-UP

FILE PATENT - LICENSE IT WHEN APPROVED

* LICENSING FEE (ROYALTY) AS SOURCE OF INCOME

* GEOGRAPHICALLY DIVERSE PATENT PORTFOLIO

SOURCE FOR LICENSEE COMPANIES (CUSTOMERS)

* COMMUNICATE EFFECTIVENESS OF THE LTTC TECHNOLOGY

JAVENUES: JOURNALS, SEMICONDUCTORMAGAZINES, PATENTS1

I

Fig 9.1: Summary of the strategy to be adopted in commercializing the LTTC technology.

* RELIABILITY - Thermomechanical reliability of LTTC bonded stacks must be analyzed both by
testing as well as by finite element simulations. Electromigration (EM) and stress migration (SM)
issues in TSV and Cu bonded interfaces deserve in-depth analysis. This requires us to fabricate suitable
EM test structures with TSV and Cu-bonded elements and subsequently subject them to accelerated
testing and perform failure analysis.

* STATISTICAL MODELING - Reliability of TSV and Cu bonding is to be quantified by developing
reliability block diagrams to model 3DICs and using accelerated life testing (ALT) to find out the stress
lifetime of 3D devices and extrapolating these to normal field use conditions to determine the median
time to failure of 3D structures. The presence of multiple reliability-related failure mechanisms in
LTTC based structures requires the use of multi-modal statistics for accurate reliability analysis.

* PROCESS OPTIMIZATION - The various processes such as DRIE65, CMP, UHV bonding etc...
and thin film deposition techniques (Cu electrodeposition) need to be optimized in order to avoid
process-induced defects and fabricate more reliable TSV - Cu bonded device structures.

* DEVICE PERFORMANCE - Influence of bonded Cu wafers and TSV on the transistor device
characteristics needs further investigation. Device performance could be affected by TSV as revealed
by some recent finite element simulations 66.

* MECHANICAL MODELING - The true contact area model presented in Chapter 3 needs to be
extended to include the effects of bonding temperature and bonding duration time and also account for
the UHV low background pressure that suppresses the formation of oxide layers on the Cu bonding
surface.

CONTINUED RESEARCH FOR FUTURE

* WORK ON THROUGHPUT IMPROVEMENT EFFORTS
* FURTHER IN-DEPTH SCIENTIFIC RESEARCH ON LTTC TECHNOLOGY

* STRIVE FORAMORE COMPLETE PATENT PORTFOLIO IN LTTC TECHNOLOGY



APPENDIX

I have attempted to develop a quantitative model to evaluate the yield of Cu bonded die / wafers.

The details of the model are presented in this Appendix.

A. STATISTICAL YIELD MODEL

Yield is technically defined to be the fraction of devices operating before the product is shipped.

In other words, it may be regarded as the quality or reliability at time t = 0. Yield loss is the

complement of yield referring to the percentage of manufactured devices that failed during test.

A.1 DEFECTS

Yield loss is typically caused by defects which can be classified as "yield defects" or "reliability

defects'" •. Yield defects refer to those defects that have a defect size more than the threshold

defect size for failure at time t = 0. On the contrary, reliability defects refer to those defects where

the initial defect size is low but as the device operates some failure mechanisms cause the defect

size to increase and approach the threshold defect size after some time, t. Defects are

characterized to have a certain defect density and defect size distribution. In the case of wafer

bonding, as may be seen in Fig A.1, the defects or voids or unbonded areas are not distinct and

discrete. Rather, they are continuous throughout the wafer. Therefore, defects cannot be used as a

criterion to quantify yield since the defect density cannot be determined when they are not

distinct and discrete. To tackle this issue, we use the contacted area spots on the wafers to

quantify yield. As evidenced by Fig A.1, the contact area spots are distinct when bonding occurs

and we could associate them with a spot density and spot size distribution.

A.2 CONTACT AREA SPOTS

Fig A. 1 shows a typical bonded wafer with the areas of contact indicated as spots with the applied

load being successively increased. These localized areas of contact can be thought to have a

contact area spot (CAS) density and size distribution denoted by f(D) and s(a) respectively.

Although we typically look at the total true contact area as a criterion to determine the bond

quality, we could alternately look at bonding from a nanoscale perspective by analyzing the

individual contact areas of each of the contacting asperities at the bonded interface of the wafers

as illustrated by Fig A.2. If the contact area of two asperities is very small, it would be easy to

"debond" that contact since the debonding force / area during crack propagation is quite large.

However, if the asperity contact area is large, then resistance to debonding would be higher and



the contact more intact. This allows us to choose a "critical threshold contact area" below which

bonding is weak and debonding occurs easily. Based on this logic, let us now develop the
statistical yield model for 3DIC.
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Fig A. 1: Contact areas for bonded wafer at different applied load conditions25
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Fig A.2: Analysis of bonded interface by looking at individual asperity contact areas during crack
propagation.

A.3 STOCHASTIC YIELD MODEL

A.3.1 NOMENCLATURE

Given below are the symbols used in developing the yield model. There are some terminologies
used here. "Good yield spot" refers to the asperity contact points which have a contact area larger
than the critical contact area (a*) and hence do not fail upon burn-in test or during wafer dicing.



"Good reliability spot" refers to the asperity contact points which have an initial contact area so

large that although, as time evolves, failure mechanisms such as stress migration cause voids to

form, the contact area at time t , a(t) > a* thereby causing no reliability issues.

N - Random variable representing number of contact area spots (CAS) in the bond interface.

Ny - Random variable representing number of spots that are "good yield spots".

NR - Random variable representing number of spots that are "good reliability spots".

A0 - Random variable representing contact spot area at initial time (t = 0).

At - Random variable representing contact spot area at any time t.

n - Total number of asperity contacts.

ny - Arbitrary number of good yield spots in the bond interface.

nR - Arbitrary number of good reliability spots in the bond interface.

pv - Probability that an asperity contact is a "good yield spot".

pR - Probability that an asperity contact is a "good reliability spot".

a - Contact area of an arbitrary spot.

a* - Critical threshold contact area below which bond could fail.

s(a) - CAS size distribution.

f(D) - CAS density distribution.

A.3.2 PROBABILITY THEORY FOR THE MODEL

An asperity contact could be a yield loss spot (ny), reliability loss spot at time 't' (nR) or an area

of contact so large that it may not undergo bond failure up to the given time 't' (n - ny - nR).

The probability mass function (p.m.f) representing the number of contact area spots (ny, nR, n -

ny - nR) may be expressed using the multinomial distribution which is similar in nature to the

binomial distribution as follows":

pmf(n,r n,n-ny -nR) =  n! n, PR *(1-pY -PR)n-n- (A-1)ny!nR!(n-nY R PR P (A-)

Where ny and nR are integers since they represent the number of contact area spots.

The probability py that a contact spot is a "good yield spot" can be expressed as in (A-2) where a*

refers to the critical (threshold) contact area causing device failure.

Pv = Pr(Ao a')= s(a)da (A-2)
a



From (A-1), the distribution for number of good yield spots (Ny) may be expressed as in (A-3).

pmf(n ) = Z Pr(N = n, N = n) Pr(N = n) = ) (pr )"' (1- P )" -pmf (n) (A-3)
n=0 n=0 ny

The bonding yield (YB) may now be defined as the probability that there exists at least one good

yield spot in the bonding interface. This may be expressed by (A-4).

Y = pmf(n, 2 1)= 1- pmf(nr = 0) (A-4)

The probability pR that a contact spot is a "good reliability spot" can be expressed as in (A-5) and

the reliability function is defined similar to the yield function above in (A-6). The time-dependent

decrease in contact area (At) due to failure mechanisms such as stress migration, electromigration

etc... needs to be determined from a physical perspective based on observations of void

nucleation and growth kinetics.

PR = Pr(A, a*; Ao a*) (A-5)

RB(t) = pmf (nR, 1)= 1- pmf(nR = 0) (A-6)

The expression for p.m.f (n) depends on the contact area density distribution, f(D), as follows

where A is the area of the die or wafer considered and D is the asperity density 1.

pmf(n) = . f(D)dD (A-7)
o n1

There are various density distributions [f(D)] available such as constant density, uniform density,

Erlang density and Gamma density. The most commonly used density distribution is the Gamma

density model which is widely applicable. It is expressed in (A-8) with parameters a and P. In

most cases, the contact area density is expected to be higher at the centre than at the edges for

bowed wafers unless sufficient load is applied such that the contact area is uniformly distributed.

f (D)= o a-1e_  (A-8)

A.3.3 USE OF THE TRUE CONTACT AREA MODEL

Having developed the yield model from a stochastic perspective, it is necessary to relate it to the

process parameters of the thermocompression bonding process so that the expected yield for

various combinations of process parameters could be estimated. This is made possible by using

the true contact area model 25' 41 developed in Chapter 3.



The asperity density (D) in Eq.(A-8) is the same asperity density, denoted by rq in the true contact

area model. The CAS size distribution is expressed by (A-9) and illustrated by Fig A.3 in which

the parameter a, could be approximated as the mean contact area spot size which could be

determined from the overall true contact area (AT) and asperity density (ri) by (A-10). In order to

maintain the condition for yield neutrality, the parameters b, c and d are set to b=1, c =1 and d=3

always.

Sac-b-1 b; O ac
s a) = d-1 -d (A-9)

c-a c  .a ;ac <a<

a AT (A-10)

Note that AT in Eq.(A-10) is calculated from the true contact area model and it depends on the

applied load (L), asperity density (qr), surface roughness (a,) and asperity radius (R). Some of

these parameters are determined by AFM scan of the unbonded Cu film on the wafer surface.

The fitting parameters of the yield and reliability model developed are a, P, and a*. While the

parameters a and P could be determined or precisely assumed from the contact area spatial

distribution observed during actual bonding, the only fitting parameter that needs to be found is

the critical threshold contact area (a*).

s(a)

Fig A.3: Typical contact area spot size distribution with mean contact area of a51.

Experimental yield data such as that shown in Table A. 1 may be used to estimate the value of a*.

Once this is done, all the parameters of the yield model are determined and it can then be used to

predict the yield for any combination of bonding process parameters {L, q, a,}.

6
a,



Table A. 1: Experimental data on dicing yield that can be used to calibrate the yield model developed".

Table 12 Details of the different bonding experiments, Resuls of surfac rughness characterizations. calcu-
tlated true contact areas, and the dicing yield for each of the experiments. All wafers were •bonded at 300 "C.
(rms roughness is the root-mean-square roughness of the wafer surface measured with AFM. The scan area was
I x i pm', A minimum of six scans were taken for each wafer surface and the average value uas taken).

Nominal contact RMS roughness True contact 4
'1bingL yield

Load (11) Area (m') (m) d (rim) area (m') (.%)

Blanket (CMP)- 400
blanket (CMP) I 000

2000

2550
4550

8000

10000

Blanket (CMP) 4550
blanket (CMP and etched) 4550

10000

Blanket (CMP and etched)- 2000
blanket (CMP and etched) 2000

4550

Blanket (as deposited)- 4550
blanket (CMP and etched) 4550

Blanket (as deposited)- 6000
blanket (as deposited)
Blanket (CMP)-ljxtterned 4550
(50 IAm) 10000

Blanket (CMP)-patterned 4550
(175 jm) 1000

Blanket (CMP)-patterned 4550
(310 rAm) 1 0000

0,03142
0.03142

0,03142

0.03142

0.03142

0,03142

0.03142

0.03142
0.03142

0,03142

0.03142

0,03142

0.03142

0.03142

0,01271

0.0 1271
0.00578

0.00578

0.00400
0.00400

1 05. 1.05

1.05. 1.05105, 1 05
1.05, 1.05

1.05l. 1.05
1.05. 1.05

1.05, 1.05

1.05. 5.83
1.05, 2.34

1.05, 5,83
4.38. 4.90

2.50, 1,50
4.14,- 553

5.92. 8,42

5.92 12.93

5.92, 5.92

1.05, 8.63

1.05, 8.63

1.05. 10.00

1.05, 10,00

t,05, 1195
1.05. 11.95

3.03
2.76

2.55

2.48

2.29
2.10

2.01

2.66
2.66

2.43

2.94

2.86
2 .86

2.63

2.76

2.50

2.23
2.23

1 95

2.15

1.90

8.98E
- o 1'1t

2.21L-E- 31 9

4.16E
-  

66.0

5.58E
-

76-4

9.77/:"

I .70.E'

2,13E-,

7.44E,-

2.139E - o

2.82E-0

6. 12 
- '

5.89E'-'

8.72E
-

5.08E
"

1, 15E -- 6

Si lE-165.1IE
-'o

1.12L2E

4.69E
-O-

1.021'.

97.2

100,0

81.9

91.0

91 7
1.4

16.7

72.9

667

72

95.1

42.4
87.5

36.0

68,4

25,6
57,0

Compare with the
theoretical YIELD
MODEL developed &
calibrate the yield
model parameters...

A.4 YIELD FOR MULTIPLE DIE STACKING

Our analysis so far has focused on the bonding yield when two wafers (blanket or patterned) are

bonded together. Typically, the number of wafers that could be bonded is around 4-5. Therefore,

the overall bond yield (YB) of a stacked die or wafer must account for these multiple bonding

steps. Every additional layer of stacking causes a cumulative reduction in the overall yield of the

3D structure. The bond yield, YB, for an N-level stacking may be expressed by (A-11) where

Y"K+, refers to the bond yield when wafers / dies K and K+l are bonded. The bonding yield for

every successive stacking is increasingly lower because as additional wafers are added to a stack,

it becomes less compliant and more difficult to overcome the bowing effects even if sufficient

load is applied. Therefore, this reduction in compliance results in a lower quality of bonding with

additional wafers.

N-1

rB = YK/K+
K=1

; YN-1/N < YN-2/N-1 < "' < Y /2

Experimental
Results

:J

(A-ll)



A.5 CUMULATIVE YIELD OF 3DIC

Apart from the defective bond interfaces between wafers, other sources also result in yield loss of

a 3DIC. These include process contaminants and extrinsic defects that affect the yield of each die

fabricated by planar processing. Moreover, the initial wafer used for fabrication could also be

defective. Considering all these possibilities, the cumulative yield of a 3DIC may be expressed as

in (A-12) where the standard expression for die yield, Ydie, is given by (A-13)67 which resembles

the negative binomial yield model with Dunit representing the defect density (defects/area), Adi,

referring to the defect-sensitive area of the die and P is a constant which is found to have a value

of 7 for the current generation of CMOS technology.

overall (wafer Ydie )N (A-12)

Ydie = + Dunits die] (A-13)P
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