1,175 research outputs found

    Cross-lingual syntactically informed distributed word representations

    Get PDF
    We develop a novel cross-lingual word representation model which injects syntactic information through dependency-based contexts into a shared cross-lingual word vector space. The model, termed CL-DepEmb, is based on the following assumptions: (1) dependency relations are largely language-independent, at least for related languages and prominent dependency links such as direct objects, as evidenced by the Universal Dependencies project; (2) word translation equivalents take similar grammatical roles in a sentence and are therefore substitutable within their syntactic contexts. Experiments with several language pairs on word similarity and bilingual lexicon induction, two fundamental semantic tasks emphasising semantic similarity, suggest the usefulness of the proposed syntactically informed cross-lingual word vector spaces. Improvements are observed in both tasks over standard cross-lingual "offline mapping" baselines trained using the same setup and an equal level of bilingual supervision

    Improving the translation environment for professional translators

    Get PDF
    When using computer-aided translation systems in a typical, professional translation workflow, there are several stages at which there is room for improvement. The SCATE (Smart Computer-Aided Translation Environment) project investigated several of these aspects, both from a human-computer interaction point of view, as well as from a purely technological side. This paper describes the SCATE research with respect to improved fuzzy matching, parallel treebanks, the integration of translation memories with machine translation, quality estimation, terminology extraction from comparable texts, the use of speech recognition in the translation process, and human computer interaction and interface design for the professional translation environment. For each of these topics, we describe the experiments we performed and the conclusions drawn, providing an overview of the highlights of the entire SCATE project

    Is Supervised Syntactic Parsing Beneficial for Language Understanding? An Empirical Investigation

    Full text link
    Traditional NLP has long held (supervised) syntactic parsing necessary for successful higher-level language understanding. The recent advent of end-to-end neural language learning, self-supervised via language modeling (LM), and its success on a wide range of language understanding tasks, however, questions this belief. In this work, we empirically investigate the usefulness of supervised parsing for semantic language understanding in the context of LM-pretrained transformer networks. Relying on the established fine-tuning paradigm, we first couple a pretrained transformer with a biaffine parsing head, aiming to infuse explicit syntactic knowledge from Universal Dependencies (UD) treebanks into the transformer. We then fine-tune the model for language understanding (LU) tasks and measure the effect of the intermediate parsing training (IPT) on downstream LU performance. Results from both monolingual English and zero-shot language transfer experiments (with intermediate target-language parsing) show that explicit formalized syntax, injected into transformers through intermediate supervised parsing, has very limited and inconsistent effect on downstream LU performance. Our results, coupled with our analysis of transformers' representation spaces before and after intermediate parsing, make a significant step towards providing answers to an essential question: how (un)availing is supervised parsing for high-level semantic language understanding in the era of large neural models

    Cross-lingual Word Clusters for Direct Transfer of Linguistic Structure

    Get PDF
    It has been established that incorporating word cluster features derived from large unlabeled corpora can significantly improve prediction of linguistic structure. While previous work has focused primarily on English, we extend these results to other languages along two dimensions. First, we show that these results hold true for a number of languages across families. Second, and more interestingly, we provide an algorithm for inducing cross-lingual clusters and we show that features derived from these clusters significantly improve the accuracy of cross-lingual structure prediction. Specifically, we show that by augmenting direct-transfer systems with cross-lingual cluster features, the relative error of delexicalized dependency parsers, trained on English treebanks and transferred to foreign languages, can be reduced by up to 13%. When applying the same method to direct transfer of named-entity recognizers, we observe relative improvements of up to 26%

    Revisiting the Context Window for Cross-lingual Word Embeddings

    Full text link
    Existing approaches to mapping-based cross-lingual word embeddings are based on the assumption that the source and target embedding spaces are structurally similar. The structures of embedding spaces largely depend on the co-occurrence statistics of each word, which the choice of context window determines. Despite this obvious connection between the context window and mapping-based cross-lingual embeddings, their relationship has been underexplored in prior work. In this work, we provide a thorough evaluation, in various languages, domains, and tasks, of bilingual embeddings trained with different context windows. The highlight of our findings is that increasing the size of both the source and target window sizes improves the performance of bilingual lexicon induction, especially the performance on frequent nouns.Comment: ACL202

    Meta-learning for fast cross-lingual adaptation in dependency parsing

    Get PDF
    Meta-learning, or learning to learn, is a technique that can help to overcome resource scarcity in cross-lingual NLP problems, by enabling fast adaptation to new tasks. We apply model-agnostic meta-learning (MAML) to the task of cross-lingual dependency parsing. We train our model on a diverse set of languages to learn a parameter initialization that can adapt quickly to new languages. We find that meta-learning with pre-training can significantly improve upon the performance of language transfer and standard supervised learning baselines for a variety of unseen, typologically diverse, and low-resource languages, in a few-shot learning setup
    • …
    corecore